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Abstract
How organisms move and disperse is crucial to understand how population dynamics

relates to the spatial heterogeneity of the environment. Random walk (RW) models are typi-

cal tools to describe movement patterns. Whether Lévy or alternative RW better describes

forager movements is keenly debated. We get around this issue using the Generalized

Pareto Distribution (GPD). GPD includes as specific cases Normal, exponential and power

law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively.

Whereas previous studies typically confronted a limited set of candidate models, GPD lets

the most likely RWmodel emerge from the data. We illustrate the wide applicability of the

method using GPS-tracked seabird foraging movements and fishing vessel movements

tracked by Vessel Monitoring System (VMS), both collected in the Peruvian pelagic ecosys-

tem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a

synoptic characterization of the observed movement in terms of characteristic scale and dif-

fusive property. They reveal and quantify the variability, among species and individuals, of

the spatial strategies selected by predators foraging on a common prey field. The GPD

parameters constitute relevant metrics for (1) providing a synthetic and pattern–oriented

description of movement, (2) using top predators as ecosystem indicators and (3) studying

the variability of spatial behaviour among species or among individuals with different

personalities.

Introduction
The characterization of foraging movements by random walk (RW) models (e.g. [1]) has
received increased attention since GPS tracking made high-resolution records of animal and
human displacements easily available (e.g. [2–4]). In such a probabilistic framework, move-
ment is seen as a succession of elementary behavioural events called ‘moves’ [1] whose lengths
are defined by random draws from a probability density function. While the dominant RW
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model in statistical physics has been the Brownian walk (characterized by a Gaussian behaviour
of the tail of the move lengths distribution, and producing a normally diffusive behaviour),
early studies in ecology suggested that a variety of foragers, from microzooplankton to humans
(e.g. [5–10]), perform movements well described by Lévy walks. Lévy walks are characterized
by the occurrence of rare and very large moves in the trajectory, producing heavy-tailed
(power-law) move-length distributions, and revealing super diffusive spatial behaviour (e.g.
[11, 12]). Regarding foraging behaviours, this super diffusive behaviour may emerge from the
patchiness of the prey fields [13]. There has been a great deal of controversy regarding whether
random walks should be phenomenological or mechanistic, and whether methods typically
used to test the Lévy walk hypothesis are appropriate. [14–25].

One of the controversies originated in the modelling paradigm [2]: Should RWs provide a
phenomenological, synthetic and pattern-oriented description of movement? This would jus-
tify the search for one global and parsimonious RWmodel for each study case. Or rather,
should RWs provide a biomechanical, process-oriented description of movement? This would
justify less parsimonious composite models possibly involving different RWs according to the
activity in which the organisms are engaged at each move (e.g. state-space model approaches,
[26] for seabirds, [27] for fishing vessels). Indeed, the two paradigms allow addressing different
critical issues: while the process-oriented paradigm focuses on understanding the determinants
of movement (e.g. bioenergetics or environmental constraints), the pattern–oriented paradigm
may provide synthetic metrics of movement, highly valuable for studying the interactions
between predators and their prey field (e.g. [28]), for studying some components of animal per-
sonalities (e.g. [29–31]) or for using top predator spatial behaviours as ecosystem indicators
(e.g. [13, 32]).

A second controversy is linked to the methods that have been used to test the Lévy walk
hypothesis from the power-tailed behaviour of the move length distribution. After graphical
methods were proven inaccurate, the maximum likelihood criterion was recommended to per-
form an unbiased estimation of the parameter of the power-law distribution, and the compari-
son to alternative models according to the Akaike Information Criterion (AIC [33]) was
encouraged [17,34]. Revisiting early works with this methodology and accepting/rejecting the
AIC's best candidate model with a G-test for goodness-of-fit (GOF) test [35], Edwards et al.
[16,24] and Edwards [23] stated that most of the original conclusions of Lévy walks in animal
and human foraging strategies had to be overturned. A few cases could be described by the
exponential distribution, a specific case of light-tailed distributions producing non-super diffu-
sive spatial behaviours. Such exponentially distributed move lengths would correspond to
purely random search strategies, i.e. Poisson distributed times for changes in search directions.
In most cases, none of the tested models fitted the data, suggesting that the proposed candidate
models were not appropriate.

Here, we argue that testing exponential vs. power-tailed distributions seems fairly restrictive
to determine if super-diffusive or normally diffusive behaviours are dominant among foraging
strategies. We propose Generalized Pareto distributions to model the movement of animal and
human foragers as a random walk. This two-parameter class of distributions comprise as spe-
cific cases the Gaussian, exponential and power-law distributions, within a wider continuum of
normally and super-diffusive RWs that allows getting around the endless debate opposing Lévy
to other types of random walk models. Moreover, we consider that the G-test is not appropriate
for evaluating the goodness of fit of such models because it requires binning continuous data,
which is highly sensitive to the rules chosen for data quantization. We propose the use of the
Cramér-von Mises test, exploiting directly the cumulative distribution of the original data, thus
not requiring any binning. Finally, we address the problem of the determination of the start of
the tail of the distribution, which is a critical issue for evaluating whether or not a Lévy walk
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hypothesis holds. Indeed, from a theoretical point of view, the super-diffusive behaviour of a
Lévy walk [11, 12] is fully characterized by the asymptotic power-tailed behaviour of the distri-
bution of the forager move lengths. Then, the tail of the distribution alone, and not its first per-
centiles, defines this super-diffusive characteristic. While explicitly addressed in the field of
extreme event statistics [36], the determination of the start of the tail is an issue that has been
ignored in the evaluation of the Lévy walk hypothesis in movement ecology. Power-tailed
behaviour has typically been tested for a tail starting at the minimum value of the dataset or
using histogram-based criteria that are very sensitive to the binning. To address this issue, we
provide a pragmatic definition of the tail of the move length distribution.

Applying this methodology to the movements of two species of GPS-tracked seabirds and
fishermen, we (1) illustrate the wide applicability of the proposed method on a variety of track-
ing data and (2) reveal inter-individual and interspecific variability in the spatial strategies
selected by predators foraging on a common prey field.

Method and Case Study Data
We consider the Generalized Pareto Distribution (GPD) to model the movements of living
organisms, as described by the tails of their move-length distributions. A key feature of GPDs
is to embed as special cases the Gaussian, exponential and power distributions, which underlie
Brownian, Poisson-like and Lévy walks. The GPD is a two-parameter family of distributions
[37, 38] with the following cumulative distribution function [39]:

Fs;kðlÞ ¼
1� 1þ kl

s

� ��1=k

; k 6¼ 0

1� exp � l
s

� �
; k ¼ 0

ðEq1Þ

8>>><
>>>:

and the probability density function:
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1

s
1þ kl

s
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1

s
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s

� �
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where the σ> 0 and −1< k<1 are the scale and shape parameters; and the domain of x is
[θ,1 [when k> 0 or [θ, σ>] when k� 0; θ is the start of the tail of the distribution. The scale
parameter, σ, characterizes the spatial range or characteristic scale of the movement patterns.
The shape parameter k describes the asymptotic behaviour of the distribution; in other words,
the relative contribution of long moves vs. short moves, i.e. the thickness of the tail that deter-
mines the diffusive property of the movement.

The thickness of the tail of a distribution is generally defined relative to that of a Normal dis-
tribution. A distribution that has a tendency to generate a higher proportion of extreme values
than the Normal distribution is referred to as a heavy-tailed distribution. A distribution that
has a tendency to generate a lower proportion of extreme values than the Normal distribution
is referred to as a light-tailed distribution. The GPD comprises finite-tailed (k<0, e.g. Uniform
and Beta distributions), light-tailed (k in [0; 0.5], e.g. exponential, gamma, or Gumbel distribu-
tions), heavy-tailed (k in] 0.5;1[, e.g. Lévy, Pareto, log-normal, Burr, Cauchy and log-gamma
distributions) and ballistic (infinite k values) distributions. As illustrated in Fig 1, the exponen-
tial (k = 0) and Lévy walk (k> 0.5) hypotheses lie within this continuum of distributions.
Parameter k is associated with the power-law (Lévy) exponent μ as μ = 1+1/k
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Regarding the interpretation of forager movements in terms of diffusion, the reference
point is the Brownian walk (k = 0.5), which distinguishes linear diffusive behaviour (k<0.5)
from the super-diffusive behaviour exhibited by Lévy walks (k>0.5). The estimation of model
parameters k and σ from move length observations is carried out using a maximum likelihood

Fig 1. Generalized Pareto Distribution, a continuum from Exponential-Poisson to Power-Lévy walk patterns: parameter k of the GPD (Eqn.1)
defines a continuum of distributions from light-tailed (k<0) to heavy-tailed (k>0.5).We show typical trajectories emerging from random realizations of
those different move distributions, including a Poisson-exponential motion (k = 0), a Brownian-Gaussian motion (k = 0.5) and a Lévy-power walk (k>0.5) with
k = 1. For each case, we also show in the lower right inset the log-log plot of the corresponding move length probability density function.

doi:10.1371/journal.pone.0132231.g001
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estimation. The log-likelihood of a sample of move lengths l = (l1,l2,. . .ln) is given by [39]:

L ðl; k; sÞ ¼
Yn

i¼1
fk;sðliÞ ¼ �nlnkþ ln Pn

i¼1 1þ kli
s

� ��1
k�1

 ! !
ðEq3Þ

The analytical maximization of the log-likelihood for GPD is not possible; hence numerical
optimizations are carried out. In the present work, the maximization of the log-likelihood func-
tions is performed with the Matlab toolbox « Statistics », that proceeds using a gradient descent
initialized with the method of moments.

From 200 simulations, carried out for values of k from 0.1 to 1.25, we analyse the estimation
bias on model parameters that may emerge, as real foragers' datasets (1) cannot exhibit infinite
move length values and (2) are samples of finite size. The effect of the finite move length values
was explored with a sample of size 1000 and by setting maximum values of the move lengths
between the 90th and the 99.9th percentile for the GPD (Fig 2, left panel). These simulations
clearly point out a bias in the parameter estimation for the unbounded GPD when the maximal
value of the sample is below the 99.9th percentile. In contrast, the parameter estimation for the
bounded GPD does not exhibit such a bias. As a consequence, the bounded version of the GPD
(BGPD) should be preferred for examining real observation data. Then the effect of the sam-
ples of finite size was examined with a maximal value of the observed move length set below

Fig 2. Analysis of the bias in the estimation of parameter k for both bounded and unbounded GPDs and for different sample sizes: mean
estimation bias for the unbounded GPD (solid lines) and the bounded GPD (dashed lines) depending on the percentile of the observed maximal
value (left), mean estimation bias for the bounded GPD as a function of the sample size N (right). In both cases, we report the zero-bias case (solid
black line). The mean bias was estimated over 200 simulations.

doi:10.1371/journal.pone.0132231.g002
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the 99.9th percentile of the actual GPD. A finite sample size greater than 200 observations,
although relatively small, leads to a significant reduction in the bias (Fig 2, right panel). Because
the bias was linear with respect to the actual k value, a bias correction relationship was esti-
mated. Simulations for other maximal values of the observed move length range led to similar
conclusions. Linear bias corrections were then estimated as a function of the size of the sample
set and of the percentile of the maximum move length value. These corrections were then
applied when fitting bounded GPDs to seabirds and fishing vessel movement patterns.

The probability density function of the bounded version of the GPD (BGPD) is given by:

gk;s;lmax
¼ fk;sðlÞ

Fk;sðlmaxÞ
ðEq4Þ

and the log-likelihood functions given a sample of move lengths l = (l1,l2,. . .ln) is

L ðg; k; sÞ ¼
Yn

i¼1
gk;sðliÞ ¼ ð Fk;sðlnÞÞ�n

Yn

i¼1
fk;sðliÞ

¼ ð Fk;sðlnÞÞ�n �nlnkþ ln Pn
i¼1 1þ kli

s

� ��1
k�1

 ! !" #
ðEq5Þ

Similar to the GPD, the maximization of the BGPD log-likelihood is performed numerically
using a gradient descent scheme.

We use the Cramér-von Mises test [40], hereafter CVM, as a GOF-test to examine whether
or not the observed data are consistent with the fitted model. The CVM statistic is defined as
follows:

o2
n ¼

1

12n
þ
Xn
i¼1

Ui;n �
2i� 1

2n

� �2

ðEq6Þ

Where n is the size of the sample and U1 = F(X1), . . ., Un = F(Xn). X is the random variable
representing the move length and F(Xi) is the value of the cumulative distribution function cor-
responding to the i-th rank statistic in the sample. The same statistic ω2 can be calculated for a
number of random draws of size n from the fitted model. The null hypothesis of the GOF test
(observations are consistent with the fitted model) is rejected with significance level α when-
ever o2

n � o2
a, where o

2
a is the upper α-quantile of the distribution of ω2 over the random

draws from the fitted model. This test does not require any prior binning of the continuous
move length data and appears more appropriate than the G-test used in [23], especially when
small samples are considered [41]. In addition, the CVM test relies on rank statistics that com-
pare the cumulative density functions over their entire domain, and not only their maximum
difference, as the Kolmogorov-Smirnov test does. This results in a greater robustness to test for
the relevance of the candidate model given some observed samples, particularly when dealing
with heavy-tailed distributions.

As mentioned above, the definition of the start of the tail is a critical issue, generally over-
looked in previous studies. Here, we formally define the start of the tail as the minimum data
value for which the GOF test is significant. By coupling model estimation and the GOF mea-
sure in this way, we guarantee a consistent and adaptive definition of the tail, ensuring the sta-
tistical consistency of the fitted model.

As case studies, we consider two datasets collected in the Peruvian coastal upwelling ecosys-
tem on anchovy (Engraulis ringens) main predators: seabirds and the purse seine fishery. In
such pelagic ecosystems, water masses and fish schools are constantly moving [42] so that pre-
cise prey localization is unpredictable regardless of the predator, human or animal [8]. Forag-
ing movements for all predators aim at the same goal: dealing with uncertainty in prey
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localization and maximizing encounters. Yet, they may adopt distinct forms due to differences
in the cognitive, locomotory and motivational states of each predator. Synthetic metrics like
the scale and shape parameters from the BGPDmay be very useful for quantifying and com-
paring alternative spatial strategies.

The first dataset consisted of the movements deployed during four foraging trips by two sea-
bird species, boobies (Sula variegata) and guanay cormorants (Phalacrocorax bougainvilli)
from Isla Pescadores, a colony located off Lima, Peru (11°47’12” South, 77°14’25”West), where
the two species breed in sympatry (authorizations for the fieldwork were delivered by SER-
NANP, Peru; no animals were handled directly for this study as data were collected from previ-
ous works). Their positions were recorded each second with miniaturized GPS [see 43 for
protocol details; raw data available in Supporting Information S1, S2, S3 and S4 Dataset]. The
original positions were resampled into moves (see Supporting Information S1 Protocol), where
moves are defined as elementary behavioural events [1]. We fitted a BGPD, and alternative
classical models for comparison, to the distribution of the move lengths observed for each for-
aging trip, each of them gathering more than 500 moves.

The second dataset consisted of the movements deployed by three industrial anchovy purse
seiners, as monitored by the Peruvian Vessel Monitoring System (VMS [13, 8]; between 4 and
18° South and 72 and 82° West). VMS provides approximately one position per hour for each
vessel. The original positions of fishing trips are re-sampled into moves ([1, 13, 8]; see the elec-
tronic supplementary material]. Since fishing trips in this fishery last on average 24h and VMS
sampling is about 1 per hour, each trip is described by ~ 24 positions, producing less than 20
moves. Since model fits based on samples with less than 200 moves should not be considered,
we fit a BGPD (and alternative models for comparison) to the yearly distributions of the move
lengths of each vessel, considering that a given fisherman should exhibit some consistency in
its spatial behaviour over time. These vessel data were already analysed in previous RW works
[8, 23] and were selected for potential comparisons of the results.

Results

3.1 Seabirds
The four seabird foraging trips studied are presented in Fig 3. They lasted between ~ 1 and 4
hours with covered distances between 11 and 140 km, and maximum distances from the colony
(ranges) between 2 and 43 km. Table 1 compares for each trip, through AIC, the fit of the expo-
nential, power, Generalized Pareto and Bounded Generalized Pareto distributions to the move

length data. The estimated shape parameters (expressed as k̂ or m̂ ¼ 1
1�k̂

) show that the four

tracks are super diffusive and well described by Lévy walks (k̂ 2�0:5;1½ or m̂ 2�1; 3½). With the
proposed adaptive tail definition, BGPD was the model that allowed gathering the largest num-
ber of moves in the tail (50%-70% of the moves, other model results are not shown here).

The four track examples (Fig 4) illustrate that a diffusion coefficient alone does not allow
comparing the area that two foragers may visit during a trip: diffusion coefficients are directly
comparable only if the scale parameters are similar. For instance, booby a and cormorant d
have comparable number of moves (n equal to 1003 and 1035, respectively) and the former has
a lower diffusion coefficient than the latter (k equal to 0.67 and 1.54, respectively). However,
booby a travelled farther distances than cormorant d (ranges of 43km and 2 km, respectively).
Regarding individuals within the same species, boobies a and b show great differences in cov-
ered distance and range. Since the diffusion parameter k takes similar values for both boobies,
it is the scale parameter σ (5.5.10−2 and 1.10−2 for boobies a and b, respectively) that conditions
the characteristic length of the trajectory and the scope of exploration of the seabirds.
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Cormorants c and d show smaller covered distances and range values, with the former one tak-
ing larger values than the latter. In this case, scale parameters are comparable (7.6.10−4 and
7.3.10−4, respectively), and it is the difference in the diffusion parameter (1.85 and 1.54, respec-
tively) that conditions the scope of exploration (ranges of 11 and 2 km, respectively).

3.2 Fishing vessels
The fishing trips from the three anchovy purse seiners are presented in Fig 5. Bertrand et al.
[8], based on graphical estimation methods, concluded that the movements of the three vessels
were well described by Lévy walks, vessel a being the most diffusive (m̂ ¼ 1:43) and vessel c the

Fig 3. Foraging trips by four seabirds from a breeding colony in the Peruvian coastal waters (Pescadores Island, red dot) in November 2010. Trips
were recorded with miniaturized GPS, providing one position every second. The orange and dark red tracks are from boobies (Sula variegata) and the dark
and light green tracks are from cormorants (Phalacrocorax bougainvillii).

doi:10.1371/journal.pone.0132231.g003
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least diffusive (m̂ ¼ 2:43). Edwards [23] on the same dataset concluded that although bounded
Lévy was the most plausible model for vessels a and b, and exponential for vessel c, no model
actually passed the G-GOF test. The conclusion was that these datasets did not conform to any
candidate models. Table 2 compares for each vessel the fitting of the exponential, power, Gen-
eralized Pareto and Bounded Generalized Pareto distributions to the move length distributions.
In the three cases, BGPD presented the minimum AIC, regardless of the rule chosen for defin-
ing the start of the tail of the move length distribution (i.e. either based on histograms as in pre-
vious works or using the proposed adaptive definition of the tail). Consistently with [8], vessels

a (k̂ ¼ 2) and b (k̂ ¼ 0:86) are well described by a super diffusive Lévy walk behaviour

(k̂ 2�0:5;1½ or m̂ 2�1; 3½); in contrast, vessel c (k̂ ¼ 0:05) approaches a normally diffusive RW

(k̂ < 0:05), close to a Poisson-like (exponential tail) movement. The three vessels also differed
in the characteristic length of the moves they deployed: vessel a exhibited the longest (ŝ =
25.29), and vessel c the shortest (ŝ = 3.31) moves. Since both the scale and shape parameters
changed in the same direction, vessels a and c exhibited the widest and smallest scope of explo-
ration respectively.

Discussion
The visual inspection of tracks is usually the first step that an ecologist undertakes when study-
ing foraging movements. Considering the seabird tracks studied here, this step immediately
reveals that booby a went much farther from the colony than booby b and cormorants d and c.
Basic statistics (range, distance covered) confirm and quantify this global pattern. Fitting
BGPDs to these tracks provided additional and non-redundant information that was not acces-
sible to visual inspection and basic statistics.

Table 1. Model comparison on four seabird GPS-tracked foraging trips. For each trip, four alternative models are considered: Exponential (f(l)*l−μ),
Power (f(l)*e−λl), Generalized Pareto (GPD), Bounded Generalized Pareto (BGPD), see Edwards (2011) for the likelihood functions of the first two models.
Model parameter estimates k̂ ; m̂ ¼ 1

1�k̂
, and ŝ are given except for the exponential model and the likelihood of the models are compared with the Akaike infor-

mation criterion (AIC). The last column provides the total number of moves obtained after resampling the original track positions (N) and the % of moves
retained in the tail, using the adaptive criteria defining the start of the tail as the minimum data value for which the GOF test of estimated model parameters is
significant (CMV p-value >0.05).

Seabird [# moves; % moves in tail] Model k̂ [μ̂ ] σ̂ .10−3 AIC CMV p-value

Peruvian booby (a) [1003; 50%]

Exponential - - 5723 <0.001

Power 1.47 [1.68] - 5720 <0.001

GPD 0.53 [2.89] 58.52 5618 0.249

BGPD 0.67 [2.49] 55.32 5610 0.720

Peruvian booby (b) [645; 70%]

Exponential - - 2970 <0.001

Power 1.12 [1.89] - 2690 0.001

GPD 0.83 [2.21] 10.26 2680 0.102

BGPD 0.90 [2.11] 10.03 2680 0.105

Guanay cormorant (c) [1858; 70%]

Exponential - - 7280 <0.001

Power 1.61 [1.62] - 4530 0.001

GPD 1.69 [1.59] 0.78 4530 0.053

BGPD 1.85 [1.54] 0.76 4520 0.072

Guanay cormorant (d) [1035; 70%]

Exponential - - 3420 <0.001

Power 1.41 [1.71] - 2230 0.143

GPD 1.43 [1.70] 0.76 2230 0.127

BGPD 1.54 [1.65] 0.73 2220 0.180

doi:10.1371/journal.pone.0132231.t001
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First, the estimated shape parameter (k̂) revealed that all four tracks were well described by
Lévy walks, suggesting that these four foraging movements were super diffusive. Anchovy is a
pelagic gregarious forage fish, organized in hierarchical aggregations (schools, clusters of
schools, cluster of clusters; see [44]), which are constantly moving (up to 26 km per day, [42]).
Predators foraging on such prey fields constantly need to track this hierarchical organization,
and this is certainly the reason why their foraging trajectories mix long moves (moves between

Fig 4. Synoptic characterization of the seabird foraging trips.Original tracks, log-log plots of the fits for the different candidate models and synthetic
statistics characterizing the trips: Total distance covered during the foraging trip (km), maximum range from the colony (km), duration of the trip (h), global
sinuosity of the trip (defined as distance/2*range), number of moves after resampling (cf. SI S3), scale parameter (σ) and shape parameter (k, describing
diffusion) from the fitted BGPD.

doi:10.1371/journal.pone.0132231.g004
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anchovy aggregations) with short ones (moves within anchovy aggregations), producing super-
diffusive patterns in their movements [13, 8].

Second, the fitted shape and scale parameters of the BGPD revealed that the studied boobies
and cormorants resorted to different strategies while foraging the same prey field: boobies used
moves with longer characteristic length (scale parameter) while cormorants used a more diffu-
sive spatial strategy (larger shape parameter). The larger characteristic length of boobies’
moves may be linked to their morphology: Sulids are in general described to be optimal for fast
and far flights [45]; Sula variegata in particular, when facing competition for food (including
the fishery, [43]), possibly take advantage over cormorants from its greater foraging range [45].
The more diffusive patterns of cormorants emerge from a more contrasted contribution of

Fig 5. Fishing trips from anchovy purse seiners a (left panel), b (central panel) and c (right panel). Black dots represent the global set of positions for
fishing trips deployed during one year. A sample of 25 fishing trips is represented with colored lines. The inset gives the log-log plot of the total move length
distribution together with the fits of the four candidate models (Generalized Pareto in dark blue, Bounded Generalized Pareto in red, exponential in pink and
power in light blue).

doi:10.1371/journal.pone.0132231.g005
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short moves versus long moves, producing a skewed distribution of move lengths. Cormorants
tend to rely more on collective foraging than boobies do. They form dense rafts when shoals
are located, with large unbroken columns of flying individuals from the colony to the feeding
ground [45, 46]. The importance of social information for cormorants may explain their more
diffusive foraging movements: while involved in a column, cormorants fly straight to a fish
aggregation producing long directed moves in contrast to much shorter moves while actively
foraging on a fish aggregation. Such speculative interpretation obviously calls for complemen-
tary studies analyzing a much larger sample of tracks.

Here our main contribution is a BGPD-based methodology that (1) quantified differences
among the studied tracks that were not trivial from visual inspection and basic statistics and
(2) raised questions and hypotheses about differences in the foraging strategies adopted by two
sympatric species foraging on the same prey field. The inference of BGPD parameters for a
variety of scenarios of prey abundance and distribution should be explored to investigate how
the two species deal with the great variability of the anchovy distribution (e.g. [47]), and may
provide new insights on the behavioural niches of these two sympatric species [48].

Table 2. Model comparison on VMS-tracked trips from three fishing vessels. For each vessel, four alternative models are considered: Exponential
(f(l)*l−μ), Power (f(l)*e−λl), Generalized Pareto (GPD), Bounded Generalized Pareto (BGPD), see Edwards (2011) for the likelihood functions of the first two
models. Model parameter estimates k̂ ; m̂ ¼ 1

1�k̂
, and ŝ are given except for the exponential model and the likelihood of the models are compared with the

Akaike information criterion (AIC). The last column provides the total number of moves obtained after the resampling of the original track positions (N) and the
% of moves retained in the tail. Two protocols for the definition of the beginning of the distribution tail are compared: the empirical protocol used in previous
works on the same data (Bertrand et al. 2005, 2007; Edwards 2011; the tail is defined based on the histogram of the move length built with Scott’s rule,
excluding the first bin); the adaptive protocol proposed here defining the start of the tail as the minimum data value for which the GOF test of estimated model
parameters is significant (CMV p-value >0.05). Note: AIC are not directly comparable when the tail definition is different because the observation sample is
not the same.

Vessel [Number of moves ; % moves in the tail] Model k̂ [μ̂ ] σ̂ AIC CMV p-value

Vessel a Empirical tail [1224]

Exponential 0 [1] - 6 490 <0.01

Power 1.39 [1.72] - 5 830 <0.01

GPD 1.54 [1.65] 9.17 5 830 <0.01

BGPD 3.45 [1.29] 7.56 5 750 0.026

Vessel b Empirical tail [3498]

Exponential 0 [1] - 12 020 <0.001

Power 1.67 [1.60] - 11 770 <0.001

GPD 0.67 [2.49] 4.84 11 360 0.026

BGPD 0.79 [2.26] 4.64 11 340 0.039

Vessel c Empirical tail [824]

Exponential 0 [1] - 1 863 0.128

Power 1.25 [1.80] - 2 058 <0.001

GPD 0.02 [42.14] 3.44 1 864 0.122

BGPD 0.04 [24.92] 3.41 1 863 0.113

Vessel a Adaptive tail [872; 20%]

Exponential 0 [1] - 4 880 <0.001

Power 1.54 [1.65] - 4 880 <0.001

GPD 1.02 [1.98] 27.77 4 656 0.013

BGPD 2 [1.50] 25.29 4 612 0.079

Vessel b Adaptive tail [4204; 80%]

Exponential 0 [1] - 13 930 <0.001

Power 2.17 [1.46] - 13 770 <0.001

GPD 0.73 [2.37] 3.89 12 990 0.053

BGPD 0.86 [2.16] 3.72 12 960 0.082

Vessel c Adaptive tail [1054; 90%]

Exponential 0 [1] - 2 364 0.272

Power 2.38 [1.42] - 2 897 <0.001

GPD 0.03 [28.96] 3.34 2 365 0.224

BGPD 0.05 [19.7] 3.31 2 364 0.220

doi:10.1371/journal.pone.0132231.t002
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The second case study, the movements of fishing vessels, provided a complementary illus-
tration of the possibilities opened by the proposed methodology. Using the BGPD model, we
characterized the different strategies exhibited by three fishermen. Similar to the seabirds, they
all faced the need to track down the gregarious and constantly moving distribution of anchovy
aggregations. Two of the vessels exhibited a super diffusive behaviour, well described by a Lévy
walk, and the third one was best described by a normally diffusive behaviour. In that case
study, the characteristic length of the observed moves was positively correlated to the diffusion
coefficients, producing large differences in their scope of exploration.

Several hypotheses could explain such variability in the fishermen’s strategies, including a
difference in their personalities. Allen & MacGlade [49] for instance showed that facing fluctu-
ating fish conditions, several types of spatial behaviours may emerge among fishermen,
namely, stochastic versus Cartesians, characterized respectively as hunters or risk takers, and
followers or low risk takers. Such hypotheses should be evaluated in future works on larger
samples of fishermen, allowing a thorough analysis of fishermen personalities in this fishery,
and to evaluate the benefit, at the fishery scale, of mixing such personalities for discovering the
location of new fish aggregations and optimally exploiting the prey field.

Overall, the proposed BGPD framework is applicable to any move length distribution,
regardless of the forager trajectory under consideration. It provides a phenomenological, com-
pact, and pattern-oriented description of movement. It quantifies informative and non-trivial
components of foraging strategies: their characteristic size (σ, the scale parameter) and their
diffusive behaviour (k, the shape parameter). It is parsimonious because it does not call for test-
ing a battery of putative models, sometimes difficult to select among (e.g. [50]). In contrast, it
lets the most likely random walk model emerge from the data. This model, along with the pro-
posed adaptive tail definition, is a generic tool to analyse GPS-tracking data and foraging strat-
egies. It allows quantitative and synoptic comparisons between foragers as well as detections of
changes with time in the behaviour of a single forager. This methodological framework is a key
step to test and validate hypotheses on the processes underlying the variability of foraging
movements. As such, it is of critical importance in a variety of movement ecology issues,
including for instance the use of the spatial behaviour of top predators as an ecosystem indica-
tor (e.g. [32, 13, 51]), the comparison of the behavioural niche of different species foraging the
same prey field (e.g. [48]) and the identification of different personalities within the same spe-
cies (e.g. [29, 30, 31]).
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