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Global Optimization of H ∞ problems: Application to robust control synthesis under structural constraints

In this paper, a new technique to compute a synthesis structured Robust Control Law is developed. This technique is based on global optimization methods using a Branch-and-Bound algorithm. The original problem is reformulated as a min/max problem with non-convex constraint. Our approach uses interval arithmetic to compute bounds and accelerate the convergence.

Context

Controlling an autonomous vehicle or a robot requires the synthesis of control laws for steering and guiding. To generate efficient control laws, a lot of specifications, constraints and requirements have been translated into norm constraints and then into a constraint feasibility problem. This problem has been solved, sometimes with relaxations, using numerical methods based on LMI (Linear Matrix Inequalities) or SDP (Semi Definite Program) [START_REF] Arzelier | Multi-objective H 2 /H ∞ /impulseto-peak control of a space launch vehicle[END_REF][START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. The main limitation of these approaches is the complexity of the controller for implementation in an embedded system. However, if a physical structure is imposed on the control law in order to make the implementation easier, the synthesis of this robust control law is much more complex. And this complexity has been identified as a key issue for several years. An efficient first approach based on local non-smooth optimization was given by Apkarian and Noll [START_REF] Apkarian | Nonsmooth H ∞ synthesis. Automatic Control[END_REF].

In this talk, we will present a new approach based on global optimization in order to generate robust control laws.

H ∞ control synthesis under structural constraints

We illustrate our approach with an example of the control of a periodic second order system G with a PID controller K subjected to two frequency constraints
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on the error e and on the command u of the closed-loop system, see Figure 1.

The objective is to find k = (k p , k i , k d ) to stabilize the closed-loop system while minimizing the H ∞ norm of the controlled system to ensure robustness. The H ∞ norm of a dynamic system P is defined as follows:

||P || ∞ = sup ω (σ max (P (jω))),
with σ max the greatest singular value of the transfer function P and j the imaginary unit.

In our particular case, the closed-loop system can be interpreted as two SISO systems (Single In Single Out). The H ∞ norm of a SISO system is the maximum of the absolute value of the transfer function. Indeed, to minimize the H ∞ norm of our example, we need to solve the following min/max problem:

       min k max sup ω W 1 (jω) 1 + G(jω)K(jω) , sup ω W 2 (jω)K(jω) 1 + G(jω)K(jω) , s.t.
The closed-loop system must be stable.

(

) 1 
The stability constraint of a closed-loop is well-known: the roots of denominator part of the transfer function 1 1+G(s)K(s) must have a non-positive real part [START_REF] Petersen | Robust control of uncertain systems: Classical results and recent developments[END_REF]. Using Routh-Hurwitz stability criterion [START_REF] Hurwitz | Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt[END_REF], this constraint can be reformulated as a set of non-convex constraints.

Proposition 1 Let us consider a polynomial Q(s) = a n s n + a n-1 s n-1 + • • • + a 1 s + a 0 .
The real parts of its roots are negative if the entries in the first column of the following table are positive: 

v1,1 = an v1,2 = an-2 v1,3 = an-4 v1,4 = an-6 . . . v2,1 = an-1 v2,2 = an-3 v2,3 = an-5 v2,4 = an-7 . . . v3,1 = -1 v 2,1 v1,1 v1,2 v2,1 v2,2 v3,2 = -1 v 2,1 v1,1 v1,3 v2,1 v2,3 v3,3 = -1 v 2,1 v1,1 v1,4 v2,1 v2,4 . . . . . . v4,1 = -1 v 3,1 v2,1 v2,2 v3,1 v3,2 v4,2 = -1 v 3,1 v2,1 v2,3 v3,1 v3,3 . . . . . . . . . v5,1 = -1 v 4,1 v3 
(s) = 1 + G(s)K(s)
, the H ∞ control synthesis under structural constraint is reformulated as a min/max problem with non-convex constraints.

Global optimization of min/max problems

In order to solve Problem (1), our approach is based on a Branch-and-Bound technique [START_REF] Ninin | Optimisation Globale basée sur l'Analyse d'Intervalles : Relaxation Affine et Limitation de la Mémoire[END_REF]. At each iteration, the domain under study is bisected to improve the computation of bounds. Boxes are eliminated if and only if it is certified that no point in the box can produce a better solution than the current best one, or that at least one constraint cannot be satisfied by any point in such a box.

The non-convex constraint can be handled with constraint programming techniques. In our approach, we use the ACID algorithm [START_REF] Trombettoni | Constructive interval disjunction[END_REF] which reduces the width of the boxes and so accelerates the convergence of the branch-and-bound.

The key point of our approach concerns the computation of the bounds of the objective function. In our example, the objective function can be reformulated as the following expression, with x = (k p , k i , k d ):

f (x) = sup ω∈[ωmin,ωmax] g(x, ω). ( 2 
)
At each iteration, Algorithm 1 is used to compute a lower bound of this function over a box [x]. This algorithm is also a branch-and-bound algorithm based on Interval Arithmetic. But, for not wasting time, we limit the maximum number of iterations for computing faster lower bounds. Each element

([ω], ub ω ) stored in L is composed of: (i) [ω] a sub-interval of [ω min , ω max ] and (ii) ub ω an upper bound of g over [x] × [ω].

Algorithm 1 Computation of bounds of f over a box [x]

Require: g: the function under study (see Equation 2); x: an initial box; L: the list of boxes; nbIter: the maximal number of iterations. 1: Initialization: (lb out , ub out ) = (-∞, ∞). 2: for nb := 1 to nbIter do 3:

Extract an element (ω, ub ω ) from L.

4:

Bisect ω into two sub-boxes ω 1 and ω 2 .

5:

for i:=1 to 2 do 6:

Compute lb ωi and ub ωi a lower and an upper bound of g(x, ω) over [x] × [ω i ] using Interval Arithmetic techniques [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF]. 

Application

In our example, we consider a second-order system and weighting functions W 1 and W 2 penalizing the error signal and control signal respectively:

G(s) = 1 s 2 + 1.4s + 1 , K(s) = k p + k i s + k d s 1 + s . W 1 (s) = s + 100 100s + 1 , W 2 (s) = 10s + 1 s + 10 .
We want to find k p , k i and k d the coefficients of the structured controller K such that the closed-loop system respects the constraints:

max || W 1 (jω) 1 + G(jω)K(jω) || ∞ , || W 2 (jω)K(jω) 1 + G(jω)K(jω) || ∞ ≤ 1
The control is bounded by [-2, 2], and we limit the interval of ω to [10 -2 , 10 2 ].

Our algorithm gives the following result:

max sup ω W 1 (jω) 1 + G(jω)K(jω) , sup ω W 2 (jω)K(jω) 1 + G(jω)K(jω) = 2.1414 with k p = -0.0425, k i = 0.4619, k d = 0.2566
Unfortunately, the value of the solution of the min/max problem is greater than 1. So, the constraints are not respected as shown in Figure 2 (solid lines are above dotted lines of the same color at some frequencies). In this example, the main advantage of our global optimization approach is that unlike classical method based on non-smooth optimization, we can certify that no robust solution of our problem exists.
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 7 if lb ωi > lb out then 8:lb out := lb ωi , {Update the best lower bound} Remove from L all the elements j such as ub ωj < lb out , return (lb out , ub out ): a lower and an upper bound of f over x.Thanks to Interval Analysis, at the end of Algorithm 1, we can ensure that the value of the maximum of f over [x] is included in [lb out , ub out ].
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