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Position Control of a Quadrotor under External Constant Disturbance

J. Colmenares-Vázquez, N. Marchand , J.E. Gómez-Balderas, P. Castillo,
J.J. Téllez-Guzmán J.U. Álvarez-Muñoz, and J. Dumon

Abstract— In the present work, an adaptive backstepping
algorithm is developed in order to counteract the effects of
disturbances. These disturbances are modeled as a constant
force in the translational model part and as a constant torque
in the orientation model part. We make the deduction of the
mathematical expression for the proposed control algorithm
and also we show its performance in simulation. Additionally,
we include some experiments for validating the results obtained
via simulation.

I. INTRODUCTION

The UAVs are in a progressive development and by con-
sequence the methods for controlling them are improving.
These vehicles can do a wide range of tasks. These tasks
may be from domestic use to military missions. These
drones are designed to accomplish or achieve specific goals.
During the missions, they can undergo some perturbations,
such as, a lateral wind or changes in climatic conditions.
This work is focused on studying the behavior of a quadro-
tor under constant disturbances and designing the way to
compensate them. For obtaining the model of a quadrotor
we can choose either the Newton Euler approach, either
the Lagrange method or using quaternions. The reader may
consult [1]–[3] for more details. Another important subject
is the stability of the vehicle. This has been widely covered
in the literature, by instance in [4]–[7]. The system can be
stable but it may not accomplish the goals. In this case,
it is necessary to conceive and to test control algorithm
that increase the performance of the physical system. These
algorithms are based on several ideas such as backstepping,
constraint input, sliding modes among others. Some of these
methods are described in [8]–[13]. The aim is to improve
the performance and reduce the effect of disturbance. In this
respect, disturbance observers have been designed to apply
their respective estimation in order to reduce the impact of
these undesired external perturbations. Some examples are
shown in [14] and [15]. Other researchers have developed
adaptive techniques, see [16], [17]. These algorithms look
for reacting in accord to the presented scenario. We are
interested in designing one algorithm that reacts face to
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an unknown constant disturbance. In the next section, it is
developed a backstepping method in addition to an adaptive
dynamics that rejects sufficiently "slow" perturbations. We
use a simplified model of the quadrotor. These perturbations
are modeled as an external force in the translational model
part and as an external torque in the orientation model part.
It is also supposed the attitude control is sufficiently fast
to follow the required Euler angles and thrust in order to
achieve the reference position.

II. SYSTEM MODEL AND CONTROL ALGORITHM

A. Mathematical Model

We use the approach of Newton Euler for obtaining the
model of the quadrotor. The simplified model is

mr̈ = RF + Fg + k̄u
η̇ = B(η)ω

Jω̇ = τ − ω×Jω + k̄τ

(1)

F means the thrust generated by the helices, Fg is the
gravity force and k̄u is a constant disturbance in the position
model part. η stands for the vector of Euler angles, ω is the
angular velocity in the body frame. m is the mass of drone
and r defines the position of mass center of the drone in the
inertial system. R describes the rotation matrix generated
in the order yaw-pitch-roll. B(η) represents the matrix that
relates the angular velocity and the derivative of the Euler
angles. J is the inertia matrix of the drone. ω× means the
skew symmetric matrix of angular velocity and τ defines the
vector of torques applied to the vehicle and k̄τ is a constant
disturbance in the attitude model part.
This simplified model is used for designing an adaptive
control algorithm that let us to counteract the effects of
the unknown k̄u and k̄τ by estimating their values. In the
following, this algorithm is explained in detail.

B. Position Control Algorithm

The design of the algorithm is divided in two stages, the
first one consists in designing the algorithm for position
controller and the second one consists in designing the ori-
entation control. We suppose that the orientation algorithm
is enough fast so that the position of UAV converges to the
desired position. Let us define the position error:

er = r − rref =⇒ ėr = ṙ − ṙref = v − ṙref (2)

with rref as the desired position and < ∗ , ∗ > stands for
the inner vectorial product. Now, let us propose a positive



definite function to design a convenient velocity vd that
ensures the convergence to the desired position.

VLr =
1

2
< er, er > (3)

Therefore,
V̇Lr =< er, ėr > (4)

and taking v as
vd = ṙref −Krer (5)

it yields,

V̇Lr|v=vd = − < er,Krer > ≤ 0 ∀ t ≥ 0 (6)

with Kr as a positive diagonal matrix. Then, let us define
the velocity error:

ev = v− vd =⇒ ėv = v̇− v̇d =
1

m
(u+ k̄u)− v̇d (7)

where u = RF + Fg . Let be the positive definite function:

VLv = VLr +
1

2
< ev, ev > (8)

and consequently,

V̇Lv = V̇Lr+ < ev, ėv > (9)

Now, taking into account that v = vd + ev , the expression
V̇Lv can be written as:

V̇Lv = − < er,Krer > + < er, ev > + < ev, ėv > (10)

and by choosing u as,

ud = −k̂u +m (v̇d − er −Kvev) (11)

with k̂u as the estimate of k̄u, it results:

V̇Lv = − < er,Krer > − < ev,Kvev > +
1

m
< ev, k̃u >

(12)
where Kv represents a positive diagonal matrix. Now, let
us define the error between the estimate and the unknown
disturbance as

k̃u = k̄u − k̂u (13)

if k̄u is constant, thus, we have

˙̃
ku = − ˙̂

ku (14)

this result will be used in the derivative of the following
augmented positive definite function

VLv2 = VLv +
1

2
< k̃u, γ1

−1k̃u > (15)

with γ1 as a positive diagonal matrix. Therefore,

V̇Lv2 = −Kr < er, er > −Kv < ev, ev >

+ 1
m < ev, k̃u > + < k̃u,−γ1−1 ˙̂ku >

(16)

and taking
˙̂
ku =

γ1
m
ev (17)

as the desired dynamics for k̂u. Thus,

V̇Lv2 = −Kr < er, er > −Kv < ev, ev >
≤ 0 ∀ t ≥ 0

(18)

The matrices Kr, Kv , γ1 are used for tunning the position
control algorithm.

C. Attitude Control Algorithm

There exists a relationship between u and (η, F ) in such
a way that it is possible to find (η, F ) from u. Suppose
(ηref , Fref ) are te values corresponding to u = ud. The
thrust vector F and weight vector Fg are defined as follows:

F =

 0
0
f

 Fg =

 0
0

−mg

 (19)

where g is the gravity acceleration and considered here as
9.81 m/s2. The rotation matrix R is obtained from Euler
angles in the order yaw-pitch-roll and has the following
expression:

R =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ


(20)
where s· and c· mean cos(·) and sin(·) respectively. The
yaw, pitch and roll angles are given by ψ, θ, φ respectively.
The Euler angles vector and the force vector u are

η =

 ψ
θ
φ

 u =

 ux
uy
uz

 (21)

Then, from (1), (19), (20) and (21) it can be deduced the
thrust and the Euler angles needed to generate the virtual
control ud. The ψref needed can be chosen arbitrarily
or conveniently. θref , φref and fref have the following
expressions:

θref = arctan

(
uysψ + uxcψ

uz +mg

)
(22)

φref = arctan

(
cθref · uxsψ − uycψ

uz +mg

)
(23)

fref =
uz +mg

cθref · cφref
(24)

Now, let us define the Euler angles error as:

eη = η − ηref =⇒ ėη = η̇ − η̇ref
= B(η)ω − η̇ref

(25)

The matrix B(η) has the following form:

B =

 0 sφ/cθ cφ/cθ
0 cφ −sφ
1 sφ · tgθ cφ · tgθ

 (26)



with tg as tan. The matrix B(η) is not singular if and only
if cos(θ) 6= 0.
Let us propose the next positive definite function:

VLη =
1

2
< eη, eη > (27)

and by choosing conveniently the angular velocity ω as

ω = ωd = B−1 (η̇ref −Kηeη) (28)

with Kη as a positive diagonal constant matrix, it yields

VLη|ω=ωd
= −Kη < eη, eη > ≤ 0 ∀ t ≥ 0 (29)

Now, let us define the angular velocity error as:

eω = ω − ωη =⇒ ėω = ω̇ − ω̇η (30)

and keep in mind that,

ω = ωη + eω , ω̇ = J−1
(
τ − ω×Jω + k̄τ

)
(31)

Now, let us consider the following candidate Lyapunov
function

VLω = VLη +
1

2
< eω, eω > (32)

hence,
V̇Lω = V̇Lη+ < eω, ėω > (33)

and using (29) and (31), we have

V̇Lω = − < eη,Kηeη > + < eη, Beω >
+ < eω, ėω >

(34)

Therfore, by choosing

τ = −k̂τ + ω×Jω + J
(
ω̇η −BT eη −Kωeω

)
(35)

with k̂τ as the estimate of constant disturbance in attitude
model. It yields

V̇Lω = −Kη < eη, eη > −Kω < eω, eω >

+ < eω, J−1k̃τ >
(36)

with k̃τ defined as

k̃τ = k̄τ − k̂τ (37)

and we have supposed that k̄τ is constant, it results
˙̃
kτ = − ˙̂

kτ (38)

Considering the augmented candidate Lyapunov function:

VLω2 = VLω +
1

2
< k̃τ , γ2

−1k̃τ > (39)

with γ2−1 as a positive diagonal matrix. It results

V̇Lω2 = −Kη < eη, eη > −Kω < eω, eω >

+ < J−1eω, k̃τ > + < k̃τ ,−γ2−1 ˙̂kτ >
(40)

Now, it is taken
˙̂
kτ = γ2J−1eω (41)

as the desired dynamics for k̂τ . Therefore,

V̇Lω2 = −Kη < eη, eη > −Kω < eω, eω >
≤ 0 ∀ t ≥ 0

(42)

The matrices Kη , Kω and γ2 are chosen in order to tune
the attitude controller.

III. SIMULATIONS

The simulation consists of two tests and they were carried
out by means of the software Simulinkr. The first one sim-
ulates the quadrotor’s behavior without the compensation in
presence of constant disturbances. The second one considers
the behavior of quadrotor but including the compensation of
disturbances. The simulation parameters are

Kr = diag(1, 1, 1)
Kv = diag(2, 2, 2)
Kη = diag(4, 4, 4)
Kω = diag(8, 8, 8)
mass = 0.020 (Kg)
γ1 = diag(1, 1, 1) · 10−3

rref = [1, 1, 1] (m)

Jxx = 0.00030993 (kgm2)
Jyy = Jxx
Jzz = 0.00022103 (kgm2)
k̄u = [0.25, 0.25,−0.25] ·mg
k̄τ = [−1, 1, 2] · 10−3 (Nm)
γ2 = diag(5, 5, 5) · 10−7

where mg is the weight of quadrotor. The Fig. 1 shows
the behavior of the quadrotor which undergoes two constant
vectorial disturbances k̄u and k̄τ . We remark in Fig. 1(a) that
the system without the adaptive compensation has a position
error in steady state while the error with compensation van-
ishes. Similar remarks can be made about the Euler angles
errors. From Fig. 1(c) we deduce that the compensated
system uses more energy in order to reduce the error and
from Fig. 1(d) we see that torques generated by the drone,
instead to converge to zero, they tend to the opposite value
of the constant disturbance.

In Figs. 2(a) and 2(b) we observe that disturbance esti-
mates k̂u and k̂τ converge to the applied ones.

IV. HARDWARE AND EXPERIMENTAL RESULTS

A. Hardware

The experiments were developed in the MOCA room at
GIPSA-LAB, see [18] for more references. The system of
control is showed in Fig. 3. The system uses the Vicon
Tracker to get the position and orientation of quadrotor and
these data are sent to the PC which computes the position
control algorithm. We use the factory internal algorithm of
quadrotor for attitude control. The desired Euler angles and
the required thrust are sent to the drone as commands via a
radio transmitter. The drone used in this experiment is the
Blade NanoQX showed in Fig. 4 and its specifications are
described in Table I.

TABLE I
NANOQX PARAMETERS

Parameter Value
mass 0.020 kg

payload 0.006 kg
Transmitter MLP4DSM

Length 0.140 m
Height 0.030 m

helix diameter 0.05 m
Battery 150mAh 1S 3.7V 25C Li-Po
Motor 6 mm Brushed
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Fig. 1. Simulation of quadrotor under constant disturbances with and
without compensation. Subscript "a" stands for "adaptive".

B. Experiments Results

The experiment consists in the implementation of the
control algorithm developed before. This experiment is
divided in four tests. The first one consists in the position
control of the UAV without compensation. The second one
takes into account the compensation dynamics. The results
are shown in Fig. 5. Fig. 5(a) shows that the quadrotor
has a better behavior when the adaptable compensation is
present. The disturbance estimate in this case are about zero
as shown in Fig. 6.
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Fig. 2. Estimates of constant disturbances k̄u and k̄τ

Fig. 3. Control System

Fig. 4. Quadcopter Blade NanoQX
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Fig. 5. Position Control with and without compensation
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Fig. 6. Estimate k̂u when UAV has no addtional load

In the next two scenarios we added a load of 4.7 grams,
which is about 25 % of vehicle weight. The third one
considers the behavior of drone but without compensation
while the forth one includes it. The results of these tests are
described in Fig. 7. The position error in Fig. 7(a) agrees
with the simulations results in Fig. 1(a), especially in ez .
In general, the drone without compensation does not well
manage the presence of a disturbance. The quadrotor stayed
at a low altitude during the test and was not capable to
achieve the reference position. When the control algorithm
includes the disturbance estimate, the vehicle has a better

performance. Fig. 7(a) shows that error tends to zero and
consequently the thrust required is greater as shown in Fig.
7(c). The load estimate is shown in Fig. 8. Particularly, k̂uz
agrees with the weight added.
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Fig. 7. Position Control with and without compensation when load added

V. CONCLUSIONS

It was developed an algorithm which compensated the
applied constant disturbances. This disturbances were mod-
eled as unknown constant forces and torques. The simulation
of system showed satisfactory results and these ones were
confirmed by means of experiments developed in the MOCA
room at GIPSA LAB. The algorithm could estimate the load
added to quadrotor. Additionally to identification of load,
the algorithm can compensate "slow" unknown dynamics
affecting the vehicle behavior and helping by this way to
improve its performance.

In future works, this technique will be applied to a bigger
drone and also the implementation the torque compensation
will be carried out.
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