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This paper presents a switched H ∞ optimal control for a class of discrete-time switched linear systems. All sufficient conditions of the existence of the control law are proved and given in terms of LMI for any switching. Moreover, the proofs are established using an H ∞ norm and switched Lyapunov functions. Its performances are shown through a steering vehicle control application. In fact, the vehicle models are affected by several parameter variations like longitudinal speed, cornering stiffnesses coefficients. The validation step is conducted using real data acquired by a laboratory car under high lateral loads.

INTRODUCTION

This work proposes a switched H ∞ optimal control. This approach can be used to control switched discrete-time linear systems. Indeed, the knowledge of linear models of actual systems is local and affected by several modeling errors. Moreover, it is a very difficult task to quantify the bounds and the nature of these uncertainties to obtain a global model. To overcome this problem, several solutions like fuzzy, LPV, adaptive and switched systems are proposed. In fact, the switched systems are widely addressed in the literature [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Liberzon | Basic problems in stability and design of switched system[END_REF], [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: A switched lyapunov function approach[END_REF], [START_REF] Prajna | Analysis of switched and hybrid systems-beyond piecewise quadratic methods[END_REF], [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], [START_REF] Lin | Switching stabilizability for continuous-time uncertain switched linear systems[END_REF], [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Lin | Stability and stabilizability of switched linear systems: A survey of recent results[END_REF], [START_REF] Koenig | h ∞ filtering and state feedback control for discrete-time switched descriptor systems[END_REF], D and [START_REF] Geromel | Dynamic output feedback hinfinity control of switched linear systems[END_REF]. These systems are defined by a set of sub-models and switching rules. The switching rule is used as a supervisor to determine the appropriate local model.

The major problem of switched systems is related to the stability analysis. Several developments on the stability analysis problem under arbitrary switching signals for some kinds of switched systems are presented for instance in [START_REF] Liberzon | Basic problems in stability and design of switched system[END_REF], [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], [START_REF] Lin | Stability and stabilizability of switched linear systems: A survey of recent results[END_REF] and the references cited therein. Among the stability results on the switched systems we can find those on the stability of switched continuous-time systems [START_REF] Liberzon | Basic problems in stability and design of switched system[END_REF], [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], Lin andAntsaklis [2007, 2009] and those on the stability of switched discrete-time systems [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: A switched lyapunov function approach[END_REF], [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Du | H ∞ filtering of discrete-time switched systems with state delays via switched lyapunov function approach[END_REF] using switched Lyapunov functions. Other switched systems are also treated like switched linear and nonlinear discrete-time descriptor systems [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Koenig | h ∞ filtering and state feedback control for discrete-time switched descriptor systems[END_REF], linear discrete-time switched systems with state delays [START_REF] Du | H ∞ filtering of discrete-time switched systems with state delays via switched lyapunov function approach[END_REF].

Our objective is to develop a steering vehicle control by considering some parametric variations that affect the vehicle model. In fact, the proposed strategy takes advantages of switched Lyapunov functions [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: A switched lyapunov function approach[END_REF], [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Du | H ∞ filtering of discrete-time switched systems with state delays via switched lyapunov function approach[END_REF] and H ∞ criterion [START_REF] Du | H ∞ filtering of discrete-time switched systems with state delays via switched lyapunov function approach[END_REF], [START_REF] Xie | Output feedback h ∞ control of systems with parameter uncertainty[END_REF], [START_REF] Xu | Robust h ∞ control for a class of uncertain nonlinear two-dimensional systems[END_REF], [START_REF] Zhou | Mixed h 2 and h ∞ performance objectives i: Robust performance analysis[END_REF], [START_REF] Muradore | Mixed h 2 /h ∞ control: the discrete-time case[END_REF]. In fact, using switched Lyapunov functions, less restrictive sufficient conditions for the solution of switched H ∞ optimal control are expressed in terms of LMI.

In the literature, several kinds of lateral vehicle control are developed, see for example [START_REF] Ackermann | Linear and nonlinear controller design for robust automatic steering[END_REF], [START_REF] Cerone | Combined automatic lane-keeping and driver's steering through a 2-dof control strategy[END_REF], [START_REF] Marino | Input-output decoupling control by measurement feedback in four wheel-steeringvehicles[END_REF], [START_REF] Plochl | Driver models in automobile dynamics application[END_REF] and the references cited therein. Some of them are designed using the classical control techniques and taking into account some driver behavior like anticipation time and prediction distance [START_REF] Plochl | Driver models in automobile dynamics application[END_REF], [START_REF] Sharp | A mathematical model for driver steering control, with design, tuning and performance results[END_REF] to perform some driving tasks like obstacle or pedestrian avoidance, lanechange maneuvers and lane keeping. However, many of them assume that the vehicle models are well known. To overcome such a problem, a steering vehicle control based on switched H ∞ optimal control is proposed. This control can easily be used under normal or high lateral accelerations.

The paper is organized as follows. Section 2 describes the Linear Two Wheels Vehicle Model (L2WVM) and the problem statement. The switched H ∞ optimal control design method is given in Section 3. The simulation results conducted with real data are presented in Section 4. Section 5 presents conclusions and perspectives.

Control notations:

The notations used in this paper are standard. The superscript "T " stands for the transpose matrix; R n denotes the n-dimensional Euclidean space and P > 0 ( 0) means that P denotes a symmetric positive definite matrix (semi-definite). In symmetric block matrices or complex matrix expressions, we use an asterisk ( * ) to represent a term that is induced by symmetry and diag{• 

F yf = C f δ - V y + L f ψ V x , F yr = -C r V y -L r ψ V x
(1) Then, the state space representation can be written:

ẋ = Ax + Bu + F f y = Cx (2) 
where:

x = Ẏ ψ Y ψ T , u = δ, A =       - 2C f + 2Cr mVx(t) - 2C f L f -2CrLr mVx(t) 0 2C f + 2Cr m - 2C f L f -2CrLr IzVx(t) - 2C f L 2 f + 2CrL 2 r IzVx(t) 0 2C f L f -2CrLr Iz 1 0 0 0 0 1 0 0       B = 2C f m 2L f C f I z 0 0 T , F = [ -g 0 0 0 ] T and C = 1 0 0 0 0 0 1 0 . Here, x(t) ∈ R n is the state vector, u(t) ∈ R p is the control input, y(t) ∈ R m is the output, and f (t) ∈ R nω is the disturbance input that satisfies f ∈ L 2 [0, ∞). A, B,
C and F are system matrices with appropriate size.

Problem formulation

Model ( 2) is affected by several parametric variations. In fact, when the vehicle is subjected to high lateral accelerations and braking actions, the cornering stiffnesses C f and C r become coupled and nonlinear functions of some dynamical parameters of the vehicle like sideslip angles, longitudinal slip ratio, vertical forces, camber angle (for more details see Fig. 3 of section 4). Moreover, model ( 2) is also affected by variations of the longitudinal speed V x (t).

Unfortunately, if we take into account all variations, (2) becomes nonlinear. Then, design of control and estimation algorithms becomes a hard task. To consider some uncertainties and parametric variations, we propose a switched continuous-time system:

           ẋ = M i=1 α i (t) [A i x + B i u + F i f ] y = M i=1 α i (t)C i x (3) 
where the function α i (t) is a known switching signal

α i : R + -→ {0, 1} M i=1 α i (t) = 1, t ∈ R + (4)
Our aim is to design a switched H ∞ controller, such that the output y(t) of the closed-loop system tracks a given reference signal to satisfy the desired tracking performance. For this, consider the reference output y r (t) computed by the following dynamical reference model:

           y r = M i=1 α i (t)C ri x r ẋr = M i=1 α i (t) [A ri x r + F ri r] (5) 
where y r (t) has the same dimension as y(t). x r (t) ∈ R nr and r(t) ∈ R pr are respectively the reference state and the bounded reference input. A ri , C ri and F ri are appropriate matrices with A ri Hurwitz. Notice that the control design procedure assumes that both y(t) and y r (t) are measurable outputs. For our purpose we define the following tracking output error:

ỹ(t) = y(t) -y r (t) (6)
Therefore, the following augmented system can be obtained:

           ξ(t) = M i=1 α i (t) [A ai ξ(t) + B ai u(t) + F ai ω(t)] ỹ(t) = M i=1 α i (t)C ai ξ(t) (7) 
where

A ai = A i 0 0 A ri , B ai = B i 0 , F ai = F i 0 0 F ri , C ai = [ C i -C ri ], ξ(t) = x(t) x r (t) , ω(t) = f (t) r(t) .
Applying the first order Euler approximation on model ( 7), the following discrete-time model is obtained:

           ξ(k + 1) = M i=1 α i (k) Āi ξ(k) + Bi u(k) + Fi ω(k) ỹ(k) = M i=1 α i (k) Ci ξ(k) (8)
where the functional switching signal α i (k) is

α i : Z + -→ {0, 1}, M i=1 α i (k) = 1, k ∈ Z + = {0, 1, • • • } (9)
For model ( 8), the following switched H ∞ optimal control problem is addressed.

                                       M i i T i T i M i i i M i i i i i k u R k u k y Q k y k k z k C k k y k F k u B k A k k 1 2 1 1 ) ( ~) ( ~) ( 1                M i i i k K k k u 1 ) (     k z ~  k    k u   k  Fig. 1. Switched H ∞ State Feedback Optimal Control
Problem: Consider the following switched H ∞ state feedback optimal control for the switched model ( 8)

u(k) = - M i=1 α i (k) Ki ξ(k) (10) 
where the gain Ki has to be computed such that:

C1. The closed-loop system ξ(k + 1) = M i=1 α i (k)( Āi -Bi Ki )ξ(k) is globally asymptotically stable when ω(k) = 0; C2. the following optimization problem is feasible 

min γ subject to (11) z(k) < γ ω(k) where z(k) 2 = M i=1 α i (k) ỹT (k) Qi ỹ(k) + u T (k) Ri u(k) ( 

SWITCHED H ∞ OPTIMAL CONTROL

In this section, the switched H ∞ control (10) is designed using a switched Lyapunov function method. The main objective is to compute the switched control (10) in order that the following closed-loop system

           ξ(k + 1) = M i=1 α i (k) ( Āi -Bi Ki )ξ(k) + Fi ω(k) ỹ(k) = M i=1 α i (k) Ci ξ(k) (13) 
is stable (i.e. C1) and check the H ∞ norm (i.e. C2). For this, consider the following theorem. Theorem 1. Suppose that for (i, j) ∈ {1, • • • , M } 2 , the pair ( Āi , Bi ) is stabilizable. If there exist a positive constant γ > 0, symmetric positive definite matrices X i , X j and matrices Γ i such that the following optimization problem is satisfied for (i,

j) ∈ {1, • • • , M } 2 : min Pi, Pj , Γi γ subject to (14)       -X i 0 X i ĀT i -Γ T i BT i X i Γ T i * -γ 2 I F T i 0 0 * * -X j 0 0 * * * -Q-1 i 0 * * * * -R-1 i       < 0
then, the gain of ( 10) are given by Ki = Γ i X -1 i . Proof 1. To establish sufficient conditions for the existence of switched H ∞ optimal control (10) such that the closedloop system (13) satisfies the conditions C1 and C2, consider the following switched Lyapunov function:

V (ξ, k) = M i=1 α i (k)ξ T (k)P i ξ(k) (15) 
Sufficient conditions for the existence of (10), according to C1 and C2 are related to the existence of a switched Lyapunov function V k such that the following inequality is satisfied:

V (k + 1) -V (k) + M i=1 α i (k)ỹ T (k) Qi ỹ(k) + M i=1 α i (k)u T (k) Ri u(k) -γ 2 ω T (k)ω(k) < 0 (16) with V (k + 1) -V (k) = M j=1 α j (k + 1)ξ T (k + 1)P j ξ(k + 1) - M i=1 α i (k)ξ T (k)P i ξ(k).
For all switches, we consider the following particular case:

α i (k) = 1 and α l =i (k) = 0 α j (k + 1) = 1 and α l =j (k + 1) = 0 (17)
According to (17), ( 13) and ( 16) become respectively

ξ(k + 1) = ( Āi -Bi Ki )ξ(k) + Fi ω(k) ỹ(k) = Ci ξ(k) (18) and ξ T (k + 1)P j ξ(k + 1) -ξ T (k)P i ξ(k) + ỹT (k) Qi ỹ(k) +ξ T (k) KT i Ri Ki ξ(k) -γ 2 ω T (k)ω(k) < 0 (19)
Computing ( 19) along the solution of the closed-loop system (18), gives:

[ ξ(k) ω(k) ] × Φi -P i ( Āi -Bi Ki ) T P j Fi F T i P j ( Āi -Bi Ki ) -γ 2 I + F T i P j Fi ξ(k) ω(k) (20) 
where Φi = ( Āi -Bi Ki ) T P j ( Āi -Bi Ki ) + CT i Qi Ci + KT i Ri Ki . Then, ∆V (x, k) is negative definite for any nonzero vector

[ ξ(k) ω(k) ] if Φi -P i ( Āi -Bi Ki ) T P j Fi F T i P j ( Āi -Bi Ki ) -γ 2 I + F T i P j Fi < 0 (21)
Using Schur complement and pre-and post-multiplying by 22), ( 14) is obtained.

Z i = diag(P -1 i , I, I, I, I), (21) becomes       -P -1 i 0 P -1 i ( ĀT i -KT i BT i ) P -1 i P -1 i KT i * -γ 2 I F T i 0 0 * * -P -1 j 0 0 * * * -Q-1 i 0 * * * * -R-1 i       < 0 (22) Substituting Γ i = Ki X i , X i = P -1 i and X j = P -1 j into (

SIMULATION RESULTS USING EXPERIMENTAL DATA

In this section, simulation tests of the proposed switched H ∞ optimal control using experimental data are presented. The experimental data are acquired by a laboratory vehicle at a frequency of 1 h = 200 Hz. These data are used to compute the reference trajectories. The aim important measurements provided by this vehicle are: longitudinal, lateral and vertical speeds, yaw, roll and pitch rates, driver steering angle, driver steering torque and some other measurements. The measurements used here are illustrated by the grey curves on Figs. 3, 4, 5, 6 and7. The reference model ( 5) used for our simulations describes the the first and second derivatives of lateral deviation is:

ẋr1 ẋr2 =    -1 h 0 0 -1 h    x r1 x r2 + 1 0 0 1 r 1 r 2 ( 23 
)
where h is the sample time, r

1 (t) = a yr (t) + (V yr (t) + V xr (t)ψ r (t))/h and r 2 (t) = V yr (t) + V xr (t)ψ r (t) + Y r (t)/h
are the bounded reference inputs. Fig. 2 shows the closedloop system composed from: the reference model, the switched H ∞ optimal steering vehicle control and the vehicle model (NLFWVM). As pointed previously, the real data are used to compute the reference inputs r 1 and r 2 of model ( 23), then, the closed-loop obtained behavior is compared to the actual one.

To perform some simulation tests under high lateral accelerations, a more realistic Non Linear Four Wheels Vehicle Model 1 is used as a complete vehicle simulator.

1 The 10DoF Non Linear Four Wheels Vehicle Model (NLFWM) is composed of: three translational motions (longitudinal Vx, lateral Vy Second slope C (f,r)1 

C (f,r)2 C (f,r)1 C (f,r)1 C (f,r)1 C (f,r)2
C (f,r) = C (f,r)1 If β < β * C (f,r) = C (f,r)2 If β > β * (24)
with β * is the switching threshold on the sideslip angle.

For this, a switched controller can then be designed with unmeasurable premise variable. Moreover, the system must be robust again the premise variables (Kiss et al.

and vertical Vz), three rotational motions (roll φ, pitch θ and yaw φ) and dynamical models of the four wheels. The forces of NLFWM are computed using nonlinear tire models [START_REF] Pacejka | Tire and vehicle dynamics[END_REF] in order to simulate the realistic behavior of vehicle. Moreover, such tire models take into account the coupling of vertical, longitudinal and lateral motions.

[2011], [START_REF] Ichalal | State estimation of takagi-sugeno systems with unmeasurable premise variables[END_REF]). In our case, the premise variables is β which can be estimated online (see for example [START_REF] Villagra | Estimation of longitudinal and lateral vehicle velocities: an algebraic approach[END_REF])

Consequently, two local models are defined, then, M = 2 and (i , j) ∈= {1 , 2} 2 . Consequently, the stability of switched H ∞ optimal control for any switching signal is guaranteed by the resolution of 4 LMI constraints of theorem 1 to find two Lyapunov matrices X 1 and X 2 .

Notice that the tire characteristic plotted on the upper part of Fig. 3, is obtained using the measured lateral force and the sideslip angle. These measurements are acquired by a laboratory vehicle during a trial performed on a real race track under high dynamic loads (lateral acceleration -5 m/s 2 ≤ a y ≤ 5 m/s 2 see Fig. 5). All measurements used for our simulation are shown by grey curves of Figs. 5, 6 and 7. We can observe that the obtained results are similar to the measured ones. The dynamic variables plotted on these Figs. are: lateral accelerations, yaw rates, longitudinal accelerations, longitudinal speed. The performances results in terms of tracking trajectories are illustrated on Fig. 8, which are less than 1 deg on the yaw angle and 0.1 m on the lateral deviation. Let us emphasize that these errors are quite small.

The steering angle computed by the controller is similar to the measured one, this, for any maneuver as illustrated in Figs. 6, 7 and 8. Notice that the steering angle of switched control remains stable even during the switching phases at the positions 630 m and 830 m (see the switching rule depicted by the lower part of Fig. 3). For the subsystems (( Āi -Bi Ki ), Fi , Ci ), the UI attenuation properties, between ω to y can be observed on Fig. 9.

In this work, the switching strategy has been constructed on cornering stiffnesses C f and C r (see ( 24)). This strategy uses the measured sideslip angle. However, this measurement is provided by expensive sensors. This problem can be solved using estimators from low cost sensors available on the vehicle (see [START_REF] Menhour | Commande couplée longitudinale/latérale de véhicules par platitude et estimation algébrique[END_REF] for lateral forces estimation approach).

CONCLUSIONS AND FUTURE WORK

In this work, a switched H ∞ optimal control is presented. Conditions of global convergence of this control problem are established and proved. All conditions are presented in terms of linear matrix inequalities (LMI) using switched Lyapunov function approach. An application on steering vehicle control is given. Simulation results under high lateral acceleration are presented. These simulations are conducted using the experimental data. By measured lateral force and sideslip angle, a switching strategy on cornering stiffnesses C f and C r is constructed.

For future works, estimation methods of sideslip angle, lateral and vertical forces will be introduced in order to establish a new switching rule on C f and C r . 
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 9 Fig. 9. Transfer function of system (( Āi -Bi Ki ), Fi , Ci ) for two values of cornering stiffnesses C (f, r)1 and C (f, r)2 coefficients, between ω to ỹ
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	Vehicle notations: V x : longitudinal speed [km.h], ψ:
	yaw rate [rad/s], ψ: yaw angle [rad], Ẏ : first derivative
	of lateral deviation [m/s], Ÿ : second derivative of lateral
	deviation [m/s 2 ], δ: wheel steer angle [deg], φ r : and road
	bank angle [rad], F y(f, r) : front and rear lateral forces in
	the vehicle coordinates [N ], L (f, r) : distances from the CoG
	to the front and rear axles [m], I z : yaw moment of iner-tia [Kg.m -2 ], C (f, r) : front and rear cornering stiffnesses
	[N/rad], g: acceleration due to gravity [m/s 2 ], , m: vehicle
	mass [kgm 2 ].
	2. PROBLEM FORMULATION AND
	PRELIMINARIES
	2.1 Application example: single-track vehicle model
	A linear two wheels vehicle model is considered. This
	model is composed of lateral and yaw motions. The lateral
	tire forces have been supposed to proportional to sideslip
	angles of each axle as follows: