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relevance. The paper is organized as follows. In the first section, a
description of the swarm robot model is provided. In the second one,
the numerical results are shown, and a comparison with a 2D higher
gradient continuum is provided. Finally, some conclusions and some
ideas for future developments of this line of investigation are provided
in the conclusions.

2. The model

2.1. Generality and first neighbors interaction

Let us consider a swarm S constituted by a finite number of
elements, and indicate by C0 the reference configuration ofS. In C0 the
elements of S occupy all the nodes of a square grid sized L� L. We
consider a set of time steps, i.e. a set of ordered discrete values for the
time variable t that we will denote with Tm ¼ 0; t1;…; tm;…f g. Let us
consider an orthonormal reference system with axes that are parallel
to the grid, whose unit length is equal to the side of the cell grid in C0,
and whose origin coincides with the left bottom vertex of the swarm.
We indicate the (“Lagrangian”) elements of S by means of the pair of
indexes (i,j) characterizing their position in C0, and by ðx1ij ; x2ijÞðtmÞ the
coordinates of the element occupying the node (i,j) in C0 at the time tm.
For each element (i,j) in C0 we define a set Nnði; jÞ of nth neighbors by

Nnði; jÞ≔ ði; jÞAC0 : ρ½ði; jÞ; ði; jÞ� ¼ n
n o

where ρ indicates the R2-Chebyshev distance.1 This gives, for n¼1
and n¼2, the definition of first and second neighbors graphically
represented in Fig. 1. Note that the given concept of n-th neighbors is
Lagrangian, i.e. the system keeps memory of the identity of the
neighbors of a given element of S. The motivation of this choice lies
in the desire to reproduce some relevant characteristics of deformable
(solid) bodies, in which the behavior of constitutive particles depends
on molecular interactions which are preserved (at least in absence of
fractures) in the evolution of the system. This leads to some additional
theoretical problems when dealing with the proof of collective proper-
ties, but is in our opinion an unavoidable choice in our selected line of
investigation.

Let us select a leader, i.e. one element L sitting in the node ði; jÞ
in C0, to which a prescribed motion M is imposed. We namely

consider a function

M : tmATm⟶ðx1
ij
; x2

i j
ÞðtmÞAR2

which defines the actual position of L.
An interaction is defined between the elements of the system in the

following way. As said, let C0 be the actual configuration of the system
at the time t0 ¼ 0. We define now a set of “virtual” configurations by
means of which we will move to the “true” new configuration Ct1 . Let
thus Vt1

0 be the virtual configuration in which L is in Mðt1Þ while all
other elements are in the same position they had in C0. Let us now
define another virtual configuration Vt1

1 , in which:

1. the leader L is where it was in Vt1
0 ;

2. every one of its first neighbor N1ði; jÞ moves to the centroid2 of
its own first neighbors in Vt1

0
3;

3. all others elements are in the same position they had in Vt1
0 .

Iterating the previous evolution law, let thus Vt1
n be the virtual

configuration in which:

1. the leader L along with its first n�1-th neighbors are in the
same position they had in Vt1

ðn�1Þ;
2. every one of the n-th neighbors of L has moved to the centroid

of its own first neighbors in Vt1
ðn�1Þ

3

3. all others elements are in the same position they had in Vt1
ðn�1Þ.

When the virtual step n reaches the value of the maximum
Chebyshev distance n¼ n of L from the boundary in C0, we define
the actual configuration Ct1 as Vt1

n . Iterating the whole evolution
process we will get the actual configurations Ct1 ;Ct1 ;…;Ctm ;…. A
graphical representation of the virtual configurations is shown in Fig. 2.

A specification has to be done for the previously described
interaction. When the conditions 2 concern an element that
belongs to the boundary, the set of the first neighbors, as defined
above, has less than 8 elements, and the computation of the
centroid makes less sense as it leads to undesirable edge-effects.
To avoid this problem, a “fictitious” boundary is introduced in the
model, i.e. a set of elements surrounding the swarm and following
their closest “true” elements. More formally, the elements of the
fictitious boundary have in C0 coordinates

ððLþ1Þ; aÞ
ða; ðLþ1ÞÞ
ð�1; aÞ
ða; �1Þ

where a takes the values �1;…; ðLþ1Þ� �
(the fictitious boundary

is graphically represented in Fig. 4). To characterize the motion of
the fictitious boundary, we introduce a final virtual configuration
Vtm
f 1
, in which no “true” element moves and the fictitious boundary

elements move according to the following law:

1. A fictitious vertex element has the same displacement of the
true vertex which is among its first neighbors.

2. A fictitious side element ð�1; jÞ has the same displacement of
the element ð0; jÞ.

3. A fictitious side element ði; Lþ1Þ has the same displacement of
the element (i,L).

4. A fictitious side element ði; �1Þ has the same displacement of
the element ði;0Þ.

Fig. 1. Reference configuration C0. In red the first neighbors and in blue the second
neighbors of element ði; jÞ. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

1 By Chebyshev distance in R2 one means the distance given by
ρððx1 ; x2Þ; ðy1 ; y2ÞÞ ¼ max j x1�y1 j ; j x2�y2 j� �

.

2 By centroid of a set of points P1ðx11 ;…; x1nÞ;…; Pmðxm1 ;…; xmn ÞARn we mean of
course the point PðPm

i ¼ 1
xi1
m;

Pn
i ¼ 1

xi2
m;…;

Pn
i ¼ 1

xin
mÞ.

3 See below for the application of the condition 2 to boundary elements.
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5.
A fictitious side element ðLþ1; jÞ has the same displacement of
the element (L,j).

With this introduction, every “true” element of the swarm has
exactly 8 neighbors (including the fictitious ones).

With the above described interaction law, the perturbation of the
system due to the prescribed motion imposed to the leader L
propagates “virtually” in succession on every square frame around L,
while in every actual configuration Ctm it has acted on all the elements
of S up to the m-th time step. This means that the effects of the
perturbation caused by the imposed motion of the leader propagates
instantly, but that its effects are suitably (we will see what we mean
with that) weighted by the distance, so as to have critical times after
which the “full” effect of the propagation reaches the farthest elements.

2.2. Second neighbors interaction and multiple leaders set

It is natural to extend the previously given interaction law to
the second neighbors modifying the condition 2 above introduced
in the following way:

2. bis every one of the n-th neighbors of L has moved to the
centroid of its own first and second neighbors in Vt1

ðn�1Þ.
4

The centroid can be computed either in a straightforward
manner, i.e. just considering the simple average of the coordinates
of the first and second neighbors (we will call it a “mixed
interaction”), or weighting the contribution of first and second
neighbors in a given way. In this last case, in particular, one can set
the weight of the first neighbors at zero, so as to have what we will
call a “pure second neighbor” interaction.

Dealing with a second neighbor interaction, a double fictitious
boundary has to be introduced in order to have a full set of 24 first
and second neighbors for every element, thus avoiding the
undesirable edge-effects before mentioned. Indeed, we introduced
a set of elements surrounding the swarm and having in C0

coordinates

ððLþ1Þ; aÞ ððLþ2Þ; bÞ
ða; ðLþ1ÞÞ ðb; ðLþ2ÞÞ
ð�1; aÞ ð�2; bÞ
ða; �1Þ ðb; �2Þ
where a takes the values �1;…; ðLþ1Þ� �

and b takes the values
�2;…; ðLþ2Þ� �

. In this case, another virtual configuration Vtm
f 2

is
introduced, in which no element belonging to the true set or to the
first fictitious boundary moves and the fictitious boundary moves,
with the elements of the second fictitious boundary moving
according to the following law:

1. A fictitious vertex element has the same displacement of the
first fictitious boundary vertex which is among its first
neighbors.

2. A fictitious side element ð�2; jÞ has the same displacement of
the element ð�1; jÞ.

3. A fictitious side element ði; Lþ2Þ has the same displacement of
the element ði; Lþ1Þ.

4. A fictitious side element ði; �2Þ has the same displacement of
the element ði; �1Þ.

5. A fictitious side element ðLþ2; jÞ has the same displacement of
the element ðLþ1; jÞ.

As said, and as we will see with numerical simulations, the
main idea behind the introduction of second neighbors interaction
is to have a good and computationally advantageous discrete
approximation of second gradient continua. A theoretical justifica-
tion for this idea can be sketched as follows.

Let us start by noticing that the geometric centroid of a given
set of points P1;…; Pn is the point that minimizes the sum of the
squared distances from the points, i.e. the function

f ðPÞ ¼
Xn

i ¼ 1

JPi; P J2

Consequently, one can reasonably think to the continuous limit
of the discrete system under the given interaction law as to a
system in which the energy depends quadratically on the distance;
this constitutes implicitly a justification of the physical plausibility
of the proposed algorithm. Let us now consider, for simplicity, a
mono-dimensional discrete system, as the one shown in Fig. 3.

It is straightforward to see that for a first-neighbors interaction,
the deformation energy density (depending on squared distances

Fig. 2. The six pictures are relative to six virtual configurations between Ct0 and Ct1 for a 6�6 swarm. For clarity, a displacement was introduced for the leader (bottom right
corner) which is much larger, with respect to the step length, than that used in the following simulations. The elements in red are the ones which are already in the position
they will have in Ct1 . (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. First and second neighbors in a monodimensional discrete system.

4 See below for the application of the condition 2.bis to boundary or close-to-
boundary elements.
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from first neighbors) can be written as a function of first-order
finite differences of the placement χ for a given point P

EðJP1; P J2; JP�1; P J2Þ ¼ E½ðχðP1Þ�χðPÞÞ; ðχðP�1Þ�χðPÞÞ� ¼ Eð∇ϵχÞ;
ð1Þ

where ∇ϵ indicates the finite difference with step ϵ. With second-
neighbors interaction, this is not possible (keeping the natural
choice of the step of the lattice as the step length for the
computation of finite differences), and instead a second gradient
model is called for. In fact in this case direct computation shows

E ¼ E½ðχðP1Þ�χðPÞÞ;…; ðχðPnÞ�χðPÞÞ�
¼ E½ðχðP1Þ�χðPÞÞ; ðχðP2Þ�χðP1ÞÞþðχðP1Þ�χðPÞÞ; ðχðP�1Þ�χðPÞÞ;
ðχðP�2Þ�χðP�1ÞÞþðχðP�1Þ�χðPÞÞ�
¼ E½ðχðP1Þ�χðPÞÞ; ðχðP�1Þ�χðPÞÞ; ðχðP1Þ�χðPÞ�ð∇∇ÞfϵχðPÞÞ;
ðχðP�1Þ�χðPÞ�ð∇∇ÞbϵχðPÞÞ�
¼ E½∇f

ϵχðPÞ;∇b
ϵχðPÞ;∇f

ϵχðPÞ�ð∇∇ÞfϵχðPÞ;∇b
ϵχðPÞ�ð∇∇ÞbϵχðPÞ�;

where the apexes f and b indicate respectively forward and
backward finite differences on the lattice. Notice that the last

Fig. 4. A 10�10 Swarm in black and the fictitious boundary in red. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 5. Snapshots of the swarm at time steps t ¼ 1;500;1000 in the case of FNI (a,b,c), SNI (d,e,f) and MI (g,h,i), with the leader moving at velocity v¼0.01 length units/time
step in direction ð1; �1Þ.
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expression for the energy, though not involving central second
finite differences, is symmetric with respect to P, thus providing,
as the step length goes to zero, a homogenized energy of the form:

E½∇χðPÞ;∇χðPÞ�∇∇χðPÞ�:

Of course the identification of the explicit evolution law (or of the
Lagrangian) for a system, continuous in both spatial and time
variables, which is equivalent to our swarm is not trivial, mostly
because of the delicate role played by the fictitious boundary and
by the virtual configurations; its characterization will be the object
of future investigations.

A further generalization one can consider concerns the intro-
duction of a multiple set of leaders. Indeed, one can impose a
family of motions Mαðα¼ 1;…;NÞ to a set of N selected leaders
L1;…;LN . Every one of them can be considered as an individual
leader to which a set of actual configurations Ctm ðLαÞ is associated.
We can then define the actual configurations Ctm relative to the
whole set of leaders by simply superposing the effects, i.e. as those

in which the displacement uði; jÞ of a generic element
ði; jÞAS⧹ L1;…;LNf g is the vector sum of the displacements
uαði; jÞ it has due to the interaction with every single leader

uði; jÞ ¼
XN

α ¼ 1

uαði; jÞ

and since the computation of the centroid is a linear operation (in
the full set of coordinates of the points) and the concept of first
neighbors is Lagrangian in our model, the superposition defined in
this way is well-posed. However many features of the considered
system, (and in particular the presence of a fictitious boundary at a
fixed distance and the evolution through virtual configurations,
which weakens the effect of an imposed action as the distance
with the leaders increases) make the overall evolution of the
system non-linear, which is particularly desirable if one wants to
describe the behavior of deformable bodies also in case of large
deformations (see below, Fig. 7).

Fig. 6. Snapshots of the swarm at time steps t¼1, 200, 400 in the case of FNI (a,b,c), SNI (d,e,f) and MI (g,h,i), with the leader moving at velocity v¼0.05 length units/time
step in direction ð1; �1Þ .
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The formal environment above described allows great flexibil-
ity in the choice of the leaders. If one is interested in the
comparison between the discrete swarm robot model and its
continuous limit, seen as a model for deformable bodies, this
means that it is possible to consider a concentrated action (one
single leader), a surface line action (leaders belonging to a side), a
volume action (leaders belonging to a cluster), or some more
exotic mixed cases. Moreover, the interaction can always be
introduced as relative to first neighbors, second neighbors or both.
Finally, one has to note that the model described is intrinsically
dynamic. Indeed, with the evolution procedure before described,
in every actual configuration no one of the elements exactly lies in
the centroid of its neighbors, which, thinking to the energy we
were referring above, means that the evolution is not quasistatic.

In the following section, a numerical investigation of some
interesting examples will be provided. In the following numerical
simulations, we will focus on leaders belonging to the boundary,
since this is the most natural choice for simulating a contact
external action. One important point to notice in this connection is
that you can perturb the whole system by simply imposing a
prescribed motion to boundary elements, independently of the
number of elements of the swarm; this feature corresponds, when
thinking to the continuous limit, to the simple fact that one can
deform a continuum applying an external action to its boundary.
The proposed numerical study is of course just a first step in this
direction, and further study will be devoted to cases in which the
leaders do not belong to the boundary and have more general
prescribed motions.

3. Numerical simulations

We considered three interaction laws for our numerical inves-
tigation, namely a pure first neighbor interaction (FNI), a pure

second neighbor interaction (SNI), and a mixed one5 (MI). As
already said, the given set of simulations is intended as a starting
dataset, and it should be enlarged and deepened in future
investigations. In particular, larger sets of elements have to be
taken into account and higher order interactions have to be
considered. In this connection, one has to note that the presence
of highly non-local interactions could need the use of complex
elements in order to suitably apply a Finite Element Method.
Recent results concerning isogeometric finite elements could be of
use (see e.g. [14–18]). Moreover, the introduction of more compli-
cated interaction laws, which would be interesting to broaden the
set of continuous cases one can approximate, can easily lead to the
onset of instabilities in the considered kind of systems, which can
be nowadays addressed by means of strong theoretical results
available in recent relevant literature (see e.g. [35,22–25]).

In our first group of numerical simulations we chose the
bottom right vertex as the leader L. We considered a set Tm such
that the time step is uniform, and imposed to the leader a uniform
motion with velocity v oriented along the direction ð1; �1Þ. In
Fig. 5 we chose v¼0.01 length units/time step. The three rows
show the evolution with (from top to bottom), FNI, SNI and MI. In
every row, the snapshots relative to time steps 1, 500 and 1000 are
plotted.

In every case a rather localized elastic-like deformation of the
system is visible. It is immediately observable a significant
difference between the effect of a FNI with respect to SNI and
MI, as in the first case the deformation is much more significant,
which closely recalls the effect of the addition of a second gradient
deformation energy term to an ordinary first gradient continuum

Fig. 7. Three snapshots of a continuum square body with an imposed motion on the right bottom vertex in direction ð1; �1Þ , in the case of a first gradient energy (a,b,c) and
a second gradient energy (d,e,f). Colors represent deformations values. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

5 We recall that by “mixed interaction”we mean the case in which the centroid
is computed on the whole set of first and second neighbors as a simple average on
the coordinates.
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model (see below for a comparison). As one can see comparing the
second and the third files (relative to time steps 500 and 1000),
there is practically no change in the deformation in the second half
of the evolution of the system, which suggests that it asymptoti-
cally converges to a limit configuration.

In Fig. 6 the same simulation was performed with a velocity
v¼0.05 length units/time step, and the snapshots relative to time
steps 1, 200 and 400 are plotted. The qualitative behavior of the
system is the same as the previous simulation, with the difference
that the increased velocity makes the deformation sharper. Also in
this case the comparison between second and third files shows
that the system seems to asymptotically converge to a limit
configuration. With this value for the velocity, a small difference
is observable between SNI and MI, with the latter being slightly
more deformed, as expected from pure second gradient conti-
nuum models.

To allow a direct comparison, we also performed some simula-
tions relative to the behavior of a deformable continuous square

body, which are shown in Fig. 7. Geometric non-linearities for both
first and second gradient case were introduced (to account for
large deformations), and the form of the energy was the standard
one in first gradient case, while it was the one introduced by
Mindlin in its general form in [20] for second gradient models, i.e.:
U Gij;Gij;h
� �¼ λ

2GiiGjjþμGijGijþ4α1Gaa;bGbc;c

þα2Gaa;bGcc;bþ4α3Gab;aGcb;cþ2α4Gab;cGab;cþ4α5Gab;cGac;b, where
Gij is the non-linear Green–Saint Venant strain tensor.

The following material parameters were chosen:

L¼ 2 m; μ¼ 10 MPam; λ¼ 15 MPam; ρ¼ 105kg=m2

α1 ¼ El2m; α2 ¼ El2m; α3 ¼ 2El2m; α4 ¼ El2m; α5 ¼ 1
2 El

2
m; lm ¼ 10 cm

where L is the side-length, λ and μ are Lamé coefficients, ρ is the
density, αi are second gradient constitutive parameters, E the
generalized Young modulus, and lm a characteristic length (notice
that the ratio between the side of the sample and this length is of

Fig. 8. Snapshots of the swarm at time steps t¼1, 500, 1000 in the case of FNI (a,b,c), SNI (d,e,f) and MI (g,h,i), with the leader moving at velocity v¼0.01 length units/time
step in direction ð�1;1Þ.
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the same order of magnitude of the ratio between the lattice step
and the side of the swarm in the initial configuration). A pre-
scribed uniform motion, with velocity oriented along the direction
ð1; �1Þ, is imposed to the points belonging to the base of a small
triangular region symmetrically cut off from the body around the
bottom right vertex. The two panels refer to the cases of a first
gradient (above) and second gradient (below) continuum model,
and the total displacement is shown by means of a color map. As
one can see, the type of deformation which one observes in the
two cases is very similar to what seen before with (respectively)
FNI and SNI/MI.

In the next simulation we inverted the motion of the leader L,
imposing to it a uniform motion along the direction ð�1;1Þ with
velocity v¼0.01 length units/time step, i.e. “pushing” the system
rather than “pulling” it. In Fig. 8 the snapshots relative to time
steps 1, 500 and 1000 are plotted, and the three rows respectively
show FNI, SNI and MI. Also in this case the system is much less
deformed in the last two cases.

Even in this case we performed a continuum simulation to
allow a direct comparison. In the simulation shown in Fig. 9 the
same energy and constitutive parameters before mentioned were
used. A prescribed uniform time-dependent displacement along

Fig. 9. Three snapshots of a continuum square body with an imposed motion on the right bottom vertex in direction ð�1;1Þ , in the case of a first gradient energy (a,b,c) and
a second gradient energy (d,e,f). Colors represent deformations values. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 10. Comparison of first gradient energy (a) and FNI (b) in the case of an imposed motion in direction ð�1;1Þ. Note the loss of convexity around the vertexes in both cases.
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Fig. 11. Translation of the swarm. Snapshots of the swarm at time steps t ¼ 1;200;700;1000 in the case of FNI, with the leader moving at velocity v¼0.01 length units/time
step in direction ð1; �1Þ.

Fig. 12. Snapshots of the swarm at time steps t¼1, 50, 100, 150, 200 in the case of FNI, with the leader moving at velocity v¼0.05 length units/time step (a,b,c,d,e) and at
velocity v¼0.1 length units/time step (f,g,h,i,j) (both in direction ð�1;1Þ).
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the direction ð�1;1Þ was imposed to the points belonging to the
base of a small triangular region symmetrically cut off from the
body around the bottom right vertex, and the total displacement is
shown by means of a color map. The two rows are relative to first
gradient (above) and second gradient (below) models. As you can
see, the overall behavior closely resembles what was observed in
the analogous discrete simulation, as the local deformation is
much sharper in first gradient/first neighbor case. Moreover, a
close relationship concerning some further details of the deforma-
tion can be shown. In Fig. 10, a zoom of the two bottom right
vertexes is shown concerning the simulations plotted in Fig. 8 (FNI,
last snapshot) and Fig. 9 (first gradient). As one can observe, a
significant loss of convexity is visible in both cases around the area
in which the displacement is imposed, while no such effect is
there when considering a second gradient/SNI case.

In the following figure the reference axes are also plotted, so as
to be able to evaluate, besides the deformation, the translation
motion of the system. In Fig. 11 the snapshots relative to time steps
1, 200, 700 and 1000 are plotted in case of a velocity v¼0.01
length units/time step directed along ð1; �1Þ. It is interesting to
note that in the second snapshot there is practically no translation
still (as one can see observing the points belonging to the upper
side), while a significant translation of the whole system is visible
in the last two snapshots. This suggests the existence of a critical
time (depending on the velocity of the leader) after which overall
translation becomes appreciable. Moreover, in order to study the
limit configuration of the system with different velocities, we
considered the comparison between the evolution with two
relatively large velocities. In Fig. 12 the two rows refer indeed to
two cases with v¼0.05 (above) and 0.1 (below) length units/time
step, and the snapshots relative to time steps 1, 50, 100, 150 and

200 are plotted. One can observe that in the limit configuration the
two sides intersecting in the upper left vertex form a characteristic
angle θ, which was very close to 90 degrees in case of v¼0.01 (see
Fig. 5), and is progressively decreasing with higher velocities.

To further investigate the behavior of the angle θ, we consid-
ered in the next simulation the case in which the leader L has a
uniformly accelerated motion (a¼0.01 length units/squared time
step, v0¼0.01 length units/time step), again in direction ð1; �1Þ.
The result is plotted in Fig. 13 (snapshots corresponding to t¼1,
200, 400). The angle θ in this case does not seem to converge to a
non-zero value, and it keeps decreasing in all the time interval we
considered (up to t ¼ 1000).

Another case we considered is the one in which the leader L
has an imposed motion which is uniform with velocity v¼0.03
length units/time step up to time step t¼500, and then is set to
0 up to time step t¼1000. The result is shown in Fig. 14, where
snapshots relative to time steps t¼1, 250, 500, 750 and 1000 are
plotted. As you can see, in the second half of the time interval, the
system tends to return to its original configuration, which is a
basic characteristic of the behavior of elastic deformable bodies.
Moreover, it should be pointed out that the system actually does
not reach the initial configuration at any given time, but instead
converges again asymptotically to it. This behavior, on the whole,
resembles typical effects related to combined inertia and friction,
which is particularly interesting since in the model no explicit
terms accounting for the mass or of dissipation were introduced,
and the overall behavior observed was just a consequence of the
assumed interaction law.

Finally, in the following group of simulations we considered the
case in which there are two leaders L1;L2. Two opposite vertexes
were chosen as the leaders and the two motions have opposite

Fig. 13. Snapshots of the swarm at time steps t¼1,200,400 in the case of FNI, with the leader moving at time varying velocity with acceleration a¼0.01 length units/squared
time step (both the initial value v0 and a in direction ð1; �1Þ).

Fig. 14. Snapshots of the swarm at time steps t ¼ 1;250;500;750;1000 in the case of FNI, with the leader moving at velocity v¼0.03 length units/ time step in direction
ð1; �1Þ up to t¼500, and v¼0 length units/ time step for 500rtr1000.
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directions, ð1; �1Þ for the bottom right vertex and ð�1;1Þ for the
upper left one. The velocity was set to 0.05 length units/time step,
and the two rows refer to the FNI (above) and MI (below). In Fig. 15
one can see that the system has a more compact shape in this
second case, while the leader tends to be more sharply out-
distanced. This too recalls what happens in second gradient
continuum models.

Let us conclude this section by pointing out that, computation-
ally speaking, the proposed algorithm seems very promising.
Indeed, the computational cost is in our case more or less just
linear in the number of elements of the swarm, which is not the
case with either FEM or FDM with respect to, respectively, the
number of mesh elements or of nodes considered. This means that
the size limit for this kind of systems allowed by the current
computational power is very high.

4. Conclusions

Our work intended to show and discuss some similarities
between a simple discrete system and continuous deformable
bodies. The study of discrete systems as a tool for improving our
understanding and our possibility of numerical control over
continuous deformable bodies is a well-established research area
(the reader can see, for instance, [29,30,26–28]) which is particu-
larly vital nowadays thanks to the great recent development of
numerical tools and methods. The increasing interest in nano-
technologies, in particular, is leading to a great development of
works in which both a continuous and a discrete formulation are
used in the same framework (see e.g. the cases analyzed in
[34,32,31,33]).

The set of numerical results provided in the present paper
justify the claim that the simple robotic system model here
described is a promising theoretical tool for discrete approxima-
tion of continuum deformable bodies having a generalized defor-
mation energy. What is attractive in the proposed model, in our
opinion, is its great simplicity and the flexibility it allows in the
choice of the kind of considered interaction and imposed contact
actions. Moreover, the evolution process via the definition of
virtual configurations above described seems suitable to repro-
duce some characteristic effects of both deformation and inertia/
friction. Indeed, the presence of a critical time after which overall
translation begins, and the fact that the system seems to verify
some basic properties one should expect from a discrete model of
elastic (or in general deformable) bodies, are very promising
characteristics that makes further investigation on the subject
particularly interesting. Moreover, besides general resembling,
some rather specific characteristic (like the loss of convexity in
the boundary only seen in FNI with the same imposed “pushing”
displacement) that clearly distinguish first and second gradient
continuum models are observable in the comparison between FNI
and SNI in our simulations.

The ways in which the proposed model can be enriched/
generalized are many. One can indeed consider, as said, more
complex interactions, e.g. cases in which the interaction is suitably
weighted by the local density, the distance, some kind of direc-
tionality or other characteristics. While it is reasonable to con-
jecture that the continuous limit of the system considered herein
is a higher order continuum model, in case of an enriched
interaction a micromorphic approach, which is a natural general-
ization of the previously mentioned type of models, is probably
the most suitable theoretical tool (on the subject a classical

Fig. 15. Snapshots of the swarm at time steps t¼1,100,200 in the case of FNI (a,b,c) and MI (d,e,f,), with two leader moving at velocity v¼0.05 length units/ time step (the
two vertexes are moving in opposite directions).
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reference is [42]; for a relevant sample of the existing literature on
micromorphic continua the reader can see e.g. [13,38,45,
44,46]). The degree of interest towards micromorphic continua is
today very high and increasing, also due to the desire to describe
and design new complex metamaterials (for a review on meta-
materials and their modeling through micromorphic/microstruc-
tured continua the reader can see [39] and as examples of
homogenised microstructured continua [40,41]) The possibility
to describe, by means of interaction laws between relatively “few”

discrete elements, the characteristics that in micromorphic con-
tinua are represented via additional kinematic descriptors (which
are in general at least piece-wise continuous functions) looks very
interesting, especially for the potential effect on the computational
cost of related numerical software.

Further investigations covering both theoretical and numerical
aspects of the robotic system model presented here, which as we
saw can potentially concern various different research areas,
promise to be of great interest.
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