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Homogeneous strict polynomial functors as unstable modules

NGUYỄN Thế Cường∗†

21st July 2014

Abstract

A relation between Schur algebras and the Steenrod algebra is shown in [Hai10] where to each strict
polynomial functor the author naturally associates an unstable module. We show that the restriction
of Hai’s functor to a sub-category of strict polynomial functors of a given degree is fully faithful.

1 Introduction
The search for a relation between Schur algebras and the Steenrod algebra has been a source of common

interest between representation theorists and algebraic topologists for over thirty years. Functorial points
of view, on unstable modules [HLS93], and on modules over Schur algebras [FS97], have given an efficient
setting for studying such relation. For the Steenrod algebra side, [HLS93] uses Lannes’ theory to construct
a functor f , from the category U of unstable modules, to the category F of functors from finite dimensional
Fp−vector spaces to Fp−vector spaces. This functor f induces an equivalence between the quotient category
U /Nil of U by the Serre class of nilpotent modules, and the full sub-category Fω of analytic functors. The
interpretation of modules over Schur algebras given by [FS97] uses an algebraic version of the category of
functors, the category P of strict polynomial functors. The category P decomposes as a direct sum

⊕
d≥0 Pd

of its sub-categories of homogeneous functors of degree d. The category Pd is equivalent to the category of
modules over the Schur algebra S(n, d) for n ≥ d [FS97, Theorem 3.2]. The presentation of Pd as a category
of functors with an extra structure comes with a functor Pd → F. Nguyen D. H. Hai showed [Hai10] that
this functor Pd → F factors through the category U by a functor m̄d : Pd → U . These functors m̄d induce
a functor m̄ : P → U . The functor m̄ has remarkably interesting properties. In particular, it is exact
and it commutes with tensor products and with the Frobenius twist. The relevance of this last property to
computation will soon be apparent.

We observe that Hom-groups between unstable modules coming from strict polynomial functors via Hai’s
functor are computable: they are isomorphic to the Hom-groups of the corresponding strict polynomial
functors in many interesting cases. The primary goal of this paper is to generalize these results to the whole
category Pd. The main theorem of the present work goes as follows:

Theorem 1.1. The functor m̄d : Pd → U is fully faithful.

The theorem is proved by comparing corresponding Hom-groups in the two categories. We discuss an
example of interest. Let n be a non-negative integer and V be an F2−vector space. The symmetric group
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Sn acts on V ⊗n by permutations. Denote by Γn(V ) the group of invariants (V ⊗n)Sn and by Sn the group
of co-invariants (V ⊗n)Sn . Fix p = 2, let A2 be the Steenrod algebra. The free unstable module generated
by an element u of degree 1 is denoted by F (1). It has an F2−basis consisting of u2k with k ≥ 0.

Denote by Sq0 the operation, which associates to a homogeneous element x ∈ Mn of M ∈ U , the
element Sqnx. An unstable module M is nilpotent if for every x ∈Mn there exist an integer Nx such that
SqNx0 x = 0. An unstable module M is reduced if HomU (N,M) is trivial for every nilpotent module N . It
is called Nil−closed if ExtiU (N,M) , i = 0, 1, are trivial for every nilpotent module N .

Let G be Γ2 ⊗ Γ1 or S3. To G, Hai’s functor m̄ associates the unstable module G(F (1)). We now show
that

HomP3

(
Γ2 ⊗ Γ1, S3) ∼= HomU

(
Γ2(F (1))⊗ Γ1(F (1)), S3(F (1))

)
.

The readers of [HLS93] might expect the latter Hom-group to be isomorphic to HomF

(
Γ2 ⊗ Γ1, S3). How-

ever S3(F (1)) is not Nil−closed 1 then such an expectation fails. By classical functor techniques [FFSS99,
Theorem 1.7], if C is P or F then:

HomC

(
Γ2 ⊗ Γ1, S3) ∼= 3⊕

i=0
HomC

(
Γ2, Si

)
⊗HomC

(
Γ1, S3−i) .

It follows that:
HomF

(
Γ2 ⊗ Γ1, S3) ∼= F⊕2

2 ,

HomP3

(
Γ2 ⊗ Γ1, S3) ∼= F2.

The module S3(F (1)) is not Nil−closed but it is reduced. On the other hand, the quotient of the module
Γ2(F (1))⊗ Γ1(F (1)) by its sub-module generated by u⊗ u⊗ u4 is nilpotent. Therefore:

HomU

(
Γ2(F (1))⊗ Γ1(F (1)), S3(F (1))

) ∼= HomU

(
A2
〈
u⊗ u⊗ u4〉 , S3(F (1))

) ∼= F2.

This example is the key to the proof of Theorem 1.1.
We end the introduction by giving some further remarks on the result and stating the organization of

the paper.
Theorem 1.1 implies that the category Pd is a full sub-category of the category U . Unfortunately the

category P itself cannot be embedded into U . Fix p = 2, let F (2) be the free unstable module satisfying
HomU (F (2),M) ∼= M2, then there is no non-trivial morphism in the category P from Γ2 to Γ1 but:

HomU

(
m̄
(
Γ2) , m̄ (Γ1)) ∼= HomU (F (2), F (1)) ∼= F2.

The category Pd is not a thick sub-category of U . Fix p = 2, let I(1) denote the Frobenius twist in P2,
that is the base change along the Frobenius. It is proved [FS97] that

ExtiP2

(
I(1), I(1)

)
∼=

{
F2 if i = 0, 2,
0 otherwise.

The corresponding Ext-group in the category U is ExtiU (ΦF (1),ΦF (1)). As in [Cuo14]:

ExtiU (ΦF (1),ΦF (1)) ∼=

{
F2 if i = 2n − 2,
0 otherwise.

Therefore, ExtiP2

(
I(1), I(1)) is not isomorphic to ExtiU

(
m̄d

(
I(1)) , m̄d

(
I(1))) for i = 2n − 2, n ≥ 3.

1 The sub-module of S3(F (1)) generated by u.u.u4 is concentrated in even degrees but this element does not has a square
root.
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Organization of the article

In Section 2 we recall basic facts on the even Steenrod algebra and unstable modules following the
presentation in [Hai10]. When p > 2, this so-called Steenrod algebra is slightly different from that of [Ste62]
since we do not consider the Bockstein operation. We also recall Milnor’s co-action on unstable modules
and how it is used to determine the Steenrod action on certain type of elements.

The next section recalls strict polynomial functors. Main properties of Hai’s functor are introduced and
an easy observation on the existence of its adjoint functors is also given.

The structure of Γλ(F (1)) := Γn1(F (1)) ⊗ Γn2(F (1)) ⊗ · · · ⊗ Γnk(F (1)) is treated in Section 4. We
show that there exists a monogeneous sub-module of Γλ(F (1)) such that the quotient of Γλ(F (1)) by this
sub-module is nilpotent.

The last section deals with Theorem 1.1. The proof of this theorem is based on a combinatorial process
followed by some Steenrod algebra techniques.

2 The even Steenrod algebra and unstable modules
In this section, we follow the simple presentation in [Hai10, Section 3] to define the even Steenrod algebra

and unstable modules.
The letter p denotes a prime number. Let [−] be the integral part of a number. We denote by A the

quotient of the free associative unital graded Fp−algebra generated by the Pk, k ≥ 0, of degree k(p − 1)
subject to the Adem relations

PiPj =
[ ip ]∑
t=0

(
(p− 1)(j − t)− 1

i− pt

)
Pi+j−tPt

for every i ≤ pj and P0 = 1 [Hai10, Section 3].
An A−module M is called unstable if for every homogeneous element x ∈ Mn,Pkx is trivial as soon

as k is strictly greater than n. We denote by U the category of unstable modules.
Let Ap be the Steenrod algebra [Ste62, Sch94]. If p = 2 then there is an isomorphism of algebras

A → A2, obtained by identifying the Pk with the Steenrod squares Sqk. The category U is equivalent
to the category U of unstable modules in [Sch94]. If p > 2, A is isomorphic, up to a grading scale, to the
sub-algebra of Ap generated by the reduced Steenrod powers P k, k ≥ 0, of degree 2k(p−1). The category U

is equivalent to the sub-category U′ of unstable Ap−modules concentrating in even degrees [Sch94, Section
1.6].

We call A the even Steenrod algebra and Pk the k−th reduced Steenrod power.
Serre and Cartan [Ser53, Car55] introduced the notions of admissible and excess. A monomial

Pi1Pi2 . . .Pik

is called admissible if ij ≥ pij+1 for every k − 1 ≥ j ≥ 1 and ik ≥ 1. The excess of this operation, denoted
by e

(
Pi1Pi2 . . .Pik

)
, is defined by

e
(
Pi1Pi2 . . .Pik

)
= pi1 − (p− 1)

 k∑
j=1

ij

 .

The set of admissible monomials and P0 is an additive basis of A .
Let | − | be the degree of a homogeneous element. Denote by P0 the operation, which associates to a

homogeneous element x ∈ Mn of M ∈ U , the element P |x|x. An unstable module M is nilpotent if for
every x ∈ Mn there exist an integer Nx such that PNx0 x = 0. Denote by Nil the class of all nilpotent
modules.
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An unstable module M is reduced if HomU (N,M) is trivial for every nilpotent module N . It is called
Nil−closed if ExtiU (N,M) , i = 0, 1, are trivial for every nilpotent module N .

Let n be a non-negative integer. We denote by F (n) the free unstable module generated by a generator
ın of degree n. These F (n) are projective satisfying HomU (F (n),M) ∼= Mn. When n = 1 such a generator
is denoted by u rather than ı1. As an Fp−vector space, F (1) is generated by upi , i ≥ 0. The action of the
reduced Steenrod power Pk, k ≥ 0 is defined by:

Pk
(
up

i
)

=


up

i if k = 0,
up

i+1 if k = pi,

0 otherwise.

In our setting, there is an isomorphism of unstable modules F (n) ∼= (F (1)⊗n)Sn where the symmetric group
Sn acts by permutations. Then we can identify F (n) with the sub-module of F (1)⊗n generated by u⊗n

[LZ86, Sch94, Section 1.6].
Milnor [Mil58] established that A has a natural co-product which makes it into a Hopf algebra and

incorporates Thom’s involution as the conjugation. The dual A ∗ of A is isomorphic to the polynomial
algebra

Fp[ξ0, ξ1, . . . , ξk, . . .], |ξi| = pi − 1, ξ0 = 1.

Let R = (r1, r2, . . . , rk, . . .) be a sequence of non-negative integers with only finitely many non-trivial
ones. Denote by ξR the product ξr1

1 ξ
r2
2 . . . ξrkk . . .. These monomials form a basis for A ∗.

Definition 2.1 (Milnor’s operations). Let Mn
r ∈ A denote the dual of ξnr with respect to the monomial

basis
{
ξR
}
of A ∗.

IfM is an unstable module, the completed tensor productM
⊗̂

A ∗ is the Fp−graded vector space defined
by: (

M
⊗̂

A ∗
)n

=
∏

l−k=n
M l ⊗ (A ∗)k .

We recall how to use Milnor’s co-action to determine the Steenrod action. There is Milnor’s co-action
λ : M → M

⊗̂
A ∗ for an unstable module M . We write λ(x) as a formal sum

∑
R xR ⊗ ξR. Let θ be a

Steenrod operation then
θx =

∑
R

ξR(θ)xR.

Milnor’s co-action on a tensor product is determined as follows:

λ(x⊗ y) =
∑
R

∑
I+J=R

(xI ⊗ yJ)⊗ ξR.

Milnor’s co-action on F (1) is defined by:

λ(u) =
∑
i≥0

up
i

⊗ ξi,

λ(up
s

) =
∑
i≥0

up
s+i
⊗ ξp

s

i .

The following observation on the action of Milnor’s operations is easy and is left to the reader.

Lemma 2.2. Let n be a non-negative integer then Mn
r (u⊗n) =

(
up

r)⊗n. Let l1, . . . , lq be a sequence of
non-negative integers. If k1, . . . , km is a sequence of non-negative integers such that pkj > n for every
m ≥ j ≥ 1 then:

Mn
r

((
q⊗
i=1

up
li

)
⊗

(
m⊗
i=1

up
ki

))
=
(

Mn
r

(
q⊗
i=1

up
li

))
⊗

(
m⊗
i=1

up
ki

)
.
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The following proposition is a strengthening of Lemma 2.2:

Proposition 2.3. Let M and N be two connected unstable modules. For all homogeneous element x ∈ M
of degree n then Mn

r (x) = Pr0(x). For all homogeneous elements y ∈ M and z ∈ N and all non-negative
integer k such that pk > n, then:

Mn
r

(
y ⊗ Pk0(z)

)
= Mn

r (y)⊗ Pk0(z).

Proof. Consider the morphism ϕ : F (n)→M , defined by ϕ (u⊗n) = x. Lemma 2.2 yields:

Mn
r (x) = Mn

r

(
ϕ
(
u⊗n

))
= ϕ

(
Mn

r

(
u⊗n

))
= ϕ

(
Pr0
(
u⊗n

))
= Pr0

(
ϕ
(
u⊗n

))
= Pr0(x).

Let ψ : F (|y|) → M be the morphism defined by ψ
(
u⊗|y|

)
= y. Similarly, by considering the morphism

ψ1 : Φk(F (|z|))→ N , defined by
ψ
(
Ppk ı|z|

)
= Ppkz,

together with the product ψ ⊗ ψ1, we obtain the second equality.

3 Strict polynomial functors and Hai’s functor
The main goal of this section is to recall Hai’s functor and give an easy observation on the existence of

its adjoint functors.
Following the simple presentation introduced in [Pir03], we first recall the category of strict polynomial

functors. Fix a prime number p, denote by V the category of Fp−vector spaces and by Vf its full sub-
category of spaces of finite dimension. Let n be a non-negative integer. Denote by Γn(V ) the group of
invariants (V ⊗n)Sn . The category ΓdVf is defined by:

Ob
(
ΓdVf

)
= Ob

(
Vf
)
,

HomΓdVf (V,W ) = Γd(HomVf (V,W )).

A homogeneous strict polynomial functor of degree d is an Fp−linear functor from ΓdVf to Vf . We denote
by Pd the category of all these functors. The notation P stands for the direct sum

⊕
d≥0 Pd. A strict

polynomial functor is an object of the category P.
We now recall the parameterized version of Γd and Sd. For each W ∈ Vf , let Γd,W be the functor which

associates to an Fp−vector space V the Fp−vector space Γd(HomVf (W,V )), and let Sd,W be the functor
which associates to an Fp−vector space V the Fp−vector space Sd(W ] ⊗ V ). Here, W ] stands for the
linear dual of W . The Γd,W are projective satisfying HomPd

(
Γd,W , F

) ∼= F (W ) and the Sd,W are injective
satisfying HomPd

(
F, Sd,W

) ∼= F (W )].
Let F denote the category of functors from finite dimensional Fp−vector spaces to Fp−vector spaces. Hai

shows [Hai10] that the forgetful functor O : Pd → F factors through U via a certain functor m̄d : Pd → U .
Let m̄ denote the induced functor from P to U . The functor m̄ has nice properties. It is exact and it
commutes with tensor products and with Frobenius twists [Hai10, see Sections 3 and 4]. Moreover:

Proposition 3.1. We have m̄d(Γd) = F (d).

The following observation is easy and is left to the reader:

Proposition 3.2 ([Hai10]). The functor m̄d admits a left adjoint and a right adjoint.
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4 The key lemma
As explained in the introduction, we prove Theorem 1.1 by comparing corresponding Hom-groups in the

two categories Pd and U . This computation can be reduced to a smaller class of strict polynomial functors.
This class is described in the following proposition. Before formulating this proposition, we fix:

Notation 4.1. Let λ = (λ1, . . . , λk) be a sequence of non-negative integers. We denote:

Γλ := Γλ1 ⊗ · · · ⊗ Γλk .

Proposition 4.2 ([FS97]). If dimFpW ≥ d then Sd,W is an injective generator of Pd. The functors Γλ,
where λ runs through the set of all sequences of non-negative integers whose sum is d, form a system of
projective generators of Pd.

By abuse of notation, we denote by | − | the sum of a sequence of integers. Theorem 1.1 is equivalent to
the following lemma.

Lemma 4.3. There are isomorphisms:

HomU

(
Γλ(F (1)), Sd,V (F (1))

) ∼= Sλ1(V ])⊗ · · · ⊗ Sλk(V ])

for every λ = (λ1, λ2, . . . , λk), |λ| = d.

In this section we show that there exists a monogeneous sub-module of Γλ(F (1)) such that the quo-
tient Γλ(F (1)) by this module is nilpotent. The following lemma is a consequence of [Lan92, Lemma
2.2.5.3],[FS90, Lemma 1.2.6].

Lemma 4.4. Let M be a connected monogeneous unstable module. If n, q are non-negative integers such
that pq > n then F (n)⊗ ΦqM is monogeneous.

By a simple induction, we obtain the following lemma:

Lemma 4.5. Let λ be a sequence (λ1, λ2, . . . , λk) of non-negative integers. If the numbers q1, q2, . . . , qk−1

satisfy pqi > λi for all 1 ≤ i ≤ k − 1, then

F (λ1)⊗ Φq1F (λ2)⊗ Φq1+q2F (λ3)⊗ · · · ⊗ Φq1+q2+···+qk−1F (λk)

is monogeneous.

Denote by Q the sequence (0, q1, q1 + q2, . . . , q1 + · · ·+ qk−1) and by ωλ,Q the element

ıλ1 ⊗ Pq1
0 ıλ2 ⊗ Pq1+q2

0 ıλ3 ⊗ · · · ⊗ Pq1+q2+···+qk−1
0 ıλk .

Because M/ΦnM,n ≥ 1, is nilpotent for every unstable module M , an elementary induction yields:

Corollary 4.6. Let λ be a sequence (λ1, λ2, . . . , λk) of non-negative integers. If the numbers q1, q2, . . . , qk−1

satisfy pqi > λi for all 1 ≤ i ≤ k − 1, then the quotient Γλ(F (1))/A (ωλ,Q) is nilpotent.

Because Sd,V (F (1)) is reduced, hence HomU

(
Γλ(F (1))/A (ωλ,Q), Sd,V (F (1))

)
is trivial and then:

Proposition 4.7. The inclusion A (ωλ,Q) ↪→ Γλ(F (1)) induces an injection:

HomU

(
Γλ(F (1)), Sd,V (F (1))

)
↪→ HomU

(
A (ωλ,Q), Sd,V (F (1))

)
.
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We are thus led to the problem of determining the subspace of Sd,V (F (1)) consisting of all possible
images of ωλ,Q. Lemma 4.8 presents the desired determination. Before formulating this lemma, let us
present an example of interest. There is an isomorphism of Fp−vector spaces:

HomU

(
F (d), Sd,V (F (1))

) ∼= (Sd,V (F (1))
)d ∼= Sd

(
V ]
)
.

Therefore if ϕ is a morphism from F (d) to Sd,V (F (1)) then the image ϕ(ıd) is a sum of elements of the type∏d
i=1 si⊗u where si ∈ V ]. The natural transformation

k⊗
j=1

Sλj ,V → Sd,V ,
∑k
j=1 λj = d, induces a morphism

ρ :
k⊗
j=1

HomU

(
F (λj), Sλj ,V (F (1))

)
→ HomU

(
F (λ), Sd,V (F (1))

)
.

For 1 ≤ i ≤ k, let fi be a morphism from F (λi) to Sλi,V (F (1)). Then the image of ωλ,Q under ρ
(⊗k

i=1 fi

)
is a sum of elements of the type

k∏
j=1

 λj∏
i=1

si,j ⊗ up
q1+q2+···+qj−1


with si,j ∈ V ]. We show that every morphism in HomU

(
F (λ), Sd,V (F (1))

)
is of this simple form.

Lemma 4.8. Let λ = (λ1, . . . , λk) be a sequence of non-negative integers whose sum is d. Let m be a
number such that pm > d2. Denote by α the sequence (0,m, 2m, . . . , (k− 1)m) and by ωα the element ωλ,α.
If ϕ is a morphism from F (λ) to Sd,V (F (1)) then ϕ(ωα) is a sum of elements of the type

k−1∏
t=0

λt+1∏
i=1

vi,t ⊗ up
tm


where vi,t ∈ V ].

Remark 4.9. Lemma 4.3 is a corollary of Lemma 4.8. Indeed since
k⊗
j=1

HomU

(
F (λj), Sλj (V ] ⊗ F (1))

) ∼= k⊗
j=1

Sλj (V ]),

it suffices to check that the morphism ρ is a bijection. The morphism ρ is clearly injective. Following Lemma
4.8, the morphism ρ is surjective as well and hence it is bijective. Lemma 4.3 have been proved and we are
left with Lemma 4.8.

5 Proof of the key lemma
As discussed in the previous section, we are left with Lemma 4.8. The proof of this lemma now goes as

follows.

Proof of Lemma 4.8. The image of ωα is a sum of elements of the type
∏d
i=1 vi ⊗ up

li in Sd(V ] ⊗ F (1)).
Therefore, the following equality holds:

k−1∑
i=0

pimλi+1 =
d∑
j=1

plj . (5.1)

We now show that in
∏d
i=1 vi ⊗ up

li , the element upjm , 0 ≤ j ≤ k − 1, appears λj+1 times. Without
loss of generality, we suppose that l1 ≤ l2 ≤ . . . ≤ ld. We prove by induction on 1 ≤ i ≤ k that there exist
j1, j2, . . . jk such that for 0 ≤ i ≤ k − 1,

plji+1 ≤ λi+1p
im < pl1+ji+1 ,
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im ≤ lt, 1 + ji ≤ t ≤ ji+1,

λi+1 =
ji+1∑

s=1+ji

pls−im. (5.2)

Let j1 be the index such that plj1 ≤ λ1 < pl1+j1 . Denote by S the set {l1, l2, . . . , lj1} and by pS the sum∑
i∈S p

i. We show that
pS = λ1.

Since both sides of (5.1) and λ1 are congruent modulo pl1+j1 , it is enough to prove that pS ≤ λ1. Suppose
that this inequality does not hold. Then

λ1 < pS ≤ λ1j1 ≤ d2 < pm.

Denote by r the sum
∑d
i=1 p

li . It follows from Proposition 2.3 that:

MpS

r (ωα) = MpS

r

(
u⊗λ1

)
⊗
k−1⊗
i=1

(
up

im
)⊗λi+1

= 0.

On the other hand, we prove that the action of MpS

r on the image of ωα is not trivial. In fact, the element

x := MpS

r

(
d∏
i=1

vi ⊗ up
li

)

is a sum of elements of the type
d∏
i=1

vi ⊗ up
li+rεi

where (ε1, ε2, . . . , εd) is a sequence of 0 and 1 such that

d∑
i=1

εip
li =

j1∑
i=1

pli .

Among these elements, (
j1∏
i=1

vi ⊗ up
li+r

) d∏
i=1+j1

vi ⊗ up
li


is unique hence x is non-trivial. Suppose that there exist k1 ≤ k2 ≤ . . . ≤ kd such that

k−1∑
i=0

pimλi+1 =
d∑
j=1

pkj ,

d∏
i=1

vi ⊗ up
li+rεi =

d∏
i=1

wi ⊗ up
ki+rτi

,

where (τ1, τ2, . . . , τd) is a sequence of 0 and 1 such that

d∑
i=1

τip
ki =

j1∑
i=1

pli .

Since
r > max {li, ki, 1 ≤ i ≤ d} ,

then {
vi ⊗ up

li
, 1 ≤ i ≤ d

}
=
{
wj ⊗ up

kj
, 1 ≤ j ≤ d

}
.
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Therefore the action of MpS

r on the image of ωα is non-trivial in this case. This contradiction implies:

j1∑
i=1

pli = λ1

Suppose that there are j1, j2, . . . jt such that for 0 ≤ i ≤ t− 1,

plji+1 ≤ λi+1p
im < pl1+ji+1 ,

im ≤ ln, 1 + ji ≤ n ≤ ji+1,

λi+1 =
ji+1∑

s=1+ji

pls−im.

It follows from Proposition 2.3 that

Mλ1+pmλ2+···+p(t−1)mλt
km

(
ω(0,m,2m,...,(k−1)m)

)
= ω(km,(k+1)m,...,(k+t−1)m,tm,(t+1)m...,(k−1)m)

= Ptm0 ω((k−t)m,...,(k−1)m,0,m,...,(k−t−1)m), (5.3)

Mλ1+pmλ2+···+p(t−1)mλt
km

(
d∏
i=1

vi ⊗ up
li

)
= Pkm0

(
jt∏
i=1

vi ⊗ up
li

)
·

d∏
i=1+jt

vi ⊗ up
li
.

Because every morphism in HomU

(
F (λ), Sd,V (F (1))

)
is A−linear, it follows from (5.3) that li ≥ tm for

all i ≥ 1 + jt. As Sd,V (F (1)) is reduced, the image of ω((k−t)m,...,(k−1)m,0,m,...,(k−t1)m) is a sum of

P(k−t)m
0

(
jt∏
i=1

vi ⊗ up
li

)
·

d∏
i=1+jt

vi ⊗ up
li−tm

with other elements. By the same manner for the case of λ1, there exist jt+1 such that

pljt+1 ≤ λt+1p
tm < pl1+jt+1 ,

λt+1 =
jt+1∑

s=1+jt

pls−tm.

The induction is then achieved. The lemma is now deduced from the equalities
∑k
i=1 λi = d and (5.2).
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