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Abstra
t

We study the �ltering problem and the maximization problem of expe
ted utility from

terminal wealth in a partial information 
ontext. The spe
ial features is that the only in-

formation available to the investor is the ve
tor of so
k pri
es. The mean rate of return

pro
esses are not dire
tly observed and supposed to be driven by a pro
ess µt modeled by

a sto
hasti
 di�erential equations. The main result in this paper is to show under whi
h

assumptions on the 
oe�
ients of the model, we 
an estimate the unobserved market pri
e

of risks. Using the innovation approa
h, we show that under globally Lips
hitz 
onditions

on the 
oe�
ients of µt, the �lters estimate of the risks satisfy a measure-valued Kushner-

Stratonovi
h equations. On the other hand, using the pathwise density approa
h, we show

that under a nondegenerate assumption and some regularity assumptions on the 
oe�
ients

of µt, the density of the 
onditional distribution of µt given the observation data, 
an be

expressed in terms of the solution to a linear paraboli
 partial di�erential equation param-

eterized by the observation path. Also, we 
an obtain an expli
it formulae for the optimal

wealth, the optimal portfolio and the value fun
tion for the 
ases of logarithmi
 and power

utility fun
tion.

Keywords 0.1. Partial information, �ltering problem, Kushner-stratonovi
h equation, pathwise

density approa
h, martingale duality method, utility maximization.

1 Introdu
tion

In �nan
ial market models, we do not have in general a 
omplete knowledge of all parameters,

whi
h may be driven by unobserved random fa
tors. This situation of partial information

framework appears when investors only observe the ve
tor of sto
k pri
es and 
annot disentangle

the drift term from the other sour
es of un
ertainty. Investors observe 
hanges in returns but


annot perfe
tly distinguish their dynami
s.

Portfolio optimization problems under partial information are be
oming more and more

popular, also be
ause of their pra
ti
al interest. These problems have been studied widely via

the �ltering theory and using both portfolio optimization methodologies, namely the dynami


programming approa
h and the martingale approa
h. Models with in
omplete information have

been investigated by Dothan and Feldman [9℄ and Lakner [16℄, [17℄ have solved the partial

optimization out the spe
ial 
ase of the linear Gaussian �ltering problem via respe
tively the

dynami
 programming methods and the martingale approa
h. Also, Karatzas and Xue [13℄


onsider optimal 
onsumption in an in
omplete market setting the optimal terminal wealth is

∗
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derived and the optimal strategy is determined for the linear Gaussian dynami
s of the drift.

Karatzas and Zhao [14℄ solve the problem if the drift is a �xed random variable with a known

distribution (Bayesian 
ase). Also, portfolio optimization problems under partial information for

sto
hasti
 volatility models have been studied by Pham and Quenez [22℄, Ibrahim and Abergel

[11℄.

In this paper, we are interested by studying the �ltering problem and portfolio optimization

problem in the 
ontext of partial information for general dynami
s of the drift. We 
onsider a

market model where the mean rate of return pro
esses are unobservable and follow a sto
hasti


di�erential equations. Our main result fo
us on the following question: under whi
h assumptions

on the 
oe�
ients of the model, the drift of the sto
k and the 
oe�
ients of the drift dynami
s,

we 
an solve our �ltering problem and therefore our portfolio optimization problem. The �ltering

problem 
onsists in estimating the unobserved quantities (here they are the market pri
e of risks)

based on the nonlinear �ltering theory. Using the 
hange of measure te
hniques, the partial

observation 
ontext 
an be transformed into a full information 
ontext su
h that 
oe�
ients

depend only on past history of observed pri
es. We study two 
ases for the market pri
e of risk,

the boundeness 
ase and the linear growth 
ase. Therefore, for ea
h 
ase, we 
an make some

assumptions on the 
oe�
ients of the drift dynami
s in order to dedu
e the �lter estimate using

one of the following two approa
hes: the innovation approa
h, where we show that the �lters

estimate 
an be dedu
ed as the solution to a measure-valued sto
hasti
 di�erential equations,

or the density approa
h where we show that the density qt of the unnormalized 
onditional

distribution of the drift given the observation, is a solution to a linear sto
hasti
 di�erential

equation. Therefore by Kallianpur-Striebel formula, we 
an dedu
e the equation satis�ed by the

density pt of the 
onditional distribution, whi
h is a nonlinear sto
hasti
 di�erential equation.

Then, it is more easily to study the existen
e and uniqueness for qt, and therefore dedu
e that

for pt. For that, we need to use the extended variational method to sto
hasti
 di�erential

equation of Ito type, see Krylov-Rosovskii [15℄ and Pardoux [19℄. With this variational method,

we are limited to the 
ase where the market pri
e of risk is bounded. But we 
an make a

suitable pathwise transformation, with whi
h we prove that the density qt respe
tively pt 
an be

expressed in terms of the solution to a linear partial di�erential equation parameterized by the

observation pro
ess. Therefore 
lassi
al partial di�erential equation methods 
an be applied in

analyzing existen
e and uniqueness for qt respe
tively pt, for both 
ases of the market pri
e of

risk: the boundeness and the linear growth 
ase.

After repla
ing the original partial information 
ontext by a full information one and 
om-

puting the �lters estimate, it is then possible to use the 
lassi
al theory for sto
hasti
 
ontrol

problem. Here we will be interested by the martingale approa
h to solve our utility optimization

problem. We study the logarithmi
 and power utility fun
tions, where we show that, due to the

pathwise approa
h, the optimal wealth and the optimal portfolio 
an be 
omputed expli
itly in

terms of the solution to a linear paraboli
 partial di�erential equation. In fa
t, in the literature,

an expli
it formulae for the optimal portfolio poli
ies, in partial information 
ontext , have been

obtained for usual 
ases for the modeling of the unobservable mean rate of return as: Gaussian,

�nite state Markov 
hain or Bayesian. But in our 
ase, we have obtained these formulae for

general modeling of the mean rate of return.

The stru
ture of the present paper is as follows: In se
tion 2, we des
ribe the model and

formulate the optimization problem. In se
tion 3, we use results from �ltering theory to redu
e

the partial information model to a model where the 
oe�
ients are adapted to the observation

pro
ess. We present in se
tion 4 two approa
hes in order to study our �ltering problem. We

study two 
ases for the market pri
e of risk: the 
ase where it is bounded and the 
ase where

it has linear growth. In both 
ases, we make the following assumptions on the 
oe�
ients of
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the drift dynami
s in order to dedu
e the �lters estimate. Finally in se
tion 5, we use the

martingale duality approa
h for the utility maximization problem. We obtain expli
it formulae

for the optimal portfolio, optimal wealth and value fun
tion of the utility maximization problem

for the 
ases of logarithmi
 and power utility fun
tion.

2 Formulation of the problem

Let (Ω,F ,P) be a 
omplete probability spa
e equipped with a �ltration F = {Ft, 0 ≤ t ≤ T}
satisfying the usual 
onditions, where T > 0 is a �xed time horizon. The �nan
ial market


onsists of one risk-free-asset, whose pri
e pro
ess is assumed for simpli
ity equal to 1, and n
sto
ks of positive pro
ess S = (S1, ....., Sn) governed by:

dSt = diag(St) (f(µt)dt+ σdWt) , (2.1)

dµt = ζ(µt)dt+ ϑ(µt)dW
1
t . (2.2)

where W is a n-dimensional Brownian motion. Here diag(S) denotes the diagonal n×n matrix

with 
omponents Si, i = 1, .....n. The mean rate of return f(µt), valued in R
n
, is not observable

and is driven by some pro
ess µt, valued in R
n
, whi
h is modeled by a sto
hasti
 di�erential

equation. f is a measurable fun
tion from R
n
into R

n
and the matrix volatility σ, valued in

R
n×n

, is assumed to be a 
onstant. AlsoW 1
is an n-dimensional Brownian motion, independent

of W , ζ is a measurable fun
tion from R
n
into R

n
and ϑ is a measurable fun
tion from R

n
into

R
n×n

.

We denote by λt = λ(µt) := σ−1f(µt), the unobservable market pri
e of risk whi
h is F-adapted

pro
ess.

Also we denote by F
S = {FS

t , 0 ≤ t ≤ T} the �ltration generated by the pri
e pro
ess S.

2.1 The optimization problem

Consider an agent who invests at any time t ∈ [0, T ] a proportion πit of his wealth in the i− th-
risky asset Si, i = 1, .....n. With πt = (π1t , ......, π

n
t )

∗

hosen, the proportion of wealth invested

in the bond is 1− π∗t en. Where en is the ve
tor of one in R
n
.

Where the sign ∗ denotes the transposition operator.

We assume that the trading strategy is self-�nan
ing, then the wealth pro
ess 
orresponding

to a portfolio π is de�ned by Rπ
0 = x and evolves a

ording to:

dRπ
t = Rπ

t [π
∗
t f(µt)dt+ π∗t σdWt] (2.3)

Given an utility fun
tion U : R+ → R, in
reasing, 
on
ave, the obje
tive of the investor is

to maximize the expe
ted utility from terminal wealth. The value fun
tion of the agent is then:

J(x) = sup
π∈A

E[U(Rπ
T )], x > 0. (2.4)

Where A denotes the set of the admissible 
ontrols (πt)0≤t≤T whi
h are F
S
-adapted, and satis�es

the integrability 
ondition:

∫ T

0
||πs||

2ds <∞.

We are in a 
ontext when an investor wants to maximize the expe
ted utility from terminal

wealth, where the only information available to the investor is the one generated by the asset
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pri
es, therefore leading to a utility maximization problem in partially observed in
omplete

model. In order to solve it, we aim to redu
e it to a maximization problem with full information.

For that, it be
omes important to exploit all the information 
oming from the market itself in

order to 
ontinuously update the knowledge of the not fully known quantities and this is where

sto
hasti
 �ltering problem be
omes useful.

3 Redu
tion to a full observation model

We introdu
e the positive martingale de�ned by L0 = 1 and dLt = −Ltλ
∗
tdWt. It is expli
itly

given by

Lt = exp

(

−

∫ t

0
λ∗sdWs −

1

2

∫ t

0
||λs||

2ds

)

. (3.1)

We assume that L is a martingale, so that it de�nes a probability measure P̃ equivalent to

P on (Ω,F) 
hara
terized by:

dP̃

dP
|Ft = Lt, 0 ≤ t ≤ T. (3.2)

Then Girsanov's transformation ensures that

W̃t =Wt +

∫ t

0
λsds , 0 ≤ t ≤ T,

is a (P̃,F)-Brownian motion under P̃, and the dynami
s of S under P̃ is

dSt = diag(St)σdW̃t.

Remark 3.1. An important property of the probability of referen
e P̃ is that the �ltration F
S
is

the augmented natural �ltration of W̃ .

Now we assume that for all t, E|λt| <∞. Then under this assumption, we 
an introdu
e the


onditional law, i.e, the �lter estimate of the risk λt de�ned as follows:

λt = λ(µt) := E[λ(µt)|F
S
t ].

Let us introdu
e f t = f(µt) := E[f(µt)|F
S
t ]. Sin
e σ is F

S
-adapted, then we have that f t = σλt.

Remark 3.2. Noti
e that the notation f(µt) does not mean that the �lter estimate f t is a

fun
tion of µt but it is just a notation to say that f t is the 
onditional expe
tation of f(µ) given
the observation data F

S
. So, in the sequel, when we say φ(µt) it is just to say that the �lter

estimate φt is the 
onditional expe
tation of φ(µt) given the observation data F
S
.

Let us now 
onsider the pro
ess

W t = W̃t −

∫ t

0
λsds =Wt +

∫ t

0
σ−1

[

f(µs)− f(µs)
]

ds,

This is the so-
alled innovation pro
ess and by 
lassi
al results in �ltering theory (see for example

proposition 2.30 in [1℄ and proposition 2.2.7 in [21℄), we have that W is a (P,FS) Brownian

motion.
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Then, by means of the innovation pro
esses, we 
an des
ribe the dynami
s of S within a frame-

work of full observation model as follows:

dSt = diag(St)
(

f(µt)dt+ σdW t

)

. (3.3)

We have showed that 
onditioning arguments 
an be used to repla
e the initial partial in-

formation problem by a full information problem one whi
h depends only on the past history of

observed pri
es. But the redu
tion pro
edure involves the �lter estimate f(µt), whi
h will be

the main interest of our arti
le.

4 Filtering problem

Our �ltering problem 
an be summarized as follows: the signal pro
ess is µt (the unobservable
pro
ess) and we have from remark 3.1 that W̃ 
orresponds to the observation pro
ess, that is,

we have the following signal-observation system:

dµt = ζ(µt)dt+ ϑ(µt)dW
1
t , (4.1)

dW̃t = λ(µt)dt+ dWt. (4.2)

where W 1
is independent of W .

Our aim is to 
hara
terize the �lter estimate f(µt); whi
h is de�ned as the 
onditional

expe
tation of f(µt) given the observation data F
S = F

W̃
. For that, we need to use the nonlinear

�ltering theory. There are essentially two di�erent approa
hes: the �rst is based on the important

idea of innovation pro
esses, where we show that the 
onditional distribution of the unobservable

pro
ess having the observation, is the solution of a evolution sto
hasti
 equation often 
alled

the Kushner-Stratonovi
h equation. The se
ond approa
h is fo
used on the existen
e of the


onditional density. We will show for ea
h approa
h, whi
h 
onditions we need to impose on the


oe�
ients f, ζ and ϑ in order to 
ompute the �lter estimate f(µt).

Remark 4.1. In what follows, sin
e σ is a 
onstant matrix, noti
e that when we say that the

market pri
e risk λ is bounded (resp.has linear growth) it's exa
tly equivalent to say that f is

bounded (resp.has linear growth). That is, when we make an assumption on f it's exa
tly the

same assumption on the market pri
e risk λ.

4.1 Innovation pro
esses approa
h

We assume that both ζ = (ζi)1≤i≤n : Rn → R
n
and ϑ = (ϑij)1≤i,j≤n : Rn → R

n×n
are globally

Lips
hitz, that is, there exists a positive 
onstant k su
h that:

||ζ(x)− ζ(y)|| ≤ k||x− y|| and ||ϑ(x) − ϑ(y)|| ≤ k||x− y||. (4.3)

On the other hand, 
on
erning the observation pro
ess (4.2), we will distinguish two 
ases

for λ: the 
ase where λ is bounded and the 
ase where λ has linear growth.

It is well known that the innovation pro
esses approa
h is based on the 
hange of measure P̃

given in (3.2):

dP̃

dP
|Ft = Lt := exp

[

−

∫ t

0
λ∗(µs)dWs −

1

2
|2
∫ t

0
||λ(µs)||

2ds

]

, (4.4)

where we shall make the usual standing assumption on the �ltering theory.
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Assumption 1. The pro
ess L is a martingale; that is, E[LT ] = 1

Let us now denote by Λ the (P̃,F)-martingale given by Λt =
1

Lt
. Therefore the 
omputation

of the 
onditional distribution of µt given F
S

an be obtained from the following Kallianpur-

Striebel formula (4.5): for every φ ∈ B(Rn), we have the following representation:

φt = φ(µt) := E
[

φ(µt)|F
S
t

]

=
Ẽ
[

φ(µt)Λt|F
S
t

]

Ẽ
[

Λt|F
S
t

] :=
ψt(φ)

ψt(1)
, (4.5)

with ψt(φ) := Ẽ[φ(µt)Λt|F
S
t ] is the unnormalized 
onditional distributionof µt given the ob-

servation, ψt(1) 
an be viewed as the normalising fa
tor and B(Rn) is the spa
e of bounded

measurable fun
tions R
n → R.

Remark 4.2. Noti
e that the �lter estimates f t 
an be 
omputed as a ve
tor of n-�lter estimates,

that is, f t = (f it )1≤i≤n, where f
i ∈ B(Rn).

We shall also make the following assumption on the unnormalized 
onditional distribution:

Assumption 2. For all t ≥ 0,

P̃

[
∫ t

0
[ψs(||λ||)]

2ds <∞

]

= 1 (4.6)

.

Let us now introdu
e the following se
ond order di�erential operator A as follows:

Aφ =
1

2

n
∑

i,j=1

Kij∂
2
xixj

φ+

n
∑

i=1

ζi∂xi
φ, for φ ∈ B(Rn). (4.7)

and its adjoint A∗
is given by:

A∗φ =
1

2

n
∑

i,j=1

∂2xixj
(Kijφ)−

n
∑

i=1

∂xi
(ζiφ), for φ ∈ B(R). (4.8)

with K = ϑϑ∗.
Now we present the following two results due to Bain and Crisan [1, Chap.3℄ and Pardoux

[21, Chap.2℄. Then, we will show whi
h 
onditions 
an be imposed on the 
oe�
ients f, ζ and ϑ
su
h that these two results 
an be applied. We show that depending on the 
ondition taken on f
(f is bounded or has linear growth), we 
an impose the ne
essary 
onditions on the 
oe�
ients

ζ and ϑ in order to 
ompute the �lter estimate f(µt). We show that this �lter is the solution of

a measure-valued sto
hasti
 di�erential equation.

Proposition 4.3. If assumptions (1) and (2) are satis�ed then the unnormalized 
onditional

distribution ψt satis�es the following Zakai equation:

dψt(φ) = ψt(Aφ)dt+

n
∑

j=1

ψt

(

φλj
)

dW̃ j
t , (4.9)

for any φ ∈ B(Rn).
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We need now to impose the following fundamental 
ondition in order to derive the Kushner-

Stratonovi
h equation:

P

[
∫ t

0
||λs||

2ds <∞

]

= 1, for all t ≥ 0. (4.10)

Therefore from the above Zakai equation for ψt(φ) and ψt(1) and from the Kallianpur-Striebel

formula (4.5), we have the following evolution equation for the 
onditional distribution φ:

Corollary 4.4. If assumptions (1) and (2) are satis�ed then the 
onditional distribution φ(µt)
satis�es the following Kushner-Stratonovi
h equation:

dφt = (Aφ)tdt+

n
∑

j=1

(

(φλj)t − λjt φt

)

dW
j
t , (4.11)

for any φ ∈ B(Rn).

Remark 4.5. The above Zakai and Kushner-Stratonovi
h equations hold true for any Borel

measurable φ, not ne
essarily bounded. In fa
t, we 
an pro
eed by 
utting of φ at a �xed level

whi
h we let tend to in�nity. For this, let us introdu
e the fun
tions (ψk)k>0 de�ned as

ψk(x) = ψ(x/k), x in R
n,

where

ψ(x) =











1 if ||x|| ≤ 1

exp( ||x||
2−1

||x||2−4) if 1 < ||x|| < 2

2 if ||x|| ≥ 2.

Let us introdu
e the following relations given in[1, P.151℄:

lim
k→∞

φψk(x) = φ(x), |φ(x)ψk(x)| ≤ |φ(x)|,

lim
k→∞

As(φψ
k)(x) = Asφ(x).

Then by repla
ing in equation (4.11) φ by φψk
and from dominated 
onvergen
e theorem, we

may pass to the limit as k → ∞ and then we dedu
e that φt satis�es equation (4.11).

Now, we will be interested by studying both 
ases for f : the 
ase where f is bounded and

the 
ase where it has linear growth. In ea
h 
ase, we make the ne
essary assumptions on the


oe�
ients ζ and ϑ in order to 
ompute the �lter estimate f t.

4.1.1 The fun
tion f is bounded

In this 
ase the risk λ is bounded, then we 
an dedu
e easily the evolution equation (4.12)

satis�ed by the �lter estimate f .

Proposition 4.6. If 
ondition (4.3) is satis�ed and f is bounded, then the �lter estimate f t =

(f it )1≤i≤n satisfy the following measure-valued Kushner-Stratonovi
h equation:

df it = (Af i)tdt+

n
∑

j=1

(

n
∑

k=1

σ−1
jk (f

ifk)t −

n
∑

k=1

σ−1
jk f

i
t f

k
t

)

dW
j
t , for i = 1, ..., n. (4.12)

Proof. Sin
e f is bounded, hen
e λ also. Then assumptions 1 and 2 are satis�ed. Therefore

from 
orollary 4.4, we 
an dedu
e the above evolution equation for f t.
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4.1.2 The fun
tion f has linear growth

As the innovation pro
esses approa
h is based on the 
hange of measure, so the �rst important

assumption was that L is martingale. Normally Novikov's 
ondition is quite di�
ult to verify

dire
tly, so we need to use an alternative 
onditions under whi
h the pro
ess L is a martingale.

From lemma 3.9 in Bain and Crisan [1℄, we have:

Lemma 4.7. L is a martingale if the following 
onditions are satis�ed:

E

[
∫ t

0
||λs||

2ds

]

<∞, E

[
∫ t

0
Ls||λs||

2ds

]

<∞ ∀t > 0. (4.13)

Now, we need to impose the following assumptions on the moments of µ0:

• A1) µ0 has �nite se
ond moment.

• A2) µ0 has �nite third moment.

Lemma 4.8. Assume that 
ondition (4.3) is satis�ed. If λ has linear growth and A1) is satis�ed,
then (4.13) is satis�ed. Moreover, if A2) is satis�ed, then (4.6) is satis�ed.

Proof. The proof of the �rst part is given by lemma 4.1.1 in Bensoussan [3℄. To prove (4.6), we

need to use lemma 4.1.5 and part (b) in the proof of theorem 4.1.1 in Bensoussan [3℄.

Noti
e that 
ondition (4.10) is a 
onsequen
e of the �rst stronger 
ondition (4.13) imposed

on λ. Therefore, we 
an dedu
e the �lter estimate f t = (f it )1≤i≤n, in the 
ase where f has linear

growth, as follows:

Proposition 4.9. Assume that 
ondition (4.3) is satis�ed. If f has linear growth and assump-

tions A1) and A2) are satis�ed, then the �lter estimate f t satisfy the following measure-valued

Kushner-Stratonovi
h equation:

df it = (Af i)tdt+
n
∑

j=1

(

n
∑

k=1

σ−1
jk (f

ifk)t −
n
∑

k=1

σ−1
jk f

i
t f

k
t

)

dW
j
t , for i = 1, ..., n. (4.14)

Proof. Sin
e f has linear growth, hen
e λ also. Moreover, as assumptions A1) and A2) are

satis�ed, then from lemma 4.8 and lemma 1, we 
an dedu
e that assumptions 1 and 2 are

satis�ed. Therefore remark 4.5 and 
orollary 4.4 end the proof.

4.1.3 Existen
e and uniqueness of the solution f t

Let us de�ne the spa
e of measure-valued sto
hasti
 pro
esses within whi
h we prove uniqueness

of the solution to equations (4.12) and (4.14).

Let ψ : Rn → R be the fun
tion ψ(x) = 1 + ||x||, for any x ∈ R
n
and de�ne C l(Rn) to be

the spa
e of 
ontinuous fun
tions φ su
h that φ/ψ ∈ Cb(R
n)(the spa
e of bounded 
ontinuous

fun
tions).

Let us denote by M
l(Rn) the spa
e of �nite measure M su
h that M(ψ) <∞. In parti
ular, this

implies that M(φ) <∞ for all φ ∈ C l(Rn). Moreover, we endow M
l(Rn) wit the 
orresponding

weak topology: A sequen
e (Mk) of measures in M
l(Rn) 
onverges to M ∈ M

l(Rn) if and only

if lim
k→∞

Mk(φ) = M(φ), for all φ ∈ C l(Rn).
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De�nition 4.10. • The Class U is the spa
e of all Yt-adapted M
l(Rn)-valued sto
hasti


pro
ess (Mt)t>0 with 
àdlàg paths su
h that, for all t > 0, we have

Ẽ

[
∫ t

0
(Ms(ψ))

2ds

]

<∞.

• The Class Ũ is the spa
e of all Yt-adapted M
l(R)-valued sto
hasti
 pro
ess (µ)t>0 with


àdlàg paths su
h that the pro
ess mtM belongs to the 
lass U, where the pro
ess (mt)t≥0

is de�ned as:

mt = exp

(
∫ t

0
Ms(λ

∗)W̃s −
1

2

∫ t

0
Ms(λ

∗)Ms(λ)ds

)

.

Now we state the uniqueness result of the solution to equations (4.12) and equation(4.14),

see theorem 4.19 in Bain and Crisan [1, 
hap.4℄

Proposition 4.11. Suppose in addition to the above assumptions on ζ, ϑ and f imposed in

proposition 4.6 (resp.proposition 4.9), that these 
oe�
ients have twi
e 
ontinuously di�eren-

tiable 
omponents and all their derivatives of �rst and se
ond order are bounded. Then equation

(4.12)(resp. equation(4.14)) has a unique solution in the 
lass Ũ.

Remark 4.12. The �lter equations (4.12) and (4.14) des
ribe an in�nite dimensional sto
hasti


di�erential equations driven by the innovations pro
ess. For that, we need to use some numeri
al

methods adapting to in�nite dimensional �ltering problem. For example, the so-
alled parti
ular

Monte Carlo method whi
h is based on a parti
le approximation of the 
onditional distribution.

It has re
ently given raise to extensive studies, see for instan
e [5℄,[6℄. Also we 
an use the

Wiener 
haos de
omposition method of the Zakai equation developed and studied by Lototsky et

al [18℄.

4.2 Density approa
h

This approa
h is based on the following:

We assume that the law of µt given FS
t admits a density pt(x) relative to some dominating

measure η(dx).

E[φ(µt)|F
S
t ] =

∫

Rn

φ(x)pt(x)η(dx), (4.15)

Formally integrating by parts in the Kushner-Stratonovi
h equation (4.11) and using Fubini

theorem, we 
an obtain as in Pardoux [21℄ and Bain and Crisan[1℄ that pt satis�es the following
sto
hasti
 partial di�erentiel equation (SPDE):

dpt(x) = A∗pt(x)dt+ pt(x)
n
∑

j=1

(λj(x)− λjt )dW
j
t . (4.16)

where the operator A∗
is given by (4.8) and λjt =

∫

Rn

λj(x)pt(x)η(dx) with λ
j =

∑n
k=1 σ

−1
jk f

k
.

The equation (4.16) is a nonlinear sto
hasti
 partial di�erential equation. It is not easy

to make mathemati
al sense of this equation, for example, how should the equation even be

interpreted, and do su
h equations have solutions. So if we wish to work with the density

approa
h, it usually makes more sense to work with the density qt of the unnormalized 
onditional

distribution of µt, whi
h is formally the solution of a linear sto
hasti
 partial di�erential equation

as follows:
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dqt(x) = A∗qt(x)dt+ qt(x)

n
∑

j=1

λj(x)dW̃ j
t , (4.17)

where we assume that ψt(φ) := Ẽ[φ(µt)Λt|F
S
t ] =

∫

Rn

φ(x)qt(x)dx.

We will be interested by the following questions: under whi
h 
onditions on the 
oe�
ients

f, ζ and ϑ, we 
an show that:

• the 
onditional distribution of µt given FS
t has a density with respe
t to a referen
e

measure, in parti
ular with respe
t to Lebesgue measure.

• the linear sto
hasti
 partial di�erential equation (4.17) has a solution and this solution is

the density of the unnormalized 
onditional distribution of µt given FS
t .

4.2.1 Study the existen
e of a regular density pt and the solution of (4.16).

As in the innovation approa
h we will distinguish two 
ases for f : the 
ase where f is bounded

and the 
ase where f has linear growth. Then depending on the 
ondition taken on f , we 
an
impose the ne
essary 
onditions on the 
oe�
ients ζ and ϑ in order to show that the 
onditional

distribution of µt given the observation has a density with respe
t to Lebesgue measure and its

density is the unique solution of the sto
hasti
 PDE (4.16).

Notations 1. Let us introdu
e the Hilbert spa
es

H = L2(Rn), K = H
1 :=

{

h ∈ L2(Rn)|
∂h

∂xi
∈ L2(Rn)

}

equipped with the inner produ
ts

(h1, h2) =

∫

Rn

h1(x)h2(x)dx, (4.18)

(4.19)

We noti
e that H
1
is dense in H with 
ontinuous inje
tion. The topologi
al dual spa
e of H

1

will be denoted by (H1)′. We denote by < ., . > the duality between H
1
and (H1)′.

Let now X and Y be two Hilbert spa
es equipped with the norm ||.||X and ||.||Y respe
tively.

We denote by L(X,Y) the Bana
h spa
e of 
ontinuous linear operators from X to Y.

We denote by M
0([0, T ];X) the set of all X-valued measurable pro
esses, and by M

2([0, T ];X)
(a subset of L2([0, T ] × Ω;X)) the spa
e of X-valued pro
ess Y su
h that Y ∈ M

0([0, T ];X) and

E

[
∫ T

0
||Y ||2Xds

]

<∞.

In the following, we need to make the following assumption on the initial 
ondition µ0 of the
signal pro
ess µt:

Assumption 3. The initial 
ondition µ0 is a random variable with density p0 ∈ H.

Here we need to make the following assumptions on the 
oe�
ients ϑ, ζ and f :

Assumption 4. • A.i) ϑ : Rn → R
n × R

n
is measurable and bounded.

• A.i) ∃α > 0, su
h that K(x) = ϑϑ∗(x) ≥ αI, ∀x ∈ Rn
.
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• A.iii) ∂xi
ϑij ∈ L∞(Rn), i, j = 1, .....n.

• A.iv) ζ and f are measurable and bounded fun
tions from R
n → R

n
.

Firstly, the following lemma about the existen
e of a density with respe
t to Lebesgue mea-

sure 
an be found in Bain and Crisan [1, P.173℄:

Lemma 4.13. If assumption 3 is satis�ed and f is bounded, then almost surely the 
onditional

distribution φ(µt) has a density with respe
t to Lebesque measure and this density is square

integrable.

Now we study the existen
e of a solution qt to the sto
hasti
 PDE(4.17). Then, we show

that qt is the unnormalized 
onditional density of µt given the observation FS
t . By 
onsequen
e,

using Kallianpur-Striebel formula (4.5), we 
an dedu
e the 
onditional density pt.
Using the extended variational method to sto
hasti
 equations of Ito type, see Krylov-

Rosovskii [15℄ and Pardoux [19℄, we 
an dedu
e the following:

Proposition 4.14. We suppose that assumptions 3 and 4 hold. Then equation (4.17) has a

unique solution qt belongs to L2(Ω × [0, T ];H1) ∩ L2(Ω;C([0, T ];H)). Moreover, qt(x) is the

density of the unnormalized 
onditional distribution of µt given the observation FS
t .

Proof. All the notations used in this proof 
an be found in the above paragraph notations 1.

Firstly, in order to use the results of Krylov-Rosovskii [15℄ and Pardoux [19℄, we need to

rewritte the operator A∗
in its divergen
e form as a linear operator from an Hilbert spa
e to

its dual and to rede�ne the sto
hasti
 integral as an Hilbert spa
e operator. In fa
t, due to

assumption 4, the operator A∗

an be rewritten as follows:

A∗φ(x) =
1

2

n
∑

i,j=1

∂xi
(Kij(x)∂xj

φ(x)) −

n
∑

i=1

∂xi



ζi(x)φ(x) −
1

2

n
∑

j=1

∂xj
Kij(x)φ(x)



 , for x ∈ R
n.

Se
ondly, we 
onsider the operator B ∈ L(H1, (L2(Rn))n) as follows:

Bjφ(x) = λjφ(x) =

n
∑

k=1

σ−1
jk f

k(x)φ(x), j = 1, .....n.

Consequently, equation (4.17) 
an be rewritten as follows:

dqt(x) = A∗qt(x)dt+ Bqt.dYt, q0 = p0. (4.20)

where . denotes the s
alar produ
t.

When we write < A∗φ,ψ >, then A∗
is understood to be an operator from H

1
to (H1)′, by

using formally Green's formula, in the following way:

< A∗φ,ψ >= −
1

2

n
∑

i,j=1

(kij∂xj
φ, ∂xi

ψ) +

n
∑

i=1

((ζi − ∂xj
kij)φ, ∂xi

ψ).

where (., .) is the inner produ
t given in (4.18).

Now, after rewritten equation (4.17) as in form (4.20) and in order to apply the results of pardoux
[19℄ about the existen
e of a solution to (4.20), we need to show that the pair operators (A∗,B)
satisfy the 
oer
ivity 
ondition, that is, ∃α1 > 0 and α2 su
h that: ∀u ∈ H

1
, we have:

2 < A∗u, u > +α2|u|
2
L2(Rn) ≥ α1||u||

2
H1 + |Bu|2(L2(Rn))n . (4.21)
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where the norm in (L2(Rn))n is de�ned as follows:

|u|(L2(Rn))n =

(

n
∑

i=1

|ui|
2
L2(Rn)

)1/2

.

In fa
t the 
ondition 4.21 is satis�ed from assumption 4, espe
ially from the positive de�nite


ondition on K and the fa
t that f is bounded. Therefore from (4.21), assumption 4 and

assumption 3, the �rst part of the proof ends by applying theorem 2.1 in pardoux [19℄.

Using the same arguments for the proof of 
orollary 3.2 in pardoux [19℄, more pre
isely with

the help of unique solvability theorem for Ba
kward kolomogrov equation, we 
an dedu
e that

qt(x) is the density of the unnormalized 
onditional distribution of µt given F
S
.

Proposition 4.15. Under assumption 3 and 4, the �lter estimate f t = (f
i
t)1≤i≤n 
an be 
om-

puted as follows :

f it =

∫

Rn

f i(x)pt(x)dx, where pt(x) =
qt(x)

∫

Rn

qt(x)dx
, (4.22)

pt(x) is the density of the 
onditional distribution of µt given the observations F
S
and qt(x) is

solution of (4.17). Moreover, pt(x) satis�es (4.16).

Proof. First of all, we need to verify that

∫

Rn

qt(x)dx does not rea
h 0 nor in�nity. This 
an be

dedu
ed from the fa
t

∫

Rn

qt(x)dx = ψt(1) =: Ẽ[Λt|F
S
t ] veri�es

∫

Rn

qt(x)dx = 1 +

∫ t

0

∫

Rn

qs(x)λ(x)dxdW̃s

From Kallianpur-Striebel formula (4.5) and proposition 4.14, we 
an dedu
e (4.22). Finally,

applying It�'s formula in the Hilbert spa
e 
ase, we 
an dedu
e that pt(x) veri�es (4.16).

Remark 4.16. It is possible to re
ast the sto
hasti
 partial di�erential equation (4.17) into a

form in whi
h there are no sto
hasti
 integral terms. This redu
tion form 
an be obtained using

a suitable pathwise transformation, as in proposition 4.17. This form 
an be analyzed and estab-

lishing the existen
e and uniqueness of a fundamental solution to (4.17). Also, the importan
e

of this form, is that we 
an prove the existen
e and uniqueness solution qt to (4.17) without

requiring the boundeness assumptions on f whi
h is an ne
essary assumption (assumption 4,
A.iv)) in proposition 4.14 to study the existen
e and uniqueness for qt thus for pt. Also, we see
in se
tion 5 the advantage of this pathwise te
hnique to obtain an expli
it formulas for the opti-

mal portfolio, optimal wealth and value fun
tion up to the solution of a linear partial di�erential

equation.

4.2.2 The pathwise density approa
h

The pathwise theory of �ltering is 
on
erned with 
asting the �ltering equations in a form in

whi
h the �ltered estimates 
an be 
omputed separately for ea
h sample path of the observation

pro
ess. The ideas of this approa
h are due to Clark [4℄, Davis [7℄ [8℄,.... The essential idea of this

approa
h 
omes from the de�nition of the 
onditional expe
tation, that is, as F
S
t is the �ltration

generated by the observation pro
ess W̃ , then by de�nition of the 
onditional expe
tation, the

12



�ltered estimates 
an be seen as a fun
tion of W̃t a.s. For more details about this approa
h and

the te
hni
al tools used, see Fleming-Pardoux [10℄ and Pardoux [19℄.

We show in proposition (4.17) that for a given simple path W̃t, qt 
an be expressed in terms of

a solution of a linear nondegenerate paraboli
 partial di�erential equation, and therefore 
lassi
al

partial di�erential equation 
an be applied in analyzing existen
e, uniqueness and regularity of

solutions.

We study both 
ases for f and for ea
h 
ase, we make the ne
essary assumptions on the 
oe�-


ients ζ and ϑ.:

Assumption 5. (f is bounded )

• B.i) assumptions 3 and 4 hold.

• B.ii) ∂xi
f and ∂2xi,xj

f ∈ L∞(Rn,Rn), i, j = 1, ...n.

Assumption 6. (f has linear growth )

• C.i) ϑ : Rn → R
n × R

n
is measurable and bounded.

• C.ii) ∃α > 0, su
h that K(x) = ϑϑ∗(x) ≥ αI, ∀x ∈ R
n
.

• C.iii) ∂xi
ϑij ∈ L

∞(Rn), i, j = 1, .....n.

• C.iv) ζ and f are measurable from R
n → R

n
and have linear growth, that is, ∃c su
h that:

|ζ(x)|, |f(x)| ≤ c(1 + |x|), ∀x ∈ R
n.

• C.v) ∂xi
f (i = 1, ...n) and

∑n
i,j=1Kij∂

2
xi,xj

f ∈ L∞(Rn,Rn)

• C.vi) div(ζ) and
∑n

i,j=1 ∂
2
xi,xj

Kij ∈ L
∞(Rn).

• C.vii) assumption 3 holds.

Proposition 4.17. Under one of the assumptions 5 or 6, the density qt(x) of the unnormalized


onditional distribution of µt given FS
t is given by:

qt(x) = exp(W̃ ∗
t λ(x))ν

W̃t

t (x),

where νW̃t

t is the solution of the following linear paraboli
 partial di�erential equation parametrized

by the observation path W̃t:

∂tν
W̃ =

1

2
Tr(K(x)D2

xν
W̃ ) + (ΓW̃ (t, x))∗Dxν

W̃ + F W̃ (t, x)νW̃ , νW̃0 (x) = p0. (4.23)

The fun
tions ΓW̃ (t, x) and F W̃ (t, x) are given respe
tively by:

ΓW̃ (t, x) = −ζ(x) +K(x)Dx(W̃
∗
t λ) + χ(x),

F W̃ (t, x) =
1

2
Tr(K(x)D2

x(W̃
∗
t λ)) + ζ(x)Dx(W̃

∗
t λ) +

1

2
Dx(W̃

∗
t λ)KD

∗
x(W̃

∗
t λ)

− div
(

ζ(x)−KDx(W̃
∗
t λ)
)

+
1

2

n
∑

i,j=1

∂2xi,xj
Kij(x)−

1

2
λ∗(x)λ(x).

Where K = ϑϑ∗ is a n × n matrix-valued fun
tion, λ(x) = σ−1f(x) is a n × 1 matrix-valued

fun
tion, χ(x) is a n × 1 matrix-valued fun
tion where χi(x) =
∑n

j=1 ∂xj
Kij(x), i = 1, ...n.

Here Dx and D2
x denote the gradient and the Hessian operators with respe
t to the variable x.
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Proof. The proof for the 
ase of assumption 5 
an be found in Fleming-Pardoux [10℄ (see equation

(7.1) and theorem 7.1) and [19℄ (see equation (4.10) and theorem 4.2). Using the smoothness

assumptions A.iii) in assumption 4 and B.ii), we have done an integration by part in order to

write the equation satis�ed by νW̃t as that in (4.23).

On the other hand, for the 
ase of assumption 6, the proof 
an be found in Pardoux [20,

P.212-2015℄ .

Due to the 
lassi
al results of Bensoussan-Lions [2℄, we have, for �xed W̃t, a unique solution

of νW̃t ∈ L2([0, T ];H1) ∩ C([0, T ];L2(Rn)), thus for qt.

Therefore, we 
an dedu
e that pt given by 4.24 is the density of the 
onditional distribution of

µt given the observation, and therefore the �lter f t 
an be 
omputed as follows:

Corollary 4.18. Under on the assumptions 5 or 6, the �lter estimate f t = (f it )1≤i≤n 
an be


omputed as follows :

f it =

∫

Rn

f i(x)pt(x)dx, where pt(x) =
νW̃t

t (x) exp(W̃ ∗
t λ(x))

∫

Rn

νW̃t

t (x) exp(W̃ ∗
t λ(x))dx

. (4.24)

pt(x) is the density of the 
onditional distribution of µt given the observations F
S
and νW̃t (x) is

solution of (4.23).

Proof. The proof 
an be dedu
ed from the de�nition of f t and theorem 5.3 in Pardoux [20℄.

5 Appli
ation to portfolio optimization

Re
all that the trader's obje
tive is to solve the following optimization problem

J(x) = sup
π∈A

E[U(Rπ
T )], x > 0. (5.1)

where from (3.3), the dynami
s of the wealth pro
ess Rπ
t in the full information 
ontext is given

by:

dRπ
t = Rπ

t π
∗
t

[

f(µt)dt+ σdW t

]

.

We are now fa
ed an optimization problem in full observation 
ontext. Then, one may

apply the 
lassi
al sto
hasti
 optimization approa
h like the martingale approa
h or the PDE

approa
h. Here we will use the martingale approa
h.

Before presenting our results, let Zt be the optimal proje
tion of the P-martingale L to F
S
, so

Zt := E[Lt|F
S
t ], where L is given by (3.1).

By applying Kallainpur-Striebel formula to Lt, we obtain that Zt =
1

Λ̃t

, where Λ̃t = Ẽ[Λt|F
S
t ]

and Λt =
1

Lt
.

Then, from (3.2), we de�ne the measure transformation on F
S
as follows:

dP̃

dP
|FS

t = Zt. (5.2)

As in Lakner [?℄, we have the following result for the representation of Zt and Λ̃.
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Proposition 5.1. Under assumptions 1 and E|λt| <∞ , we have

Zt = exp

(

−

∫ t

0
λ
∗
sdW s −

1

2

∫ t

0
||λs||

2ds

)

, (5.3)

Λ̃t = exp

(
∫ t

0
λ
∗
sdW̃s −

1

2

∫ t

0
||λs||

2ds

)

. (5.4)

5.1 Martingale approa
h

Let us impose the standard Inada 
onditions on the utility fun
tion: U is C1
on (0,∞), and

satis�es U
′

(0) = ∞ and U
′

(∞) = 0. We denote by I = (U
′

)−1
the inverse of the derivatives of

U , whi
h is de
reasing fun
tion from (0,∞) into (0,∞).

Using the martingale approa
h, see for example Karatzas's [12℄, we have the following result:

Theorem 5.2. The optimal wealth for the utility maximization problem (5.1) is given by

R̃t = E

[

ZT

Zt
I(zxZT )|F

S
t

]

(5.5)

where zx is the Lagrange multiplier su
h that E[ZT I(zxZT )] = x and x is the initial wealth. Also

the optimal portfolio π̃ is impli
ity determined by the equation

dR̃t = R̃tπ̃
∗
t dW̃t. (5.6)

We now give some examples of appli
ations of the martingale approa
h 
ombined with the

�ltering problem. We solve our optimization problem with the logarithmi
 and power utility

fun
tions.

5.1.1 Logarithmi
 utility fun
tion

We 
onsider an utility fun
tion U(x) = ln(x). In this 
ase I(x) =
1

x
and the Lagrange multiplier

zx =
1

x
. Therefore from (5.5), the optimal wealth is given by

R̃t = xΛ̃t. (5.7)

By applying It�'s formula to (5.7) and from (5.4), we have that dR̃t = R̃tλ
∗
tdW̃t. Hen
e,


omparing this dynami
 for R̃t with (5.6), we obtain that the optimal portfolio π̃ is given by

π̃t = λt := σ−1f t.

Finally, the value fun
tion is given by J(x) = ln(x) +
1

2
E[

∫ T

0
||λs||

2ds].

5.1.2 Power utility fun
tion

Here, we 
onsider an utility fun
tion U(x) =
xp

p
, 0 < p < 1

Proposition 5.3. the optimal wealth is given by:

R̃t = x
Mt

M0
(Λ̃t)

1/1−p.
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where M0 = Ẽ[(Λ̃T )
1/1−p] and Mt =M(t, W̃t) is solution of the following linear PDE:

∂tM +
1

2
Tr(D2

wM) +
1

1− p
(σ−1f(t, w))∗DwM +

p

2(1− p)2
||σ−1f(t, w)||2M = 0.

f(t, w) = (f i(t, w))1≤i≤n is given by:

f i(t, w) =

∫

Rn

f i(x)pt(x)dx, where pt(x) =
νwt (x) exp(w

∗λ(x))
∫

Rn

νwt (x) exp(w
∗λ(x))dx

.

and νwt (x) is solution of (4.23). The asso
iated optimal portfolio π̃t is given by:

π̃t =
1

1− p
σ−1f t +

DwM(t, W̃t)

M(t, W̃t)
. (5.8)

Moreover, the value fun
tion is given by:

J(x) =
xp

p
(M(0, W̃0))

1−p. (5.9)

.

Proof. In this 
ase I(x) = x1/(p−1)
and the Lagrange multiplier zx is given by

zx =
(x)p−1

E[(ZT )p/p−1]
=

(x)p−1

Ẽ[(Λ̃T )1/1−p]
.

Therefore from theorem 5.2, the optimal wealth pro
ess is given by:

R̃t = x
Mt

M0
(Λ̃t)

1/1−p. (5.10)

with

Mt = Ẽ





(

Λ̃T

Λ̃t

)1/1−p
∣

∣

∣
FS
t



 .

We noti
e that from (5.4), Mt 
an be rewritten as follows:

Mt = Ẽ

[

exp

(
∫ T

t

1

1− p
λ
∗
sdW̃s −

1

2
(

1

1− p
)2
∫ T

t
||λs||

2ds

)

exp

(

1

2

∫ T

t

p

(1− p)2
||λs||

2ds

)

∣

∣

∣
FS
t

]

.

Let us now 
onsider the pro
ess M̃t = exp

(
∫ T

t

1

1− p
λ
∗
sdW̃s −

1

2
(

1

1− p
)2
∫ T

t
||λs||

2ds

)

.

We assume that M̃t is a martingale, then we 
an de�ne a 
hange of probability measure as

follows:

dPM

dP̃
|FS

t = M̃t.

Therefore

Mt = E
M

[

exp

(

1

2

∫ T

t

p

(1− p)2
||λs||

2ds

)

∣

∣

∣
FS
t

]

,

= E
M

[

exp

(

1

2

∫ T

t

p

(1− p)2
||σ−1f s||

2ds

)

∣

∣

∣
FS
t

]

, (5.11)

=M(t, W̃t). (5.12)
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Where the se
ond equality 
omes from the fa
t that λt = σ−1f t and the last equality, whi
h

say that Mt = M(t, W̃t) is a fun
tion of (t, W̃t), is dedu
ed from 
orollary 4.18. Moreover, the

pro
ess W̃t has the following dynami
s under P
M
:

dW̃t = dWM
t +

1

1− p
λtdt.

Now, by Feynman-Ka
 representation, the fun
tion M(t, w) for (t, w) ∈ [0, T ] × R
n
satis�es

the following linear PDE:

∂tM +
1

2
Tr(D2

wM) +
1

1− p
(σ−1f(t, w))∗DwM +

p

2(1 − p)2
||σ−1f(t, w)||2M = 0, (5.13)

with terminal 
onditionM(T,w) = 1. We write f t as f(t, w) in order to indi
ate the dependen
e
on the observation path W̃t = w. From 
orollary 4.18, f(t, w) = (f i(t, w))1≤i≤n is given by:

f i(t, w) =

∫

Rn

f i(x)pt(x)dx,

where pt(x) =
νwt (x) exp(w

∗λ(x))
∫

Rn

νwt (x) exp(w
∗λ(x))dx

.

It remains to show that the optimal portfolio π̃t is given by (5.8). From theorem 5.2, we have

that the optimal portfolio 
an be determined from (5.6). Then, from (5.4) and the fa
t that

Mt is solution to (5.13), if we apply It�'s formula on (5.10) and 
omparing it to (5.6), we 
an

dedu
e that the optimal poftrolio is given by (5.8).

Finally, from (5.10) and (5.2), we 
an dedu
e that the value fun
tion J(x) is given by (5.9).

Noti
e that the advantage to use the pathwise approa
h is appeared, for the power utility


ase, in the step when we have expressed Mt in terms of W̃t as in (5.12). In fa
t, if the �lter

estimate f t is given as in (4.22), then in this 
ase Mt will be written as a fun
tion of pt, that
is, Mt = M(t, pt), where the dynam
is of pt is given by (4.16). Therefore, from Feynman-Ka


representation, we have thatM will be the solution of a partial di�erential equation with in�nite

dimensional state variable p, where the partial derivatives terms with respe
t to p are Fre
het

derivatives.
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