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Abstract

We study the filtering problem and the maximization problem of expected utility from
terminal wealth in a partial information context. The special features is that the only in-
formation available to the investor is the vector of sock prices. The mean rate of return
processes are not directly observed and supposed to be driven by a process u; modeled by
a stochastic differential equations. The main result in this paper is to show under which
assumptions on the coefficients of the model, we can estimate the unobserved market price
of risks. Using the innovation approach, we show that under globally Lipschitz conditions
on the coefficients of p;, the filters estimate of the risks satisfy a measure-valued Kushner-
Stratonovich equations. On the other hand, using the pathwise density approach, we show
that under a nondegenerate assumption and some regularity assumptions on the coefficients
of ¢, the density of the conditional distribution of p; given the observation data, can be
expressed in terms of the solution to a linear parabolic partial differential equation param-
eterized by the observation path. Also, we can obtain an explicit formulae for the optimal
wealth, the optimal portfolio and the value function for the cases of logarithmic and power
utility function.

Keywords 0.1. Partial information, filtering problem, Kushner-stratonovich equation, pathwise
density approach, martingale duality method, utility mazimization.

1 Introduction

In financial market models, we do not have in general a complete knowledge of all parameters,
which may be driven by unobserved random factors. This situation of partial information
framework appears when investors only observe the vector of stock prices and cannot disentangle
the drift term from the other sources of uncertainty. Investors observe changes in returns but
cannot perfectly distinguish their dynamics.

Portfolio optimization problems under partial information are becoming more and more
popular, also because of their practical interest. These problems have been studied widely via
the filtering theory and using both portfolio optimization methodologies, namely the dynamic
programming approach and the martingale approach. Models with incomplete information have
been investigated by Dothan and Feldman [9] and Lakner [16], [17] have solved the partial
optimization out the special case of the linear Gaussian filtering problem via respectively the
dynamic programming methods and the martingale approach. Also, Karatzas and Xue [13]
consider optimal consumption in an incomplete market setting the optimal terminal wealth is
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derived and the optimal strategy is determined for the linear Gaussian dynamics of the drift.
Karatzas and Zhao [14] solve the problem if the drift is a fixed random variable with a known
distribution (Bayesian case). Also, portfolio optimization problems under partial information for
stochastic volatility models have been studied by Pham and Quenez [22], Ibrahim and Abergel
[11].

In this paper, we are interested by studying the filtering problem and portfolio optimization
problem in the context of partial information for general dynamics of the drift. We consider a
market model where the mean rate of return processes are unobservable and follow a stochastic
differential equations. Our main result focus on the following question: under which assumptions
on the coefficients of the model, the drift of the stock and the coefficients of the drift dynamics,
we can solve our filtering problem and therefore our portfolio optimization problem. The filtering
problem consists in estimating the unobserved quantities (here they are the market price of risks)
based on the nonlinear filtering theory. Using the change of measure techniques, the partial
observation context can be transformed into a full information context such that coefficients
depend only on past history of observed prices. We study two cases for the market price of risk,
the boundeness case and the linear growth case. Therefore, for each case, we can make some
assumptions on the coefficients of the drift dynamics in order to deduce the filter estimate using
one of the following two approaches: the innovation approach, where we show that the filters
estimate can be deduced as the solution to a measure-valued stochastic differential equations,
or the density approach where we show that the density ¢; of the unnormalized conditional
distribution of the drift given the observation, is a solution to a linear stochastic differential
equation. Therefore by Kallianpur-Striebel formula, we can deduce the equation satisfied by the
density p; of the conditional distribution, which is a nonlinear stochastic differential equation.
Then, it is more easily to study the existence and uniqueness for ¢;, and therefore deduce that
for p;. For that, we need to use the extended variational method to stochastic differential
equation of Ito type, see Krylov-Rosovskii [15] and Pardoux [19]. With this variational method,
we are limited to the case where the market price of risk is bounded. But we can make a
suitable pathwise transformation, with which we prove that the density ¢; respectively p; can be
expressed in terms of the solution to a linear partial differential equation parameterized by the
observation process. Therefore classical partial differential equation methods can be applied in
analyzing existence and uniqueness for gq; respectively p¢, for both cases of the market price of
risk: the boundeness and the linear growth case.

After replacing the original partial information context by a full information one and com-
puting the filters estimate, it is then possible to use the classical theory for stochastic control
problem. Here we will be interested by the martingale approach to solve our utility optimization
problem. We study the logarithmic and power utility functions, where we show that, due to the
pathwise approach, the optimal wealth and the optimal portfolio can be computed explicitly in
terms of the solution to a linear parabolic partial differential equation. In fact, in the literature,
an explicit formulae for the optimal portfolio policies, in partial information context , have been
obtained for usual cases for the modeling of the unobservable mean rate of return as: Gaussian,
finite state Markov chain or Bayesian. But in our case, we have obtained these formulae for
general modeling of the mean rate of return.

The structure of the present paper is as follows: In section 2, we describe the model and
formulate the optimization problem. In section 3, we use results from filtering theory to reduce
the partial information model to a model where the coefficients are adapted to the observation
process. We present in section 4 two approaches in order to study our filtering problem. We
study two cases for the market price of risk: the case where it is bounded and the case where
it has linear growth. In both cases, we make the following assumptions on the coefficients of



the drift dynamics in order to deduce the filters estimate. Finally in section 5, we use the
martingale duality approach for the utility maximization problem. We obtain explicit formulae
for the optimal portfolio, optimal wealth and value function of the utility maximization problem
for the cases of logarithmic and power utility function.

2 Formulation of the problem

Let (Q,F,P) be a complete probability space equipped with a filtration F = {F;,0 <t < T}
satisfying the usual conditions, where 7" > 0 is a fixed time horizon. The financial market
consists of one risk-free-asset, whose price process is assumed for simplicity equal to 1, and n
stocks of positive process S = (S, ....., ™) governed by:

dS; = diag(St) (f (ue)dt + odWy) (2.1)
e = Clym )it -+ 9(ue)aww; (22)

where W is a n-dimensional Brownian motion. Here diag(S) denotes the diagonal n x n matrix
with components S%,i = 1,....n. The mean rate of return f (), valued in R™, is not observable
and is driven by some process p¢, valued in R™, which is modeled by a stochastic differential
equation. f is a measurable function from R" into R™ and the matrix volatility o, valued in
R"™*" is assumed to be a constant. Also W' is an n-dimensional Brownian motion, independent

of W, ( is a measurable function from R" into R™ and ¥ is a measurable function from R" into
R')’LX'I’L .

We denote by A\ = A(u¢) := o' f (), the unobservable market price of risk which is F-adapted
process.
Also we denote by F¥ = {F°,0 <t < T} the filtration generated by the price process S.

2.1 The optimization problem

Consider an agent who invests at any time ¢ € [0, 7] a proportion 7} of his wealth in the i — th-
risky asset S%,i = 1,....n. With 7, = (7}, ...... ,m')* chosen, the proportion of wealth invested
in the bond is 1 — 7/e,,. Where e, is the vector of one in R".

Where the sign * denotes the transposition operator.

We assume that the trading strategy is self-financing, then the wealth process corresponding
to a portfolio 7 is defined by Rj = x and evolves according to:

dR} = R [n] f(u)dt + w0 d W] (2.3)

Given an utility function U : RT™ — R, increasing, concave, the objective of the investor is
to maximize the expected utility from terminal wealth. The value function of the agent is then:

J(x) = igaE[U(R})], x> 0. (2.4)

Where A denotes the set of the admissible controls (m;)o<¢<7 which are FS -adapted, and satisfies
the integrability condition:
T
/ (s |2ds < oo,
0

We are in a context when an investor wants to maximize the expected utility from terminal
wealth, where the only information available to the investor is the one generated by the asset



prices, therefore leading to a utility maximization problem in partially observed incomplete
model. In order to solve it, we aim to reduce it to a maximization problem with full information.
For that, it becomes important to exploit all the information coming from the market itself in
order to continuously update the knowledge of the not fully known quantities and this is where
stochastic filtering problem becomes useful.

3 Reduction to a full observation model

We introduce the positive martingale defined by Lo = 1 and dL; = —LA\jdW;. It is explicitly

given by
t 1 t
Ly = exp <—/ NedW — —/ H)\8H2ds> : (3.1)
0 2 Jo

We assume that L is a martingale, so that it defines a probability measure P equivalent to
P on (2, F) characterized by:

dP
@m =L, 0<t<T. (3.2)

Then Girsanov’s transformation ensures that

t
Wt:Wt+/)\8dS, OStST,
0

is a (P, F)-Brownian motion under P, and the dynamics of S under P is
dS; = diag(Sy)odW;.

Remark 3.1. An important property of the probability of reference P is that the filtration FS is
the augmented natural filtration of W.

Now we assume that for all ¢, E[A\¢| < co. Then under this assumption, we can introduce the
conditional law, i.e, the filter estimate of the risk A\; defined as follows:

A= M) = B[N ()| F7)-
Let us introduce f; = f(u¢) := E[f (1¢)|F7]. Since o is F¥-adapted, then we have that f, = o).

Remark 3.2. Notice that the notation f(u;) does not mean that the filter estimate f, is a
function of s but it is just a notation to say that f, is the conditional expectation of f(u) given
the observation data F°. So, in the sequel, when we say ¢(uz) it is just to say that the filter
estimate ¢, is the conditional expectation of ¢(us) given the observation data FS.

Let us now consider the process

t t
Wt = Wt —/0 Xsds =W +/0 0_1 [f(,us) _f(lu’s)] dS?

This is the so-called innovation process and by classical results in filtering theory (see for example

proposition 2.30 in [1] and proposition 2.2.7 in [21]), we have that W is a (P,F°) Brownian
motion.



Then, by means of the innovation processes, we can describe the dynamics of S within a frame-
work of full observation model as follows:

dS; = dz’ag(St) (?(,Ut)dt + O'th) . (33)

We have showed that conditioning arguments can be used to replace the initial partial in-
formation problem by a full information problem one which depends only on the past history of
observed prices. But the reduction procedure involves the filter estimate f(u¢), which will be
the main interest of our article.

4 Filtering problem

Our filtering problem can be summarized as follows: the signal process is p (the unobservable
process) and we have from remark 3.1 that W corresponds to the observation process, that is,
we have the following signal-observation system:

dpiy = C(pe)dt + 9 (g )dW,,
dW; = Ny )dt + dW. (4.2)

where W' is independent of TW.

Our aim is to characterize the filter estimate f(u:); which is defined as the conditional
expectation of f(u) given the observation data F* = FW. For that, we need to use the nonlinear
filtering theory. There are essentially two different approaches: the first is based on the important
idea of innovation processes, where we show that the conditional distribution of the unobservable
process having the observation, is the solution of a evolution stochastic equation often called
the Kushner-Stratonovich equation. The second approach is focused on the existence of the
conditional density. We will show for each approach, which conditions we need to impose on the
coefficients f,¢ and 9 in order to compute the filter estimate f(u).

Remark 4.1. In what follows, since o is a constant matriz, notice that when we say that the
market price risk X is bounded (resp.has linear growth) it’s ezactly equivalent to say that f is
bounded (resp.has linear growth). That is, when we make an assumption on f it’s exactly the
same assumption on the market price risk \.

4.1 Innovation processes approach
We assume that both ¢ = ((;)i<i<n : R" = R™ and ¥ = (¥i5)1<i j<n : R" = R™" are globally

Lipschitz, that is, there exists a positive constant k such that:

1¢(2) = CII < Kllz —yll and [[9(z) = I(y)l| < kllz —yll. (4.3)

On the other hand, concerning the observation process (4.2), we will distinguish two cases
for A: the case where A is bounded and the case where A has linear growth.

It is well known that the innovation processes approach is based on the change of measure P
given in (3.2):

d]f)) ¢ * 1 2 ! 2
F = Lo | = [ 3 Guaw. - 37 [ ||, (1.4)
0 0

where we shall make the usual standing assumption on the filtering theory.



Assumption 1. The process L is a martingale; that is, E[Ly] =1

~ 1
Let us now denote by A the (P, F)-martingale given by A; = I Therefore the computation
t
of the conditional distribution of p; given F¥ can be obtained from the following Kallianpur-

Striebel formula (4.5): for every ¢ € B(R™), we have the following representation:

~ S
B = B(u) = E [o(u)| 7] = = [g(fxt)ys? - i(ﬁ;

with 9;(¢) := E[@(us)A¢|F?] is the unnormalized conditional distributionof p; given the ob-
servation, (1) can be viewed as the normalising factor and B(R") is the space of bounded
measurable functions R™ — R.

(4.5)

Remark 4.2. Notice that the filter estimates f, can be computed as a vector of n-filter estimates,
that is, T, = (F)1<izn, where fi € BR™).

We shall also make the following assumption on the unnormalized conditional distribution:

Assumption 2. For allt > 0,

B[ [otiras < o] =1 (16)

Let us now introduce the following second order differential operator A as follows:

Agp = % > K0l b+ > GO, for g € BR). (4.7)

ij=1 i=1

and its adjoint A* is given by:

n n
A = % 3N, (Kiyd) =Y 0u(Ge),  for ¢ € B(R). (4.8)
ij=1 i=1
with K = 99",

Now we present the following two results due to Bain and Crisan |1, Chap.3| and Pardoux
[21, Chap.2|. Then, we will show which conditions can be imposed on the coefficients f,( and 9
such that these two results can be applied. We show that depending on the condition taken on f
(f is bounded or has linear growth), we can impose the necessary conditions on the coefficients
¢ and 9 in order to compute the filter estimate f(u;). We show that this filter is the solution of
a measure-valued stochastic differential equation.

Proposition 4.3. If assumptions (1) and (2) are satisfied then the unnormalized conditional
distribution v, satisfies the following Zakai equation:

din(9) = r(Ag)dt + Y (M) dWF (4.9)

J=1

for any ¢ € B(R").



We need now to impose the following fundamental condition in order to derive the Kushner-
Stratonovich equation:

t
P [/ [Xs|[Pds < oo] =1, forallt>0. (4.10)
0

Therefore from the above Zakai equation for ¢(¢) and ¢;(1) and from the Kallianpur-Striebel
formula (4.5), we have the following evolution equation for the conditional distribution ¢:

Corollary 4.4. If assumptions (1) and (2) are satisfied then the conditional distribution ¢ ()
satisfies the following Kushner-Stratonovich equation:

dat = Wtdt + Z ((Q»‘j)t - )‘_i $t> de, (4.11)
j=1

for any ¢ € B(R").

Remark 4.5. The above Zakai and Kushner-Stratonovich equations hold true for any Borel
measurable ¢, not necessarily bounded. In fact, we can proceed by cutting of ¢ at a fized level
which we let tend to infinity. For this, let us introduce the functions (Y*)i~o defined as

F () = p(x/k),  xin R,

where _
1 ) if [lzl] <1
w(@) =< exp(fH=) if 1< ||zl <2
2 if |zl = 2.

Let us introduce the following relations given inf[1, P.151]:
Jim ¢yt (@) = ¢(), [¢(2)0" (2)] < |o(x)],
Jim As(697)(z) = Aso(@).

Then by replacing in equation (4.11) ¢ by ¢UF and from_ dominated convergence theorem, we
may pass to the limit as k — oo and then we deduce that ¢, satisfies equation (4.11).

Now, we will be interested by studying both cases for f: the case where f is bounded and
the case where it has linear growth. In each case, we make the necessary assumptions on the
coefficients ¢ and ¥ in order to compute the filter estimate f,.

4.1.1 The function f is bounded

In this case the risk A is bounded, then we can deduce easily the evolution equation (4.12)
satisfied by the filter estimate f.

Proposition 4.6. If condition (4.8) is satisfied and f is bounded, then the filter estimate f, =
(f)1<i<n satisfy the following measure-valued Kushner-Stratonovich equation:

dff = (Aff),dt+) (Z o (R, =Y o fi f_f) AW,  fori=1,..n.  (4.12)
k=1

Proof. Since f is bounded, hence A also. Then assumptions 1 and 2 are satisfied. Therefore
from corollary 4.4, we can deduce the above evolution equation for f,. O



4.1.2 The function f has linear growth

As the innovation processes approach is based on the change of measure, so the first important
assumption was that L is martingale. Normally Novikov’s condition is quite difficult to verify
directly, so we need to use an alternative conditions under which the process L is a martingale.

From lemma 3.9 in Bain and Crisan [1], we have:

Lemma 4.7. L is a martingale if the following conditions are satisfied:

t t
E [/ H)\stds} < 00, E [/ LSH)\SHst] < 00 vt > 0. (4.13)
0 0

Now, we need to impose the following assumptions on the moments of pg:

e Al) po has finite second moment.

e A2) pp has finite third moment.

Lemma 4.8. Assume that condition (4.3) is satisfied. If A has linear growth and Al) is satisfied,
then (4.13) is satisfied. Moreover, if A2) is satisfied, then (4.6) is satisfied.

Proof. The proof of the first part is given by lemma 4.1.1 in Bensoussan |3]|. To prove (4.6), we
need to use lemma 4.1.5 and part (b) in the proof of theorem 4.1.1 in Bensoussan [3].
O

Notice that condition (4.10) is a consequence of the first stronger condition (4.13) imposed
on A. Therefore, we can deduce the filter estimate f, = ( f#)1<i<n, in the case where f has linear
growth, as follows:

Proposition 4.9. Assume that condition (4.3) is satisfied. If f has linear growth and assump-
tions Al) and A2) are satisfied, then the filter estimate f, satisfy the following measure-valued
Kushner-Stratonovich equation:

dff = (Af),dt+y (Z o (FfR) = oyl fi f_f> AW, fori=1,..,n.  (4.14)
Jj=1 \k=1 k=1

Proof. Since f has linear growth, hence A\ also. Moreover, as assumptions Al) and A2) are
satisfied, then from lemma 4.8 and lemma 1, we can deduce that assumptions 1 and 2 are
satisfied. Therefore remark 4.5 and corollary 4.4 end the proof. O

4.1.3 Existence and uniqueness of the solution f,

Let us define the space of measure-valued stochastic processes within which we prove uniqueness
of the solution to equations (4.12) and (4.14).

Let 1 : R — R be the function (x) = 1+ ||z||, for any x € R™ and define C'(R™) to be
the space of continuous functions ¢ such that ¢/v € Cp(R™)(the space of bounded continuous
functions).

Let us denote by M!(R™) the space of finite measure M such that M(z)) < oo. In particular, this
implies that M(¢) < oo for all ¢ € CY(R™). Moreover, we endow M'(R") wit the corresponding
weak topology: A sequence (My,) of measures in M!(R™) converges to M € M!(R™) if and only

if lim My (¢) = M(9), for all ¢ € C'(R").



Definition 4.10. e The Class U is the space of all Yi-adapted M'(R™)-valued stochastic
process (My)i=0 with cadlag paths such that, for all t > 0, we have

b [ / t<M8<w>>2ds} < 0.

e The Class U is the space of all Yi-adapted M'(R)-valued stochastic process (ju)e=o with
cadlag paths such that the process myM belongs to the class U, where the process (my)i>0
1s defined as:

my = exp </0t MGAYW, — %/Ot MS(A*)MS()\)ds> )

Now we state the uniqueness result of the solution to equations (4.12) and equation(4.14),
see theorem 4.19 in Bain and Crisan |1, chap.4]

Proposition 4.11. Suppose in addition to the above assumptions on (,¥ and f imposed in
proposition 4.6 (resp.proposition 4.9), that these coefficients have twice continuously differen-
tiable components and all thewr derivatives of first and second order are bounded. Then equation
(4.12)(resp. equation(4.14)) has a unique solution in the class U.

Remark 4.12. The filter equations (4.12) and (4.14) describe an infinite dimensional stochastic
differential equations driven by the innovations process. For that, we need to use some numerical
methods adapting to infinite dimensional filtering problem. For example, the so-called particular
Monte Carlo method which is based on a particle approzimation of the conditional distribution.
It has recently given raise to extensive studies, see for instance [5],[6]. Also we can use the
Wiener chaos decomposition method of the Zakai equation developed and studied by Lototsky et
al [18].

4.2 Density approach
This approach is based on the following:

We assume that the law of j; given F; admits a density p;(x) relative to some dominating
measure 7(dz).

Elp(u)|F7) = [ o(@)p(@n(da), (4.15)

Formally integrating by parts in the Kushner-Stratonovich equation (4.11) and using Fubini
theorem, we can obtain as in Pardoux |21] and Bain and Crisan|1| that p; satisfies the following
stochastic partial differentiel equation (SPDE):

n

dpy(x) = A*py(@)dt + py(a) (N () — N)dTWS. (4.16)
j=1

where the operator A* is given by (4.8) and )\_g = /Rn N (2)py(z)n(dz) with M = >0, aj_kl k.

The equation (4.16) is a nonlinear stochastic partial differential equation. It is not easy
to make mathematical sense of this equation, for example, how should the equation even be
interpreted, and do such equations have solutions. So if we wish to work with the density
approach, it usually makes more sense to work with the density ¢; of the unnormalized conditional
distribution of ¢, which is formally the solution of a linear stochastic partial differential equation
as follows:



dg(z) = A*qu(2)dt + q;(x ZAJ AR (4.17)

where we assume that ¢ (¢) := E[¢ () A¢|F] = /]R” o(x)q(x)dx.

We will be interested by the following questions: under which conditions on the coefficients
f,C and 9, we can show that:

e the conditional distribution of j; given FP has a density with respect to a reference
measure, in particular with respect to Lebesgue measure.

o the linear stochastic partial differential equation (4.17) has a solution and this solution is
the density of the unnormalized conditional distribution of y; given Fp .

4.2.1 Study the existence of a regular density p; and the solution of (4.16).

As in the innovation approach we will distinguish two cases for f: the case where f is bounded
and the case where f has linear growth. Then depending on the condition taken on f, we can
impose the necessary conditions on the coefficients ¢ and ¢ in order to show that the conditional
distribution of u; given the observation has a density with respect to Lebesgue measure and its
density is the unique solution of the stochastic PDE (4.16).

Notations 1. Let us introduce the Hilbert spaces

o <R}

H=L?[R"), K=H := {h € L*(R™)
equipped with the inner products

(1) = [ a(o)hao)d (4.18)
(4.19)

We notice that H' is dense in H with continuous injection. The topological dual space of H
will be denoted by (H')'. We denote by < .,. > the duality between H' and (H')'.

Let now X and Y be two Hilbert spaces equipped with the norm ||.||x and ||.||y respectively.
We denote by L(X,Y) the Banach space of continuous linear operators from X to Y.

We denote by M°([0, T); X) the set of all X-valued measurable processes, and by M?([0, T]; X)
(a subset of L2([0,T] x Q;X)) the space of X-valued process Y such that Y € MY([0,T];X) and

T
E [/ HYHggds} < .
0

In the following, we need to make the following assumption on the initial condition pg of the
signal process pu:

Assumption 3. The initial condition pg is a random variable with density po € H.
Here we need to make the following assumptions on the coefficients 9, ( and f :
Assumption 4. o Ai) ¥ :R" — R" x R" is measurable and bounded.

o Ai) Ja >0, such that K(x) = 99*(z) > oI, VzeR".

10



o A.iii) 0p,0;; € L(R™), 1,]=1,...n.
o A.iv) ¢ and f are measurable and bounded functions from R™ — R™.

Firstly, the following lemma about the existence of a density with respect to Lebesgue mea-
sure can be found in Bain and Crisan [1, P.173]:

Lemma 4.13. If assumption 3 is satisfied and f is bounded, then almost surely the conditional
distribution ¢(uy) has a density with respect to Lebesque measure and this density is square
integrable.

Now we study the existence of a solution ¢; to the stochastic PDE(4.17). Then, we show
that ¢; is the unnormalized conditional density of y; given the observation F;’. By consequence,
using Kallianpur-Striebel formula (4.5), we can deduce the conditional density p;.

Using the extended variational method to stochastic equations of Ito type, see Krylov-
Rosovskii [15] and Pardoux [19], we can deduce the following:

Proposition 4.14. We suppose that assumptions 3 and 4 hold. Then equation (4.17) has a
unique solution g belongs to L*(Q x [0, T];HY) N L2(;C([0,T);H)). Moreover, q(x) is the
density of the unnormalized conditional distribution of ji; given the observation Fp .

Proof. All the notations used in this proof can be found in the above paragraph notations 1.

Firstly, in order to use the results of Krylov-Rosovskii [15] and Pardoux [19], we need to
rewritte the operator A* in its divergence form as a linear operator from an Hilbert space to
its dual and to redefine the stochastic integral as an Hilbert space operator. In fact, due to
assumption 4, the operator A* can be rewritten as follows:

Z Oz, (K ( E:a:cZ Gi(w Z@;JKZ] ()], for z € R™.

1,j=1

Secondly, we consider the operator B € L(H?, (L?(R"))") as follows:
Bip(x) = Mo(x Za (z), j=1,..n.

Consequently, equation (4.17) can be rewritten as follows:
dgi(z) = A*q(z)dt + Bg.dYy, q0 = po- (4.20)
where . denotes the scalar product.

When we write < A*¢,v >, then A* is understood to be an operator from H' to (H'), by
using formally Green’s formula, in the following way:

* 1 .
SAG Y >= =5 Y (kijOu, 0,0 +Z — Ou, kij) b, O, 1))
ij=1
where (.,.) is the inner product given in (4.18).

Now, after rewritten equation (4.17) as in form (4.20) and in order to apply the results of pardoux
[19] about the existence of a solution to (4.20), we need to show that the pair operators (A*, B)
satisfy the coercivity condition, that is, 3a; > 0 and ap such that: Vu € H', we have:
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where the norm in (L?(R™))" is defined as follows:

. 1/2
|ul (L2 @nyyn = <Z|Uz‘|i2(1&n)> :

i=1

In fact the condition 4.21 is satisfied from assumption 4, especially from the positive definite
condition on K and the fact that f is bounded. Therefore from (4.21), assumption 4 and
assumption 3, the first part of the proof ends by applying theorem 2.1 in pardoux [19].

Using the same arguments for the proof of corollary 3.2 in pardoux [19], more precisely with
the help of unique solvability theorem for Backward kolomogrov equation, we can deduce that
q¢(z) is the density of the unnormalized conditional distribution of y; given F®. O

Proposition 4.15. Under assumption 3 and 4, the filter estimate f, = (fi)lgign can be com-
puted as follows :

f_f = fi(x)pe(x)dz,  where py(z) = ﬂ, (4.22)
) /

qt(x)dx
pi(x) is the density of the conditional distribution of p; given the observations FY and qi(z) is
solution of (4.17). Moreover, p,(x) satisfies (4.16).

n

Proof. First of all, we need to verify that / qt(x)dx does not reach 0 nor infinity. This can be

deduced from the fact / q(x)dz = ¥, (1) =: E[Ay|F?] verifies
Rn

/Rn q(z)dr =1+ /Ot /n g (2)\ () dd W,

From Kallianpur-Striebel formula (4.5) and proposition 4.14, we can deduce (4.22). Finally,
applying It6’s formula in the Hilbert space case, we can deduce that p;(z) verifies (4.16). O

Remark 4.16. It is possible to recast the stochastic partial differential equation (4.17) into a
form in which there are no stochastic integral terms. This reduction form can be obtained using
a suitable pathwise transformation, as in proposition 4.17. This form can be analyzed and estab-
lishing the existence and uniqueness of a fundamental solution to (4.17). Also, the importance
of this form, is that we can prove the existence and uniqueness solution q; to (4.17) without
requiring the boundeness assumptions on f which is an necessary assumption (assumption 4,
A.iwv)) in proposition 4.14 to study the existence and uniqueness for q; thus for p;. Also, we see
in section 5 the advantage of this pathwise technique to obtain an explicit formulas for the opti-
mal portfolio, optimal wealth and value function up to the solution of a linear partial differential
equation.

4.2.2 The pathwise density approach

The pathwise theory of filtering is concerned with casting the filtering equations in a form in
which the filtered estimates can be computed separately for each sample path of the observation
process. The ideas of this approach are due to Clark [4], Davis |7] [8],.... The essential idea of this
approach comes from the definition of the conditional expectation, that is, as Ff is the filtration
generated by the observation process W, then by definition of the conditional expectation, the
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filtered estimates can be seen as a function of W; a.s. For more details about this approach and
the technical tools used, see Fleming-Pardoux [10] and Pardoux [19].

We show in proposition (4.17) that for a given simple path W, q; can be expressed in terms of
a solution of a linear nondegenerate parabolic partial differential equation, and therefore classical
partial differential equation can be applied in analyzing existence, uniqueness and regularity of
solutions.

We study both cases for f and for each case, we make the necessary assumptions on the coeffi-
cients ¢ and 9.

Assumption 5. (f is bounded )

e B.i) assumptions 3 and 4 hold.

e B.ii) Oy, f and 02, o f € L2@RMRY),  i,j=1,..n
Assumption 6. (f has linear growth )

o C.i) ¥:R"™ — R"™ x R" is measurable and bounded.

e C.ii) Ja > 0, such that K(z) = 99*(x) > oI, VzeR™

C.iii) 8y, 0;; € L°(R™),  i,j=1,....n.

C.iv) ¢ and f are measurable from R™ — R™ and have linear growth, that is, 3¢ such that:

IC(x)|, [f ()] < e(1 + [z]), Vr € R™.

o Cv) Oy, f (i=1,..m) and Y}';_| Ki;0y, . [ € L®(R",R")

T, T
o Cwi) div(¢) and 337, 97, , Kij € L®(R™).
o C.vii) assumption 3 holds.

Proposition 4.17. Under one of the assumptions 5 or 6, the density q.(z) of the unnormalized
conditional distribution of y; given Fo is given by:

au(z) = exp(WyA (@) (x),

where Vg/Vt is the solution of the following linear parabolic partial differential equation parametrized
by the observation path Wy:

o = STr(E (@)D") + O (t,2) Do + FV (80, (@) =po.  (4.23)

The functions Fw(t,x) and FW(t,x) are given respectively by:

IY(t,2) = ~((2) + K (2)Ds (Wi X) + x(2),

Y (1,2) = %Tr(K(zz)Dz(W:A)) +C@DL(N) + 5D KDL (W)
_ div (g() KDy (WA ) ;1 2 o K %)\*(x))\(a;).

Where K = 99* is a n x n matriz-valued function, A(z) = o~ ' f(x) is a n x 1 matriz-valued
function, x(x) is a n x 1 matriz-valued function where x;(x) = >1_; 0y, Kij(x), i =1,..n.
Here D, and D? denote the gradient and the Hessian operators with respect to the variable x.
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Proof. The proof for the case of assumption 5 can be found in Fleming-Pardoux [10] (see equation
(7.1) and theorem 7.1) and [19] (see equation (4.10) and theorem 4.2). Using the smoothness
assumptions A.7i7) in assumption 4 and B.ii), we have done an integration by part in order to
write the equation satisfied by 1V as that in (4.23).

On the other hand, for the case of assumption 6, the proof can be found in Pardoux |20,
P.212-2015] . O

Due to the classical results of Bensoussan-Lions [2], we have, for fixed W}, a unique solution
of Ve L2([0,T];H') n C([0, T]; L*(R™)), thus for g;.

Therefore, we can deduce that p; given by 4.24 is the density of the conditional distribution of
1t given the observation, and therefore the filter f, can be computed as follows:

Corollary 4.18. Under on the assumptions 5 or 6, the filter estimate f, = (f})1<i<n can be
computed as follows :

_ . WVt (1) exp(WH Mz
= [ F@n@e, where p() = WPy

/ VtWt (z) exp(W; \(x))dz
Rn

pi(x) is the density of the conditional distribution of p; given the observations FS and l/ﬁ/(x) is
solution of (4.23).

Proof. The proof can be deduced from the definition of f, and theorem 5.3 in Pardoux [20]. O

5 Application to portfolio optimization
Recall that the trader’s objective is to solve the following optimization problem

J(x) = iggE[U(R%)], x> 0. (5.1)

where from (3.3), the dynamics of the wealth process R] in the full information context is given
by:
We are now faced an optimization problem in full observation context. Then, one may

apply the classical stochastic optimization approach like the martingale approach or the PDE
approach. Here we will use the martingale approach.

Before presenting our results, let Z; be the optimal projection of the P-martingale L to F°, so

Z; := E[Ly|F7], where L is given by (3.1).
1 - .

By applying Kallainpur-Striebel formula to L;, we obtain that Z; = R where A; = E[A|F]
t

1
dA =—.
an + Lt
Then, from (3.2), we define the measure transformation on F* as follows:

dP
@mf =" (5.2)

As in Lakner |?], we have the following result for the representation of Z; and A.
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Proposition 5.1. Under assumptions 1 and E|\| < oo , we have

b 1 [t
7, = exp <—/ Ades——/ ||>\s||2ds>, (5.3)
0 2 Jo
- b~ 1 [t
Ay = exp (/ AgdWg — —/ ||)\s||2d8> . (5.4)
0 2 Jo

5.1 Martingale approach

Let us impose the standard Inada conditions on the utility function: U is C' on (0, 00), and
satisfies U’ (0) = oo and U’ (c0) = 0. We denote by I = (U')~! the inverse of the derivatives of
U, which is decreasing function from (0, 00) into (0, c0).

Using the martingale approach, see for example Karatzas’s [12], we have the following result:

Theorem 5.2. The optimal wealth for the utility maximization problem (5.1) is given by

R, =E [%I(zxZTﬂftS] (5.5)

where z, is the Lagrange multiplier such that E[Zp1(z, Z1)] = x and x is the initial wealth. Also
the optimal portfolio 7 is implicity determined by the equation

dRy = Ry} dW,. (5.6)

We now give some examples of applications of the martingale approach combined with the
filtering problem. We solve our optimization problem with the logarithmic and power utility
functions.

5.1.1 Logarithmic utility function

1
We consider an utility function U(z) = In(x). In this case I(z) = — and the Lagrange multiplier
T

1
2y = —. Therefore from (5.5), the optimal wealth is given by
x

Rt = .’L’At. (57)

By applying It6’s formula to (5.7) and from (5.4), we have that dR, = J%devi/t. Hence,
comparing this dynamic for R; with (5.6), we obtain that the optimal portfolio 7 is given by

77}/ = Xt = O'_lft.
. o LT e
Finally, the value function is given by J(z) = In(z) + §E[ [|[\s||*ds].
0

5.1.2 Power utility function

: . : P
Here, we consider an utility function U(z) = —, 0<p <1
p

Proposition 5.3. the optimal wealth is given by:
_ M, -

R, = ;UﬁO(At)l/l—p‘
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where Mo = E[(Ar)Y1=P] and M, = M(t,W;) is solution of the following linear PDE:

1
1—p

1 - _
M + §TT(D?UM) + (7 F(t,w)* DM + 5 Lo F(t,w)|2M =0,

(1-p)

ft,w) = (F(t,w))lgign is given by:
v’ (z) exp(w*A())

/n v (z) exp(w* \(x))dx .

F(t,w) = - fi(x)pt(x)dx, where py(x) =

and v{*(x) is solution of (4.23). The associated optimal portfolio 7 is given by:

3 1 = DyM(t,W,)
Mg = ——0 T 0.8
r=1 0 T ML) (5.8)
Moreover, the value function is given by:
P 5\ 1—p
J(x) = ;(M(O, Wo)) . (5.9)
Proof. In this case I(z) = z'/®=1 and the Lagrange multiplier z, is given by
BN o
*E[(Zy)p/r1] E[(Ar)Y/1-p]
Therefore from theorem 5.2, the optimal wealth process is given by:
r Mt X \1/1—
=zt (Ay)V/1P. 1
Ry = a7 (A) (5.10)

with

~ 1/1-p
(A
M, =E <—T> ‘]—}S
Ay

We notice that from (5.4), M; can be rewritten as follows:

M E[ (/T L oxra, - Lt >2/Tuxuzds)e (1/T P st)\fs}
- X PR s — S\7T S X 5 S .
! P\ 1-p7 2'1-p’ J, P\2 ), T—p2 k

T T
~ 1 — = 1,1 ~
Let us now consider the process My = exp (/ —— A\ AW, — —(—)2/ H)\SH2ds>.
t 1—p 2'1-p" Ji

We assume that M, is a martingale, then we can define a change of probability measure as
follows:

dpM

—|F7 = M,.
dP
Therefore
M; =EM |e 1/TLHX Pds ) | ¥

TP ™ o

=EM [exp <l /TLHU_lf ||2ds> ‘}'S} (5.11)
2y (1-p)? ° bl

M) (5.12)
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Where the second equality comes from the fact that At = o 1f, and the last equality, which
say that My = M (t,Wy) is a function of (¢, W;), is deduced from corollary 4.18. Moreover, the
process W; has the following dynamics under PM:

1
-Dp

AW, = dwM + : \edt.

Now, by Feynman-Kac representation, the function M (¢, w) for (¢,w) € [0,T] x R™ satisfies
the following linear PDE:

1
1—p

QN + STr(DAM) + —— (0~ F(t,w)" DM + ol Tt w)|PM =0, (5.13)

_pr
(1-p)
with terminal condition M (T, w) = 1. We write £ as f(_t, w) in order to indicate the dependence
on the observation path Wy = w. From corollary 4.18, f(t,w) = (f(t,w))1<i<n s given by:

fitt,w) = | fi(x)p(x)da,
R?’L

() exp(wA)
/VZ”(x)exp(w*)\(x))da:
R™

It remains to show that the optimal portfolio 7; is given by (5.8). From theorem 5.2, we have
that the optimal portfolio can be determined from (5.6). Then, from (5.4) and the fact that
M; is solution to (5.13), if we apply It6’s formula on (5.10) and comparing it to (5.6), we can
deduce that the optimal poftrolio is given by (5.8).

where pi(z) =

Finally, from (5.10) and (5.2), we can deduce that the value function J(x) is given by (5.9). O

Notice that the advantage to use the pathwise approach is appeared, for the power utility
case, in the step when we have expressed M; in terms of W; as in (5.12). In fact, if the filter
estimate f, is given as in (4.22), then in this case M; will be written as a function of p;, that
is, My = M(t,p;), where the dynamcis of p; is given by (4.16). Therefore, from Feynman-Kac
representation, we have that M will be the solution of a partial differential equation with infinite
dimensional state variable p, where the partial derivatives terms with respect to p are Frechet
derivatives.
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