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Abstrat

We study the �ltering problem and the maximization problem of expeted utility from

terminal wealth in a partial information ontext. The speial features is that the only in-

formation available to the investor is the vetor of sok pries. The mean rate of return

proesses are not diretly observed and supposed to be driven by a proess µt modeled by

a stohasti di�erential equations. The main result in this paper is to show under whih

assumptions on the oe�ients of the model, we an estimate the unobserved market prie

of risks. Using the innovation approah, we show that under globally Lipshitz onditions

on the oe�ients of µt, the �lters estimate of the risks satisfy a measure-valued Kushner-

Stratonovih equations. On the other hand, using the pathwise density approah, we show

that under a nondegenerate assumption and some regularity assumptions on the oe�ients

of µt, the density of the onditional distribution of µt given the observation data, an be

expressed in terms of the solution to a linear paraboli partial di�erential equation param-

eterized by the observation path. Also, we an obtain an expliit formulae for the optimal

wealth, the optimal portfolio and the value funtion for the ases of logarithmi and power

utility funtion.

Keywords 0.1. Partial information, �ltering problem, Kushner-stratonovih equation, pathwise

density approah, martingale duality method, utility maximization.

1 Introdution

In �nanial market models, we do not have in general a omplete knowledge of all parameters,

whih may be driven by unobserved random fators. This situation of partial information

framework appears when investors only observe the vetor of stok pries and annot disentangle

the drift term from the other soures of unertainty. Investors observe hanges in returns but

annot perfetly distinguish their dynamis.

Portfolio optimization problems under partial information are beoming more and more

popular, also beause of their pratial interest. These problems have been studied widely via

the �ltering theory and using both portfolio optimization methodologies, namely the dynami

programming approah and the martingale approah. Models with inomplete information have

been investigated by Dothan and Feldman [9℄ and Lakner [16℄, [17℄ have solved the partial

optimization out the speial ase of the linear Gaussian �ltering problem via respetively the

dynami programming methods and the martingale approah. Also, Karatzas and Xue [13℄

onsider optimal onsumption in an inomplete market setting the optimal terminal wealth is
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derived and the optimal strategy is determined for the linear Gaussian dynamis of the drift.

Karatzas and Zhao [14℄ solve the problem if the drift is a �xed random variable with a known

distribution (Bayesian ase). Also, portfolio optimization problems under partial information for

stohasti volatility models have been studied by Pham and Quenez [22℄, Ibrahim and Abergel

[11℄.

In this paper, we are interested by studying the �ltering problem and portfolio optimization

problem in the ontext of partial information for general dynamis of the drift. We onsider a

market model where the mean rate of return proesses are unobservable and follow a stohasti

di�erential equations. Our main result fous on the following question: under whih assumptions

on the oe�ients of the model, the drift of the stok and the oe�ients of the drift dynamis,

we an solve our �ltering problem and therefore our portfolio optimization problem. The �ltering

problem onsists in estimating the unobserved quantities (here they are the market prie of risks)

based on the nonlinear �ltering theory. Using the hange of measure tehniques, the partial

observation ontext an be transformed into a full information ontext suh that oe�ients

depend only on past history of observed pries. We study two ases for the market prie of risk,

the boundeness ase and the linear growth ase. Therefore, for eah ase, we an make some

assumptions on the oe�ients of the drift dynamis in order to dedue the �lter estimate using

one of the following two approahes: the innovation approah, where we show that the �lters

estimate an be dedued as the solution to a measure-valued stohasti di�erential equations,

or the density approah where we show that the density qt of the unnormalized onditional

distribution of the drift given the observation, is a solution to a linear stohasti di�erential

equation. Therefore by Kallianpur-Striebel formula, we an dedue the equation satis�ed by the

density pt of the onditional distribution, whih is a nonlinear stohasti di�erential equation.

Then, it is more easily to study the existene and uniqueness for qt, and therefore dedue that

for pt. For that, we need to use the extended variational method to stohasti di�erential

equation of Ito type, see Krylov-Rosovskii [15℄ and Pardoux [19℄. With this variational method,

we are limited to the ase where the market prie of risk is bounded. But we an make a

suitable pathwise transformation, with whih we prove that the density qt respetively pt an be

expressed in terms of the solution to a linear partial di�erential equation parameterized by the

observation proess. Therefore lassial partial di�erential equation methods an be applied in

analyzing existene and uniqueness for qt respetively pt, for both ases of the market prie of

risk: the boundeness and the linear growth ase.

After replaing the original partial information ontext by a full information one and om-

puting the �lters estimate, it is then possible to use the lassial theory for stohasti ontrol

problem. Here we will be interested by the martingale approah to solve our utility optimization

problem. We study the logarithmi and power utility funtions, where we show that, due to the

pathwise approah, the optimal wealth and the optimal portfolio an be omputed expliitly in

terms of the solution to a linear paraboli partial di�erential equation. In fat, in the literature,

an expliit formulae for the optimal portfolio poliies, in partial information ontext , have been

obtained for usual ases for the modeling of the unobservable mean rate of return as: Gaussian,

�nite state Markov hain or Bayesian. But in our ase, we have obtained these formulae for

general modeling of the mean rate of return.

The struture of the present paper is as follows: In setion 2, we desribe the model and

formulate the optimization problem. In setion 3, we use results from �ltering theory to redue

the partial information model to a model where the oe�ients are adapted to the observation

proess. We present in setion 4 two approahes in order to study our �ltering problem. We

study two ases for the market prie of risk: the ase where it is bounded and the ase where

it has linear growth. In both ases, we make the following assumptions on the oe�ients of
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the drift dynamis in order to dedue the �lters estimate. Finally in setion 5, we use the

martingale duality approah for the utility maximization problem. We obtain expliit formulae

for the optimal portfolio, optimal wealth and value funtion of the utility maximization problem

for the ases of logarithmi and power utility funtion.

2 Formulation of the problem

Let (Ω,F ,P) be a omplete probability spae equipped with a �ltration F = {Ft, 0 ≤ t ≤ T}
satisfying the usual onditions, where T > 0 is a �xed time horizon. The �nanial market

onsists of one risk-free-asset, whose prie proess is assumed for simpliity equal to 1, and n
stoks of positive proess S = (S1, ....., Sn) governed by:

dSt = diag(St) (f(µt)dt+ σdWt) , (2.1)

dµt = ζ(µt)dt+ ϑ(µt)dW
1
t . (2.2)

where W is a n-dimensional Brownian motion. Here diag(S) denotes the diagonal n×n matrix

with omponents Si, i = 1, .....n. The mean rate of return f(µt), valued in R
n
, is not observable

and is driven by some proess µt, valued in R
n
, whih is modeled by a stohasti di�erential

equation. f is a measurable funtion from R
n
into R

n
and the matrix volatility σ, valued in

R
n×n

, is assumed to be a onstant. AlsoW 1
is an n-dimensional Brownian motion, independent

of W , ζ is a measurable funtion from R
n
into R

n
and ϑ is a measurable funtion from R

n
into

R
n×n

.

We denote by λt = λ(µt) := σ−1f(µt), the unobservable market prie of risk whih is F-adapted

proess.

Also we denote by F
S = {FS

t , 0 ≤ t ≤ T} the �ltration generated by the prie proess S.

2.1 The optimization problem

Consider an agent who invests at any time t ∈ [0, T ] a proportion πit of his wealth in the i− th-
risky asset Si, i = 1, .....n. With πt = (π1t , ......, π

n
t )

∗
hosen, the proportion of wealth invested

in the bond is 1− π∗t en. Where en is the vetor of one in R
n
.

Where the sign ∗ denotes the transposition operator.

We assume that the trading strategy is self-�naning, then the wealth proess orresponding

to a portfolio π is de�ned by Rπ
0 = x and evolves aording to:

dRπ
t = Rπ

t [π
∗
t f(µt)dt+ π∗t σdWt] (2.3)

Given an utility funtion U : R+ → R, inreasing, onave, the objetive of the investor is

to maximize the expeted utility from terminal wealth. The value funtion of the agent is then:

J(x) = sup
π∈A

E[U(Rπ
T )], x > 0. (2.4)

Where A denotes the set of the admissible ontrols (πt)0≤t≤T whih are F
S
-adapted, and satis�es

the integrability ondition:

∫ T

0
||πs||

2ds <∞.

We are in a ontext when an investor wants to maximize the expeted utility from terminal

wealth, where the only information available to the investor is the one generated by the asset
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pries, therefore leading to a utility maximization problem in partially observed inomplete

model. In order to solve it, we aim to redue it to a maximization problem with full information.

For that, it beomes important to exploit all the information oming from the market itself in

order to ontinuously update the knowledge of the not fully known quantities and this is where

stohasti �ltering problem beomes useful.

3 Redution to a full observation model

We introdue the positive martingale de�ned by L0 = 1 and dLt = −Ltλ
∗
tdWt. It is expliitly

given by

Lt = exp

(

−

∫ t

0
λ∗sdWs −

1

2

∫ t

0
||λs||

2ds

)

. (3.1)

We assume that L is a martingale, so that it de�nes a probability measure P̃ equivalent to

P on (Ω,F) haraterized by:

dP̃

dP
|Ft = Lt, 0 ≤ t ≤ T. (3.2)

Then Girsanov's transformation ensures that

W̃t =Wt +

∫ t

0
λsds , 0 ≤ t ≤ T,

is a (P̃,F)-Brownian motion under P̃, and the dynamis of S under P̃ is

dSt = diag(St)σdW̃t.

Remark 3.1. An important property of the probability of referene P̃ is that the �ltration F
S
is

the augmented natural �ltration of W̃ .

Now we assume that for all t, E|λt| <∞. Then under this assumption, we an introdue the

onditional law, i.e, the �lter estimate of the risk λt de�ned as follows:

λt = λ(µt) := E[λ(µt)|F
S
t ].

Let us introdue f t = f(µt) := E[f(µt)|F
S
t ]. Sine σ is F

S
-adapted, then we have that f t = σλt.

Remark 3.2. Notie that the notation f(µt) does not mean that the �lter estimate f t is a

funtion of µt but it is just a notation to say that f t is the onditional expetation of f(µ) given
the observation data F

S
. So, in the sequel, when we say φ(µt) it is just to say that the �lter

estimate φt is the onditional expetation of φ(µt) given the observation data F
S
.

Let us now onsider the proess

W t = W̃t −

∫ t

0
λsds =Wt +

∫ t

0
σ−1

[

f(µs)− f(µs)
]

ds,

This is the so-alled innovation proess and by lassial results in �ltering theory (see for example

proposition 2.30 in [1℄ and proposition 2.2.7 in [21℄), we have that W is a (P,FS) Brownian

motion.
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Then, by means of the innovation proesses, we an desribe the dynamis of S within a frame-

work of full observation model as follows:

dSt = diag(St)
(

f(µt)dt+ σdW t

)

. (3.3)

We have showed that onditioning arguments an be used to replae the initial partial in-

formation problem by a full information problem one whih depends only on the past history of

observed pries. But the redution proedure involves the �lter estimate f(µt), whih will be

the main interest of our artile.

4 Filtering problem

Our �ltering problem an be summarized as follows: the signal proess is µt (the unobservable
proess) and we have from remark 3.1 that W̃ orresponds to the observation proess, that is,

we have the following signal-observation system:

dµt = ζ(µt)dt+ ϑ(µt)dW
1
t , (4.1)

dW̃t = λ(µt)dt+ dWt. (4.2)

where W 1
is independent of W .

Our aim is to haraterize the �lter estimate f(µt); whih is de�ned as the onditional

expetation of f(µt) given the observation data F
S = F

W̃
. For that, we need to use the nonlinear

�ltering theory. There are essentially two di�erent approahes: the �rst is based on the important

idea of innovation proesses, where we show that the onditional distribution of the unobservable

proess having the observation, is the solution of a evolution stohasti equation often alled

the Kushner-Stratonovih equation. The seond approah is foused on the existene of the

onditional density. We will show for eah approah, whih onditions we need to impose on the

oe�ients f, ζ and ϑ in order to ompute the �lter estimate f(µt).

Remark 4.1. In what follows, sine σ is a onstant matrix, notie that when we say that the

market prie risk λ is bounded (resp.has linear growth) it's exatly equivalent to say that f is

bounded (resp.has linear growth). That is, when we make an assumption on f it's exatly the

same assumption on the market prie risk λ.

4.1 Innovation proesses approah

We assume that both ζ = (ζi)1≤i≤n : Rn → R
n
and ϑ = (ϑij)1≤i,j≤n : Rn → R

n×n
are globally

Lipshitz, that is, there exists a positive onstant k suh that:

||ζ(x)− ζ(y)|| ≤ k||x− y|| and ||ϑ(x) − ϑ(y)|| ≤ k||x− y||. (4.3)

On the other hand, onerning the observation proess (4.2), we will distinguish two ases

for λ: the ase where λ is bounded and the ase where λ has linear growth.

It is well known that the innovation proesses approah is based on the hange of measure P̃

given in (3.2):

dP̃

dP
|Ft = Lt := exp

[

−

∫ t

0
λ∗(µs)dWs −

1

2
|2
∫ t

0
||λ(µs)||

2ds

]

, (4.4)

where we shall make the usual standing assumption on the �ltering theory.
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Assumption 1. The proess L is a martingale; that is, E[LT ] = 1

Let us now denote by Λ the (P̃,F)-martingale given by Λt =
1

Lt
. Therefore the omputation

of the onditional distribution of µt given F
S
an be obtained from the following Kallianpur-

Striebel formula (4.5): for every φ ∈ B(Rn), we have the following representation:

φt = φ(µt) := E
[

φ(µt)|F
S
t

]

=
Ẽ
[

φ(µt)Λt|F
S
t

]

Ẽ
[

Λt|F
S
t

] :=
ψt(φ)

ψt(1)
, (4.5)

with ψt(φ) := Ẽ[φ(µt)Λt|F
S
t ] is the unnormalized onditional distributionof µt given the ob-

servation, ψt(1) an be viewed as the normalising fator and B(Rn) is the spae of bounded

measurable funtions R
n → R.

Remark 4.2. Notie that the �lter estimates f t an be omputed as a vetor of n-�lter estimates,

that is, f t = (f it )1≤i≤n, where f
i ∈ B(Rn).

We shall also make the following assumption on the unnormalized onditional distribution:

Assumption 2. For all t ≥ 0,

P̃

[
∫ t

0
[ψs(||λ||)]

2ds <∞

]

= 1 (4.6)

.

Let us now introdue the following seond order di�erential operator A as follows:

Aφ =
1

2

n
∑

i,j=1

Kij∂
2
xixj

φ+

n
∑

i=1

ζi∂xi
φ, for φ ∈ B(Rn). (4.7)

and its adjoint A∗
is given by:

A∗φ =
1

2

n
∑

i,j=1

∂2xixj
(Kijφ)−

n
∑

i=1

∂xi
(ζiφ), for φ ∈ B(R). (4.8)

with K = ϑϑ∗.
Now we present the following two results due to Bain and Crisan [1, Chap.3℄ and Pardoux

[21, Chap.2℄. Then, we will show whih onditions an be imposed on the oe�ients f, ζ and ϑ
suh that these two results an be applied. We show that depending on the ondition taken on f
(f is bounded or has linear growth), we an impose the neessary onditions on the oe�ients

ζ and ϑ in order to ompute the �lter estimate f(µt). We show that this �lter is the solution of

a measure-valued stohasti di�erential equation.

Proposition 4.3. If assumptions (1) and (2) are satis�ed then the unnormalized onditional

distribution ψt satis�es the following Zakai equation:

dψt(φ) = ψt(Aφ)dt+

n
∑

j=1

ψt

(

φλj
)

dW̃ j
t , (4.9)

for any φ ∈ B(Rn).
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We need now to impose the following fundamental ondition in order to derive the Kushner-

Stratonovih equation:

P

[
∫ t

0
||λs||

2ds <∞

]

= 1, for all t ≥ 0. (4.10)

Therefore from the above Zakai equation for ψt(φ) and ψt(1) and from the Kallianpur-Striebel

formula (4.5), we have the following evolution equation for the onditional distribution φ:

Corollary 4.4. If assumptions (1) and (2) are satis�ed then the onditional distribution φ(µt)
satis�es the following Kushner-Stratonovih equation:

dφt = (Aφ)tdt+

n
∑

j=1

(

(φλj)t − λjt φt

)

dW
j
t , (4.11)

for any φ ∈ B(Rn).

Remark 4.5. The above Zakai and Kushner-Stratonovih equations hold true for any Borel

measurable φ, not neessarily bounded. In fat, we an proeed by utting of φ at a �xed level

whih we let tend to in�nity. For this, let us introdue the funtions (ψk)k>0 de�ned as

ψk(x) = ψ(x/k), x in R
n,

where

ψ(x) =











1 if ||x|| ≤ 1

exp( ||x||
2−1

||x||2−4) if 1 < ||x|| < 2

2 if ||x|| ≥ 2.

Let us introdue the following relations given in[1, P.151℄:

lim
k→∞

φψk(x) = φ(x), |φ(x)ψk(x)| ≤ |φ(x)|,

lim
k→∞

As(φψ
k)(x) = Asφ(x).

Then by replaing in equation (4.11) φ by φψk
and from dominated onvergene theorem, we

may pass to the limit as k → ∞ and then we dedue that φt satis�es equation (4.11).

Now, we will be interested by studying both ases for f : the ase where f is bounded and

the ase where it has linear growth. In eah ase, we make the neessary assumptions on the

oe�ients ζ and ϑ in order to ompute the �lter estimate f t.

4.1.1 The funtion f is bounded

In this ase the risk λ is bounded, then we an dedue easily the evolution equation (4.12)

satis�ed by the �lter estimate f .

Proposition 4.6. If ondition (4.3) is satis�ed and f is bounded, then the �lter estimate f t =

(f it )1≤i≤n satisfy the following measure-valued Kushner-Stratonovih equation:

df it = (Af i)tdt+

n
∑

j=1

(

n
∑

k=1

σ−1
jk (f

ifk)t −

n
∑

k=1

σ−1
jk f

i
t f

k
t

)

dW
j
t , for i = 1, ..., n. (4.12)

Proof. Sine f is bounded, hene λ also. Then assumptions 1 and 2 are satis�ed. Therefore

from orollary 4.4, we an dedue the above evolution equation for f t.
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4.1.2 The funtion f has linear growth

As the innovation proesses approah is based on the hange of measure, so the �rst important

assumption was that L is martingale. Normally Novikov's ondition is quite di�ult to verify

diretly, so we need to use an alternative onditions under whih the proess L is a martingale.

From lemma 3.9 in Bain and Crisan [1℄, we have:

Lemma 4.7. L is a martingale if the following onditions are satis�ed:

E

[
∫ t

0
||λs||

2ds

]

<∞, E

[
∫ t

0
Ls||λs||

2ds

]

<∞ ∀t > 0. (4.13)

Now, we need to impose the following assumptions on the moments of µ0:

• A1) µ0 has �nite seond moment.

• A2) µ0 has �nite third moment.

Lemma 4.8. Assume that ondition (4.3) is satis�ed. If λ has linear growth and A1) is satis�ed,
then (4.13) is satis�ed. Moreover, if A2) is satis�ed, then (4.6) is satis�ed.

Proof. The proof of the �rst part is given by lemma 4.1.1 in Bensoussan [3℄. To prove (4.6), we

need to use lemma 4.1.5 and part (b) in the proof of theorem 4.1.1 in Bensoussan [3℄.

Notie that ondition (4.10) is a onsequene of the �rst stronger ondition (4.13) imposed

on λ. Therefore, we an dedue the �lter estimate f t = (f it )1≤i≤n, in the ase where f has linear

growth, as follows:

Proposition 4.9. Assume that ondition (4.3) is satis�ed. If f has linear growth and assump-

tions A1) and A2) are satis�ed, then the �lter estimate f t satisfy the following measure-valued

Kushner-Stratonovih equation:

df it = (Af i)tdt+
n
∑

j=1

(

n
∑

k=1

σ−1
jk (f

ifk)t −
n
∑

k=1

σ−1
jk f

i
t f

k
t

)

dW
j
t , for i = 1, ..., n. (4.14)

Proof. Sine f has linear growth, hene λ also. Moreover, as assumptions A1) and A2) are

satis�ed, then from lemma 4.8 and lemma 1, we an dedue that assumptions 1 and 2 are

satis�ed. Therefore remark 4.5 and orollary 4.4 end the proof.

4.1.3 Existene and uniqueness of the solution f t

Let us de�ne the spae of measure-valued stohasti proesses within whih we prove uniqueness

of the solution to equations (4.12) and (4.14).

Let ψ : Rn → R be the funtion ψ(x) = 1 + ||x||, for any x ∈ R
n
and de�ne C l(Rn) to be

the spae of ontinuous funtions φ suh that φ/ψ ∈ Cb(R
n)(the spae of bounded ontinuous

funtions).

Let us denote by M
l(Rn) the spae of �nite measure M suh that M(ψ) <∞. In partiular, this

implies that M(φ) <∞ for all φ ∈ C l(Rn). Moreover, we endow M
l(Rn) wit the orresponding

weak topology: A sequene (Mk) of measures in M
l(Rn) onverges to M ∈ M

l(Rn) if and only

if lim
k→∞

Mk(φ) = M(φ), for all φ ∈ C l(Rn).
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De�nition 4.10. • The Class U is the spae of all Yt-adapted M
l(Rn)-valued stohasti

proess (Mt)t>0 with àdlàg paths suh that, for all t > 0, we have

Ẽ

[
∫ t

0
(Ms(ψ))

2ds

]

<∞.

• The Class Ũ is the spae of all Yt-adapted M
l(R)-valued stohasti proess (µ)t>0 with

àdlàg paths suh that the proess mtM belongs to the lass U, where the proess (mt)t≥0

is de�ned as:

mt = exp

(
∫ t

0
Ms(λ

∗)W̃s −
1

2

∫ t

0
Ms(λ

∗)Ms(λ)ds

)

.

Now we state the uniqueness result of the solution to equations (4.12) and equation(4.14),

see theorem 4.19 in Bain and Crisan [1, hap.4℄

Proposition 4.11. Suppose in addition to the above assumptions on ζ, ϑ and f imposed in

proposition 4.6 (resp.proposition 4.9), that these oe�ients have twie ontinuously di�eren-

tiable omponents and all their derivatives of �rst and seond order are bounded. Then equation

(4.12)(resp. equation(4.14)) has a unique solution in the lass Ũ.

Remark 4.12. The �lter equations (4.12) and (4.14) desribe an in�nite dimensional stohasti

di�erential equations driven by the innovations proess. For that, we need to use some numerial

methods adapting to in�nite dimensional �ltering problem. For example, the so-alled partiular

Monte Carlo method whih is based on a partile approximation of the onditional distribution.

It has reently given raise to extensive studies, see for instane [5℄,[6℄. Also we an use the

Wiener haos deomposition method of the Zakai equation developed and studied by Lototsky et

al [18℄.

4.2 Density approah

This approah is based on the following:

We assume that the law of µt given FS
t admits a density pt(x) relative to some dominating

measure η(dx).

E[φ(µt)|F
S
t ] =

∫

Rn

φ(x)pt(x)η(dx), (4.15)

Formally integrating by parts in the Kushner-Stratonovih equation (4.11) and using Fubini

theorem, we an obtain as in Pardoux [21℄ and Bain and Crisan[1℄ that pt satis�es the following
stohasti partial di�erentiel equation (SPDE):

dpt(x) = A∗pt(x)dt+ pt(x)
n
∑

j=1

(λj(x)− λjt )dW
j
t . (4.16)

where the operator A∗
is given by (4.8) and λjt =

∫

Rn

λj(x)pt(x)η(dx) with λ
j =

∑n
k=1 σ

−1
jk f

k
.

The equation (4.16) is a nonlinear stohasti partial di�erential equation. It is not easy

to make mathematial sense of this equation, for example, how should the equation even be

interpreted, and do suh equations have solutions. So if we wish to work with the density

approah, it usually makes more sense to work with the density qt of the unnormalized onditional

distribution of µt, whih is formally the solution of a linear stohasti partial di�erential equation

as follows:

9



dqt(x) = A∗qt(x)dt+ qt(x)

n
∑

j=1

λj(x)dW̃ j
t , (4.17)

where we assume that ψt(φ) := Ẽ[φ(µt)Λt|F
S
t ] =

∫

Rn

φ(x)qt(x)dx.

We will be interested by the following questions: under whih onditions on the oe�ients

f, ζ and ϑ, we an show that:

• the onditional distribution of µt given FS
t has a density with respet to a referene

measure, in partiular with respet to Lebesgue measure.

• the linear stohasti partial di�erential equation (4.17) has a solution and this solution is

the density of the unnormalized onditional distribution of µt given FS
t .

4.2.1 Study the existene of a regular density pt and the solution of (4.16).

As in the innovation approah we will distinguish two ases for f : the ase where f is bounded

and the ase where f has linear growth. Then depending on the ondition taken on f , we an
impose the neessary onditions on the oe�ients ζ and ϑ in order to show that the onditional

distribution of µt given the observation has a density with respet to Lebesgue measure and its

density is the unique solution of the stohasti PDE (4.16).

Notations 1. Let us introdue the Hilbert spaes

H = L2(Rn), K = H
1 :=

{

h ∈ L2(Rn)|
∂h

∂xi
∈ L2(Rn)

}

equipped with the inner produts

(h1, h2) =

∫

Rn

h1(x)h2(x)dx, (4.18)

(4.19)

We notie that H
1
is dense in H with ontinuous injetion. The topologial dual spae of H

1

will be denoted by (H1)′. We denote by < ., . > the duality between H
1
and (H1)′.

Let now X and Y be two Hilbert spaes equipped with the norm ||.||X and ||.||Y respetively.

We denote by L(X,Y) the Banah spae of ontinuous linear operators from X to Y.

We denote by M
0([0, T ];X) the set of all X-valued measurable proesses, and by M

2([0, T ];X)
(a subset of L2([0, T ] × Ω;X)) the spae of X-valued proess Y suh that Y ∈ M

0([0, T ];X) and

E

[
∫ T

0
||Y ||2Xds

]

<∞.

In the following, we need to make the following assumption on the initial ondition µ0 of the
signal proess µt:

Assumption 3. The initial ondition µ0 is a random variable with density p0 ∈ H.

Here we need to make the following assumptions on the oe�ients ϑ, ζ and f :

Assumption 4. • A.i) ϑ : Rn → R
n × R

n
is measurable and bounded.

• A.i) ∃α > 0, suh that K(x) = ϑϑ∗(x) ≥ αI, ∀x ∈ Rn
.
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• A.iii) ∂xi
ϑij ∈ L∞(Rn), i, j = 1, .....n.

• A.iv) ζ and f are measurable and bounded funtions from R
n → R

n
.

Firstly, the following lemma about the existene of a density with respet to Lebesgue mea-

sure an be found in Bain and Crisan [1, P.173℄:

Lemma 4.13. If assumption 3 is satis�ed and f is bounded, then almost surely the onditional

distribution φ(µt) has a density with respet to Lebesque measure and this density is square

integrable.

Now we study the existene of a solution qt to the stohasti PDE(4.17). Then, we show

that qt is the unnormalized onditional density of µt given the observation FS
t . By onsequene,

using Kallianpur-Striebel formula (4.5), we an dedue the onditional density pt.
Using the extended variational method to stohasti equations of Ito type, see Krylov-

Rosovskii [15℄ and Pardoux [19℄, we an dedue the following:

Proposition 4.14. We suppose that assumptions 3 and 4 hold. Then equation (4.17) has a

unique solution qt belongs to L2(Ω × [0, T ];H1) ∩ L2(Ω;C([0, T ];H)). Moreover, qt(x) is the

density of the unnormalized onditional distribution of µt given the observation FS
t .

Proof. All the notations used in this proof an be found in the above paragraph notations 1.

Firstly, in order to use the results of Krylov-Rosovskii [15℄ and Pardoux [19℄, we need to

rewritte the operator A∗
in its divergene form as a linear operator from an Hilbert spae to

its dual and to rede�ne the stohasti integral as an Hilbert spae operator. In fat, due to

assumption 4, the operator A∗
an be rewritten as follows:

A∗φ(x) =
1

2

n
∑

i,j=1

∂xi
(Kij(x)∂xj

φ(x)) −

n
∑

i=1

∂xi



ζi(x)φ(x) −
1

2

n
∑

j=1

∂xj
Kij(x)φ(x)



 , for x ∈ R
n.

Seondly, we onsider the operator B ∈ L(H1, (L2(Rn))n) as follows:

Bjφ(x) = λjφ(x) =

n
∑

k=1

σ−1
jk f

k(x)φ(x), j = 1, .....n.

Consequently, equation (4.17) an be rewritten as follows:

dqt(x) = A∗qt(x)dt+ Bqt.dYt, q0 = p0. (4.20)

where . denotes the salar produt.

When we write < A∗φ,ψ >, then A∗
is understood to be an operator from H

1
to (H1)′, by

using formally Green's formula, in the following way:

< A∗φ,ψ >= −
1

2

n
∑

i,j=1

(kij∂xj
φ, ∂xi

ψ) +

n
∑

i=1

((ζi − ∂xj
kij)φ, ∂xi

ψ).

where (., .) is the inner produt given in (4.18).

Now, after rewritten equation (4.17) as in form (4.20) and in order to apply the results of pardoux
[19℄ about the existene of a solution to (4.20), we need to show that the pair operators (A∗,B)
satisfy the oerivity ondition, that is, ∃α1 > 0 and α2 suh that: ∀u ∈ H

1
, we have:

2 < A∗u, u > +α2|u|
2
L2(Rn) ≥ α1||u||

2
H1 + |Bu|2(L2(Rn))n . (4.21)
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where the norm in (L2(Rn))n is de�ned as follows:

|u|(L2(Rn))n =

(

n
∑

i=1

|ui|
2
L2(Rn)

)1/2

.

In fat the ondition 4.21 is satis�ed from assumption 4, espeially from the positive de�nite

ondition on K and the fat that f is bounded. Therefore from (4.21), assumption 4 and

assumption 3, the �rst part of the proof ends by applying theorem 2.1 in pardoux [19℄.

Using the same arguments for the proof of orollary 3.2 in pardoux [19℄, more preisely with

the help of unique solvability theorem for Bakward kolomogrov equation, we an dedue that

qt(x) is the density of the unnormalized onditional distribution of µt given F
S
.

Proposition 4.15. Under assumption 3 and 4, the �lter estimate f t = (f
i
t)1≤i≤n an be om-

puted as follows :

f it =

∫

Rn

f i(x)pt(x)dx, where pt(x) =
qt(x)

∫

Rn

qt(x)dx
, (4.22)

pt(x) is the density of the onditional distribution of µt given the observations F
S
and qt(x) is

solution of (4.17). Moreover, pt(x) satis�es (4.16).

Proof. First of all, we need to verify that

∫

Rn

qt(x)dx does not reah 0 nor in�nity. This an be

dedued from the fat

∫

Rn

qt(x)dx = ψt(1) =: Ẽ[Λt|F
S
t ] veri�es

∫

Rn

qt(x)dx = 1 +

∫ t

0

∫

Rn

qs(x)λ(x)dxdW̃s

From Kallianpur-Striebel formula (4.5) and proposition 4.14, we an dedue (4.22). Finally,

applying It�'s formula in the Hilbert spae ase, we an dedue that pt(x) veri�es (4.16).

Remark 4.16. It is possible to reast the stohasti partial di�erential equation (4.17) into a

form in whih there are no stohasti integral terms. This redution form an be obtained using

a suitable pathwise transformation, as in proposition 4.17. This form an be analyzed and estab-

lishing the existene and uniqueness of a fundamental solution to (4.17). Also, the importane

of this form, is that we an prove the existene and uniqueness solution qt to (4.17) without

requiring the boundeness assumptions on f whih is an neessary assumption (assumption 4,
A.iv)) in proposition 4.14 to study the existene and uniqueness for qt thus for pt. Also, we see
in setion 5 the advantage of this pathwise tehnique to obtain an expliit formulas for the opti-

mal portfolio, optimal wealth and value funtion up to the solution of a linear partial di�erential

equation.

4.2.2 The pathwise density approah

The pathwise theory of �ltering is onerned with asting the �ltering equations in a form in

whih the �ltered estimates an be omputed separately for eah sample path of the observation

proess. The ideas of this approah are due to Clark [4℄, Davis [7℄ [8℄,.... The essential idea of this

approah omes from the de�nition of the onditional expetation, that is, as F
S
t is the �ltration

generated by the observation proess W̃ , then by de�nition of the onditional expetation, the
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�ltered estimates an be seen as a funtion of W̃t a.s. For more details about this approah and

the tehnial tools used, see Fleming-Pardoux [10℄ and Pardoux [19℄.

We show in proposition (4.17) that for a given simple path W̃t, qt an be expressed in terms of

a solution of a linear nondegenerate paraboli partial di�erential equation, and therefore lassial

partial di�erential equation an be applied in analyzing existene, uniqueness and regularity of

solutions.

We study both ases for f and for eah ase, we make the neessary assumptions on the oe�-

ients ζ and ϑ.:

Assumption 5. (f is bounded )

• B.i) assumptions 3 and 4 hold.

• B.ii) ∂xi
f and ∂2xi,xj

f ∈ L∞(Rn,Rn), i, j = 1, ...n.

Assumption 6. (f has linear growth )

• C.i) ϑ : Rn → R
n × R

n
is measurable and bounded.

• C.ii) ∃α > 0, suh that K(x) = ϑϑ∗(x) ≥ αI, ∀x ∈ R
n
.

• C.iii) ∂xi
ϑij ∈ L

∞(Rn), i, j = 1, .....n.

• C.iv) ζ and f are measurable from R
n → R

n
and have linear growth, that is, ∃c suh that:

|ζ(x)|, |f(x)| ≤ c(1 + |x|), ∀x ∈ R
n.

• C.v) ∂xi
f (i = 1, ...n) and

∑n
i,j=1Kij∂

2
xi,xj

f ∈ L∞(Rn,Rn)

• C.vi) div(ζ) and
∑n

i,j=1 ∂
2
xi,xj

Kij ∈ L
∞(Rn).

• C.vii) assumption 3 holds.

Proposition 4.17. Under one of the assumptions 5 or 6, the density qt(x) of the unnormalized

onditional distribution of µt given FS
t is given by:

qt(x) = exp(W̃ ∗
t λ(x))ν

W̃t

t (x),

where νW̃t

t is the solution of the following linear paraboli partial di�erential equation parametrized

by the observation path W̃t:

∂tν
W̃ =

1

2
Tr(K(x)D2

xν
W̃ ) + (ΓW̃ (t, x))∗Dxν

W̃ + F W̃ (t, x)νW̃ , νW̃0 (x) = p0. (4.23)

The funtions ΓW̃ (t, x) and F W̃ (t, x) are given respetively by:

ΓW̃ (t, x) = −ζ(x) +K(x)Dx(W̃
∗
t λ) + χ(x),

F W̃ (t, x) =
1

2
Tr(K(x)D2

x(W̃
∗
t λ)) + ζ(x)Dx(W̃

∗
t λ) +

1

2
Dx(W̃

∗
t λ)KD

∗
x(W̃

∗
t λ)

− div
(

ζ(x)−KDx(W̃
∗
t λ)
)

+
1

2

n
∑

i,j=1

∂2xi,xj
Kij(x)−

1

2
λ∗(x)λ(x).

Where K = ϑϑ∗ is a n × n matrix-valued funtion, λ(x) = σ−1f(x) is a n × 1 matrix-valued

funtion, χ(x) is a n × 1 matrix-valued funtion where χi(x) =
∑n

j=1 ∂xj
Kij(x), i = 1, ...n.

Here Dx and D2
x denote the gradient and the Hessian operators with respet to the variable x.
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Proof. The proof for the ase of assumption 5 an be found in Fleming-Pardoux [10℄ (see equation

(7.1) and theorem 7.1) and [19℄ (see equation (4.10) and theorem 4.2). Using the smoothness

assumptions A.iii) in assumption 4 and B.ii), we have done an integration by part in order to

write the equation satis�ed by νW̃t as that in (4.23).

On the other hand, for the ase of assumption 6, the proof an be found in Pardoux [20,

P.212-2015℄ .

Due to the lassial results of Bensoussan-Lions [2℄, we have, for �xed W̃t, a unique solution

of νW̃t ∈ L2([0, T ];H1) ∩ C([0, T ];L2(Rn)), thus for qt.

Therefore, we an dedue that pt given by 4.24 is the density of the onditional distribution of

µt given the observation, and therefore the �lter f t an be omputed as follows:

Corollary 4.18. Under on the assumptions 5 or 6, the �lter estimate f t = (f it )1≤i≤n an be

omputed as follows :

f it =

∫

Rn

f i(x)pt(x)dx, where pt(x) =
νW̃t

t (x) exp(W̃ ∗
t λ(x))

∫

Rn

νW̃t

t (x) exp(W̃ ∗
t λ(x))dx

. (4.24)

pt(x) is the density of the onditional distribution of µt given the observations F
S
and νW̃t (x) is

solution of (4.23).

Proof. The proof an be dedued from the de�nition of f t and theorem 5.3 in Pardoux [20℄.

5 Appliation to portfolio optimization

Reall that the trader's objetive is to solve the following optimization problem

J(x) = sup
π∈A

E[U(Rπ
T )], x > 0. (5.1)

where from (3.3), the dynamis of the wealth proess Rπ
t in the full information ontext is given

by:

dRπ
t = Rπ

t π
∗
t

[

f(µt)dt+ σdW t

]

.

We are now faed an optimization problem in full observation ontext. Then, one may

apply the lassial stohasti optimization approah like the martingale approah or the PDE

approah. Here we will use the martingale approah.

Before presenting our results, let Zt be the optimal projetion of the P-martingale L to F
S
, so

Zt := E[Lt|F
S
t ], where L is given by (3.1).

By applying Kallainpur-Striebel formula to Lt, we obtain that Zt =
1

Λ̃t

, where Λ̃t = Ẽ[Λt|F
S
t ]

and Λt =
1

Lt
.

Then, from (3.2), we de�ne the measure transformation on F
S
as follows:

dP̃

dP
|FS

t = Zt. (5.2)

As in Lakner [?℄, we have the following result for the representation of Zt and Λ̃.

14



Proposition 5.1. Under assumptions 1 and E|λt| <∞ , we have

Zt = exp

(

−

∫ t

0
λ
∗
sdW s −

1

2

∫ t

0
||λs||

2ds

)

, (5.3)

Λ̃t = exp

(
∫ t

0
λ
∗
sdW̃s −

1

2

∫ t

0
||λs||

2ds

)

. (5.4)

5.1 Martingale approah

Let us impose the standard Inada onditions on the utility funtion: U is C1
on (0,∞), and

satis�es U
′

(0) = ∞ and U
′

(∞) = 0. We denote by I = (U
′

)−1
the inverse of the derivatives of

U , whih is dereasing funtion from (0,∞) into (0,∞).

Using the martingale approah, see for example Karatzas's [12℄, we have the following result:

Theorem 5.2. The optimal wealth for the utility maximization problem (5.1) is given by

R̃t = E

[

ZT

Zt
I(zxZT )|F

S
t

]

(5.5)

where zx is the Lagrange multiplier suh that E[ZT I(zxZT )] = x and x is the initial wealth. Also

the optimal portfolio π̃ is impliity determined by the equation

dR̃t = R̃tπ̃
∗
t dW̃t. (5.6)

We now give some examples of appliations of the martingale approah ombined with the

�ltering problem. We solve our optimization problem with the logarithmi and power utility

funtions.

5.1.1 Logarithmi utility funtion

We onsider an utility funtion U(x) = ln(x). In this ase I(x) =
1

x
and the Lagrange multiplier

zx =
1

x
. Therefore from (5.5), the optimal wealth is given by

R̃t = xΛ̃t. (5.7)

By applying It�'s formula to (5.7) and from (5.4), we have that dR̃t = R̃tλ
∗
tdW̃t. Hene,

omparing this dynami for R̃t with (5.6), we obtain that the optimal portfolio π̃ is given by

π̃t = λt := σ−1f t.

Finally, the value funtion is given by J(x) = ln(x) +
1

2
E[

∫ T

0
||λs||

2ds].

5.1.2 Power utility funtion

Here, we onsider an utility funtion U(x) =
xp

p
, 0 < p < 1

Proposition 5.3. the optimal wealth is given by:

R̃t = x
Mt

M0
(Λ̃t)

1/1−p.
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where M0 = Ẽ[(Λ̃T )
1/1−p] and Mt =M(t, W̃t) is solution of the following linear PDE:

∂tM +
1

2
Tr(D2

wM) +
1

1− p
(σ−1f(t, w))∗DwM +

p

2(1− p)2
||σ−1f(t, w)||2M = 0.

f(t, w) = (f i(t, w))1≤i≤n is given by:

f i(t, w) =

∫

Rn

f i(x)pt(x)dx, where pt(x) =
νwt (x) exp(w

∗λ(x))
∫

Rn

νwt (x) exp(w
∗λ(x))dx

.

and νwt (x) is solution of (4.23). The assoiated optimal portfolio π̃t is given by:

π̃t =
1

1− p
σ−1f t +

DwM(t, W̃t)

M(t, W̃t)
. (5.8)

Moreover, the value funtion is given by:

J(x) =
xp

p
(M(0, W̃0))

1−p. (5.9)

.

Proof. In this ase I(x) = x1/(p−1)
and the Lagrange multiplier zx is given by

zx =
(x)p−1

E[(ZT )p/p−1]
=

(x)p−1

Ẽ[(Λ̃T )1/1−p]
.

Therefore from theorem 5.2, the optimal wealth proess is given by:

R̃t = x
Mt

M0
(Λ̃t)

1/1−p. (5.10)

with

Mt = Ẽ





(

Λ̃T

Λ̃t

)1/1−p
∣

∣

∣
FS
t



 .

We notie that from (5.4), Mt an be rewritten as follows:

Mt = Ẽ

[

exp

(
∫ T

t

1

1− p
λ
∗
sdW̃s −

1

2
(

1

1− p
)2
∫ T

t
||λs||

2ds

)

exp

(

1

2

∫ T

t

p

(1− p)2
||λs||

2ds

)

∣

∣

∣
FS
t

]

.

Let us now onsider the proess M̃t = exp

(
∫ T

t

1

1− p
λ
∗
sdW̃s −

1

2
(

1

1− p
)2
∫ T

t
||λs||

2ds

)

.

We assume that M̃t is a martingale, then we an de�ne a hange of probability measure as

follows:

dPM

dP̃
|FS

t = M̃t.

Therefore

Mt = E
M

[

exp

(

1

2

∫ T

t

p

(1− p)2
||λs||

2ds

)

∣

∣

∣
FS
t

]

,

= E
M

[

exp

(

1

2

∫ T

t

p

(1− p)2
||σ−1f s||

2ds

)

∣

∣

∣
FS
t

]

, (5.11)

=M(t, W̃t). (5.12)
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Where the seond equality omes from the fat that λt = σ−1f t and the last equality, whih

say that Mt = M(t, W̃t) is a funtion of (t, W̃t), is dedued from orollary 4.18. Moreover, the

proess W̃t has the following dynamis under P
M
:

dW̃t = dWM
t +

1

1− p
λtdt.

Now, by Feynman-Ka representation, the funtion M(t, w) for (t, w) ∈ [0, T ] × R
n
satis�es

the following linear PDE:

∂tM +
1

2
Tr(D2

wM) +
1

1− p
(σ−1f(t, w))∗DwM +

p

2(1 − p)2
||σ−1f(t, w)||2M = 0, (5.13)

with terminal onditionM(T,w) = 1. We write f t as f(t, w) in order to indiate the dependene
on the observation path W̃t = w. From orollary 4.18, f(t, w) = (f i(t, w))1≤i≤n is given by:

f i(t, w) =

∫

Rn

f i(x)pt(x)dx,

where pt(x) =
νwt (x) exp(w

∗λ(x))
∫

Rn

νwt (x) exp(w
∗λ(x))dx

.

It remains to show that the optimal portfolio π̃t is given by (5.8). From theorem 5.2, we have

that the optimal portfolio an be determined from (5.6). Then, from (5.4) and the fat that

Mt is solution to (5.13), if we apply It�'s formula on (5.10) and omparing it to (5.6), we an

dedue that the optimal poftrolio is given by (5.8).

Finally, from (5.10) and (5.2), we an dedue that the value funtion J(x) is given by (5.9).

Notie that the advantage to use the pathwise approah is appeared, for the power utility

ase, in the step when we have expressed Mt in terms of W̃t as in (5.12). In fat, if the �lter

estimate f t is given as in (4.22), then in this ase Mt will be written as a funtion of pt, that
is, Mt = M(t, pt), where the dynamis of pt is given by (4.16). Therefore, from Feynman-Ka

representation, we have thatM will be the solution of a partial di�erential equation with in�nite

dimensional state variable p, where the partial derivatives terms with respet to p are Frehet

derivatives.

Referenes

[1℄ Alan Bain and Dan Crisan. Fundamentals of stohasti �ltering, volume 60 of Stohasti

Modelling and Applied Probability. Springer, New York, 2009.

[2℄ A. Bensoussan and J.-L. Lions. Appliations des inéquations variationnelles en ontr�le

stohastique. Dunod, Paris, 1978. Méthodes Mathématiques de l'Informatique, No. 6.

[3℄ Alain Bensoussan. Stohasti ontrol of partially observable systems. Cambridge University

Press, Cambridge, 1992.

[4℄ J.M.C Clark. The design of robust approximations to the stohasti di�erential equations

of nonlinear �ltering, ommuniation systems and random proess theory. Sijtho� and

Noordho� Alphen 1978. NATO Advaned Study Inst. Ser., pages 721�734.

17



[5℄ D. Crisan and T. Lyons. A partile approximation of the solution of the Kushner-

Stratonovith equation. Probab. Theory Related Fields, 115(4):549�578, 1999.

[6℄ Dan Cri³an, Pierre Del Moral, and Terry J Lyons. Interating partile systems approx-

imations of the kushner-stratonovith equation. Advanes in Applied Probability, pages

819�838, 1999.

[7℄ M. H. A. Davis. A pathwise solution of the equations of nonlinear �ltering. Theory of

Probability and its Appliations, 27(1):167�175, 1982.

[8℄ M.H.A. Davis. On a Multipliative Funtional Transformation Arising in Nonlinear Fil-

tering Theory. Publiation - Dept of Computing & Control Imperial College of Siene &

Tehnology. Imperial College of Siene & Tehnology, 1987.

[9℄ Mihael U. Dothan and David Feldman. Equilibrium interest rates and multiperiod bonds

in a partially observable eonomy. The Journal of Finane, 41(2):369�382, 1986.

[10℄ Wendell H. Fleming. Exit probabilities and optimal stohasti ontrol. Appl. Math. Optim.,

4(4):329�346, 1977/78.

[11℄ Dalia Ibrahim and Frédéri Abergel. Non-linear �ltering and optimal investment under

partial information for stohasti volatility models. https://hal.arhives-ouvertes.fr/hal-

01018869v4/doument, 2015.

[12℄ Ioannis Karatzas. Letures on the mathematis of �nane, volume 8 of CRM Monograph

Series. Amerian Mathematial Soiety, Providene, RI, 1997.

[13℄ Ioannis Karatzas and Xlng-Xlong Xue. A note on utility maximization under partial ob-

servations. Mathematial Finane, 1(2):57�70, 1991.

[14℄ Ioannis Karatzas and Xiaoliang Zhao. Bayesian adaptive portfolio optimization. In Op-

tion priing, interest rates and risk management, Handb. Math. Finane, pages 632�669.

Cambridge Univ. Press, Cambridge, 2001.

[15℄ N.V Krylov and B.L Rozovskii. On onditional distributions of di�usion proesses. Math-

ematis of the USSR-Izvestiya, 12(2):336, 1978.

[16℄ Peter Lakner. Utility maximization with partial information. Stohasti Proess. Appl.,

56(2):247�273, 1995.

[17℄ Peter Lakner. Optimal trading strategy for an investor: the ase of partial information.

Stohasti Proess. Appl., 76(1):77�97, 1998.

[18℄ Sergey Lototsky, Remigijus Mikuleviius, and Boris L. Rozovskii. Nonlinear �ltering revis-

ited: a spetral approah. SIAM J. Control Optim., 35(2):435�461, 1997.

[19℄ E. Pardoux. Stohasti partial di�erential equations and �ltering of di�usion proesses.

Stohastis, 3(2):127�167, 1979.

[20℄ E. Pardoux. Équations du �ltrage non linéaire, de la prédition et du lissage. Stohastis,

6(3-4):193�231, 1981/82.

[21℄ Étienne Pardoux. Filtrage non linéaire et équations aux dérivées partielles stohastiques

assoiées. In Éole d'Été de Probabilités de Saint-Flour XIX�1989, volume 1464 of Leture

Notes in Math., pages 67�163. Springer, Berlin, 1991.

18



[22℄ Huyên Pham and Marie-Claire Quenez. Optimal portfolio in partially observed stohasti

volatility models. Ann. Appl. Probab., 11(1):210�238, 2001.

19


