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Prior-based facade rectification for AR in urban environment
Antoine Fond∗ Marie-Odile Berger† Gilles Simon‡

Université de Lorraine, Inria, LORIA

ABSTRACT

We present a method for automatic facade rectification and detec-
tion in the Manhattan world scenario. A Bayesian inference ap-
proach is proposed to recover the Manhattan directions in camera
coordinate system, based on a prior we derived from the analysis
of urban datasets. In addition, a SVM-based procedure is used to
identify right-angle corners in the rectified images. These corners
are clustered in facade regions using a greedy rectangular min-cut
technique. Experiments on a standard dataset show that our algo-
rithm performs better or as well as state-of-the-art techniques while
being much faster.

Index Terms: I.2.10 [Vision and Scene Understanding]: 3D/stereo
scene analysis—; H.5.1 [Multimedia Information Systems]: Artifi-
cial, augmented, and virtual realities—;

1 INTRODUCTION

In Augmented Reality, accurate pose computation is fundamental
for seamless integration of virtual objects into the real scene. We
are interested in applications which take place in man-made envi-
ronments and we suppose that the camera intrinsic parameters are
available. We focus in this paper on the initialization stage which is
especially difficult in urban scenes due to the presence of repeated
patterns. Another difficulty originates in the fact that a pedestrian is
free of his motion in the scene and can therefore adopt uncontrolled
viewpoints - close or distant views - with respect to the model (see
Fig. 7 for various examples of images). As a result, the set of
2D/3D correspondence hypotheses may contain a high ratio of out-
liers which may lead to erroneous pose computation.

In this paper, we invoke the so-called “Manhattan world” as-
sumption, which states that groups of lines are aligned with the
cardinal axes of a global frame. Past works have investigated recti-
fication based on the detection of orthogonal vanishing points (VPs)
to facilitate wide-baseline matching and reconstruction[20, 14, 3].
Such methods allow to cope with the limitations of affine invariant
descriptors which are unable to match points when large projective
deformations occur. However, identifying areas in correspondence
after this rectification step can still be difficult. In the context of
extracting dominant rectangular structures, [14] rely heavily on the
the strong assumption that the boundaries or the corners of the rect-
angle can be extracted. With the goal to match street-level facades
to airborne images, [3] propose a descriptor that captures the struc-
ture of repetition of patterns and attempt to characterize facades by
clustering these descriptors. Preliminary results are promising but
manual marking of buildings is required to initialize the clustering.

In the continuity of these past works, we investigate how facade
rectification and delimitation can be improved by considering prior
information about the scene and the camera relevant to AR in urban
context. Note that our goal is not to identify accurately the facades
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13 (37.14%) inlier matches out of 35

17 (77.27%) inlier matches out of 22

Figure 1: RANSAC-based matching of SIFT features between a tex-
tured 3D model of the Hôtel de Ville of Nancy and a photo of this
building, before and after having rectified and detected the facade.

but only to provide regions of interest where facades features are
likely to be found, in order to improve the robustness and speed of
subsequent recognition tasks. Fig. 1 illustrates the interest of such
a strategy by using a very common matching procedure between a
roughly textured polyhedral model of the Hôtel de Ville of Nancy
and a picture of this building. Rectifying the image and using the
top-ranked rectangle provided by our algorithm (see Fig. 5) leads
to a significant increase in both the number and ratio of inliers.

Our contribution are twofold. First we provide a Bayesian frame-
work for detecting VPs in Manhattan worlds which incorporate
prior about the Manhattan frame by imposing a near-vertical di-
rection as well as orthogonality constraints. Second, we propose
to use machine learning and cutting graph techniques to formulate
facade hypotheses which will be used subsequently to guide the
matching between the model and the considered image. Instead of
attempting to detect repetitive patterns in the image as in [3], we
propose to detect right-angle corners due to windows or doors us-
ing a SVM-based machine learning technique. Rectangular facade
hypotheses are then generated through min-cuts techniques with the
idea to identify rectangles with high density of right-angle corners.

The paper is organized as follows. Related work about orthog-
onal VP detection is described in section 2. The prior distribution
is provided in section 3. Our Bayesian framework for VP detec-
tion is described in section 4 and the facade detection algorithm is
presented in section 5. Extensive comparisons of our method with
state of the art techniques [19, 15] are presented in section 6 along
with some results of facade detection.



2 RELATED WORK

There is a vast literature on the problem of VP detection. Early
methods used the Hough transform (HT) to detect VPs on the
Gaussian sphere [16]. However, such approaches are sensitive to
the quantization level of the bins and can produce false VP. Some
methods use HT as an initialization stage and Expectation Maxi-
mization (EM) iterations to get more accurate and confident results
[2, 13, 14]. EM performs both classification and estimation tasks by
iterating between two steps. However, a reasonable initialization is
required and the number of models in the mixture formulation has
to be fixed, which does not guarantee that the Manhattan directions
are finally obtained. Several attempts have been made to tackle
these problems. For instance, [19] estimate VP hypotheses in the
image plane using pairs of edges and compute consensus sets using
the J-linkage algorithm. In [15], the problem is solved in the dual
domain where converging lines become aligned points. The use
of a robust point alignment detector leads to candidate VPs. Both
[19] and [15] provide a RANSAC-like procedure to find the three
Manhattan directions once the set of candidate VPs has been ob-
tained, assuming the internal camera parameters are known. How-
ever, these procedures do not enforce orthogonality between the
Manhattan VPs, and fail if one of the Manhattan VPs is missing in
the candidate set.

Another category of techniques directly estimate the Manhat-
tan directions (or, equivalently, the camera orientation) from image
data. In [21], a minimal solution for computing three orthogonal
VPs and focal length from four line segments is used to maximize
a consensus set using RANSAC. In [4], the number of clustered
lines is globally maximized over the rotation search space, using
a branch-and-bound procedure based on the Interval Analysis the-
ory. This kind of techniques may be optimal in general case, but
improved performance in terms of efficiency and robustness may
be obtained when some prior information is available. Our method
is thus more in line with some works such as [6, 7, 9], where the
Manhattan directions are estimated using Bayesian inference. In the
early work of Coughlan and Yuille [6], the camera is assumed ori-
ented in the horizontal plane. A posterior distribution on the com-
pass direction is derived at each pixel by combining knowledge of
the geometry of the Manhattan world with statistical knowledge of
edges in images. The image data at each pixel is explained by one of
five models: edge due to one of the three orthogonal VPs, random
edge or off-edge. The prior probability of each of the edge models
was estimated empirically. The maximum a posteriori (MAP) es-
timate is obtained by evaluating the log posterior for the compass
direction in the range −45◦ to +45◦, in increments of 1◦. The hor-
izontal camera orientation assumption is relaxed in [7, 9], though
at the expense of high combinatorial search over discretized Euler
angles in [7], or Quasi-Newton or EM optimizations which both
require reasonable initial guesses in [9].

In this work, we use a prior on the distribution of the Manhattan
directions, that was derived from real data. Such a distribution has,
to our knowledge, never been provided before and is in itself a con-
tribution of this paper. Moreover, in order to reduce the complexity
of MAP estimation, we divided the problem into three steps: in the
first step, our prior is used to provide posterior probabilities of VPs
sampled on the Gaussian sphere. In the second step, local maxima
of these probabilities are extracted using a spherical weighted mean
shift. Finally, the Manhattan frame is obtained by solving the MAP
among a discrete set of candidate VP triplets.

3 MANHATTAN FRAME PRIOR DISTRIBUTION

A histogram of 648 ground truth Manhattan directions obtained
from the York Urban Line Segment [9] (102 images) and the
Toulouse Vanishing Points [1] (114 images) datasets is shown in
Fig. 2(left). The VPs are expressed on the Gaussian sphere S2,
where x,y,z represent, respectively, the horizontal axis, the vertical

Figure 2: Histograms of VPs on the Gaussian sphere, extracted from
the York Urban and Toulouse datasets (left) and sampled from our
prior distribution pV (right). x,y,z camera axes are colored, respec-
tively, in red, green, blue. The histogram values are colored using the
Matlab Jet colormap shown at the bottom of the figure. The same
color conventions are used in all figures of this paper.

axis and the principal axis of the camera. An examination of this
figure leads to the following observations:

Observation 1 The vertical Manhattan directions Y are nearly ver-
tical in the camera frame and mainly constrained in the y− z
plane: this reflects that camera rotations around x-axis (pitch)
are often performed, while the x-axis keeps horizontal in the
Manhattan frame (roll angles are generally very small). The
pitch angle has a limited range and is centered around 0.

Observation 2 Due to the orthogonality between the Manhattan
VPs, a consequence of Observation 1 is that the horizontal
directions X and Z are concentrated in a narrow range around
the equator. Moreover, we observe that these directions are
distributed all around the sphere.

According to Observation 1, we use the Kent distribution [12] to
model the prior distribution of the vertical Manhattan direction:

pY (Y ) =
1

c(κY ,β )
exp
(

κY yTY +β

(
(zTY )2− (xTY )2

))
, (1)

where κY > 0 determines the spread of the distribution, β de-
termines the ellipticity of the contours of equal probability and
c(κY ,β ) is a normalizing constant. The parameter β is set to 2

5 κY
so that the major axis of the confidence ellipses is aligned with the
principal axis of the camera (Fig. 3(left)).

Knowing the Y -direction and considering Observation 2, the X-
direction can be obtained using a Watson distribution [17]:

pX |Y (X ,Y ) =
1

M( 1
2 ,

3
2 ,−κX )

exp
(
−κX (Y T X)2

)
, (2)

where the normalizing constant M is the Kummer function (Fig. 3,
middle).

The third Manhattan direction Z is likely to set near the cross
product of directions X and Y , leading to the von-Mises-Fisher dis-
tribution [17] (Fig. 3(right)):

pZ|X ,Y (X ,Y,Z) =
κZ

4π sinhκZ
exp
(

κZ(X×Y )T Z
)
. (3)

Finally, the joint probability of a triplet X ,Y,Z can be inferred
from equations (1) to (3):

pX ,Y,Z(X ,Y,Z) = pZ|X ,Y (X ,Y,Z)pX |Y (X ,Y )pY (Y ). (4)



Figure 3: Prior / conditional probability distributions of the Manhattan
directions in the camera frame. From left to right: pY , pX |Y (Y0) and
pZ|X ,Y (X0,Y0). X0, Y0 are shown in dashed lines. κY = 50,κX = κZ = 30.

4 BAYESIAN ESTIMATION OF THE MANHATTAN VPS

Most VP estimation algorithms rely on segment lines extraction in
the image. Now that we have a prior distribution for the Manhattan
directions, we could define a likelihood using the line segments L as
measures, and solve a MAP pL|X ,Y,Z pX ,Y,Z in (S2)

3. However, the
high dimensionality of the prior would render this method compu-
tationally infeasible. In order to simplify the problem, we first es-
timate the local maxima in S2 of the posterior distribution pL|V pV ,
defined for any VP, using a spherical weighted mean shift. Then
the local maxima are considered as candidate Manhattan directions
and the MAP is solved on a discrete set of VP triplets.

4.1 Computation of candidate VPs
Line segments are detected in the image plane using LSD [10] and
divided into equal-length segments. When a set of line segments
li are converging to the same VP in the image plane, the normal
vectors ni of their great circle on S2 are laying in the same plane.
The normal vector of that plane is the VP direction V . We thus can
define the likelihood pL|V as:

pL|V (L,V ) =
1
C ∑

li∈L
exp

(
−
(nT

i V )2

2σ2

)
, (5)

where C is a normalizing term. A VP on S2 can be one of the three
Manhattan VPs or a non-Manhattan VP generated by the back-
ground structure. The prior probability of a VP V can therefore
be seeing as a mixture from all four causes:

pV (V ) = πX pX (V )+πY pY (V )+πZ pZ(V )+πN pN(V ), (6)

where pX (V ), pY (V ) and pZ(V ) are the marginal probabilities of
the Manhattan frame prior distribution pX ,Y,Z defined in equation
(4) and pN(V ) is a probability distribution on S2 that models the
non-Manhattan VPs. Following e.g. [6] and [9], we take πX = πY =

πZ = 1−πN
3 . In images where the Manhattan world assumption is

valid, non-Manhattan VPs are due to extraneous structures such as
striped awnings, rows of posts, etc., which are generally much rarer
than building structures. For that reason, we used πN = 0 in our
implementation. Fig. 2(right) shows a histogram of VPs sampled
from our prior distribution (6): as we can see, this histogram is close
to the one generated from ground-truth data (Fig. 2(left)) though a
bit more spread out, which allows us to handle a slightly larger
variability of VPs than the one obtained in the datasets.

To find the local maxima of the posterior distribution pL|V pV we
use a spherical weighted mean shift. V is sampled from the prior
distribution pV and P seeds are selected from that sampling. For
each seed V j we apply a mean shift on the sphere S2 over the previ-
ous sampling weighted by the likelihood. In a certain neighborhood

Nε (V j) we compute the weighted Karcher Mean µ j on S2 using the
Newton-like algorithm from [5] in the following minimization:

µ j = argmax
µ

∑
V∈Nε (Vj)

wV dg(µ,V ) (7)

with dg the geodesic distance on the sphere and the likelihood
weights wV

wV =
pL|V (L,V )

∑X∈Nε (Vj) pL|V (L,X)
. (8)

If the distance dg(µ j,V j) is not too small, V j becomes µ j and we
repeat the procedure until convergence. Mean shift has been proven
to perform a gradient ascent. Thus at the end of the mean shift we
get P maxima of the posterior distribution which are our candidate
VPs V =

{
V j
}

1≤ j≤P (Fig. 4).

Figure 4: Mean shift paths obtained with the image of the Hôtel de
Ville of Nancy: blue circles show the seeds, black crosses the steps
and red circles the convergence points.

4.2 Discrete resolution of the MAP
We now only have to find the MAP estimate over the discrete set V
of guesses:

max
(X ,Y,Z)∈V 3

pL|X ,Y,Z(X ,Y,Z)pX ,Y,Z(X ,Y,Z), (9)

where the prior pX ,Y,Z(X ,Y,Z) is given in equation (4) and the like-
lihood pL|X ,Y,Z(X ,Y,Z) is obtained using the independence of the
line segments li ∈ L:

pL|X ,Y,Z = ∏
li∈L

pni|X ,Y,Z (10)

= ∏
li∈L

(
πX pni|X +πY pni|Y +πZ pni|Z

)
(11)

where pni|V (ni,V ) = 1
σ
√

2π
exp(− (nT

i V )2

2σ 2 ).
Triplets of VPs are selected in V and the one maximizing the

posterior probability pX ,Y,Z|L ∝ pL|X ,Y,Z pX ,Y,Z is considered to be
the estimate X̃ ,Ỹ , Z̃ of the Manhattan frame in camera coordinate
system. In order to both reduce the combinatorial complexity of
the search and favor orthogonal triplets, we proceed as follow: first,
we select VPs from V that are inside a confidence region of the
Kent distribution pY (Y ) (1). These VPs are guesses for the vertical
Manhattan direction Y . Then, for each guess Yi, all candidate VPs{

X j
}

inside a confidence region of pX |Y (X ,Yi) (2) are selected. Fi-
nally, for each guess X j, candidate VPs {Zk} inside a confidence



Figure 5: Main steps of our facade detection algorithm illustrated with the rectified image of the Hôtel de Ville of Nancy. From left to right:
Corners classification (right-angle corners are in blue, non-right-angle corners in red). Delaunay triangulation of the right-angle corners (weights
on edges are mapped to the Jet colormap). Greedy rectangular min-cut (ranks of the rectangles are mapped to the Jet colormap).

region of pZ|X ,Y (X j,Yi,Z) (3) are selected and the posterior prob-
ability is assessed for all triplets

{
X j,Yi,Zk

}
. Note that specific

triplets X j,Yi,X j×Yi are added to the set of assessed triplets, which
allows us to handle images where only one horizontal Manhattan
direction is represented.

At the end of this procedure, the 3x3 matrix
(
X̃ |Ỹ |Z̃

)
is generally

not in SO(3), which may produce visually poor results in the recti-
fied image and compromise the detection of the right-angle corners
whose algorithm is presented in the next section. For that reason,
we eventually perform an iterative optimization of the expectation
of the log-likelihood:

max
R=(X |Y |Z)∈SO(3)

E
(

log pL|X ,Y,Z(X ,Y,Z)
)
. (12)

This procedure is initialized with the rotation matrix R0 =UV T ,
where UΣV T is the SVD of

(
X̃ |Ỹ |Z̃

)
. The cost function is pa-

rameterized with Euler angles and a quasi-Newton method is used
to perform the optimization. As R0 is generally close to the so-
lution, the convergence is very fast. Finally, using the intrinsic
camera projection matrix K we can compute the homographies
H1 = K (X |Y |Z)K−1 and H2 = K (Z|Y |−X)K−1 which rectify the
building facades aligned with resp. (X ,Y ) and (Z,Y ) planes.

5 FACADE DETECTION

To detect a coarse bounding box of the rectified facade we rely on
the fact that most facades are composed of right-angle architectural
features. Doors, windows, bricks, etc., share strong vertical and
horizontal components on their visual appearance. As it is difficult
to precisely quantify that vertical and horizontal edge distribution
for a right-angle feature, we learned the appearance of such features
using supervised classification.

To that purpose, a training set was built as follows. First, a set
of images coming from the York Urban database were rectified us-
ing the ground truth VPs. Then, corners where detected in these
images using Shi & Tomasi algorithm [18]. Histograms of Ori-
ented Gradient of 16 bins were used as descriptor of these corners.
These descriptors were computed by locally summing the gradient
values for a certain orientation rather than counting the edges [8].
A manual labeling step enabled supervised classification between
right-angle and non-right-angle corners using SVM classification.
About 5000 corners were labeled in almost equal proportion. SVM
performed fast and accurate classification, with a rate of 86% of
good classification on cross validation.

This classifier can be used to extract right-angle corners from
rectified facades (Fig. 5(left)). As facades of interest often appear
as rectangles in the rectified images, we want to enforce this geo-
metrical constraint in the clustering process. Therefore, we need a
measure to evaluate the clustering relevance of a rectangle over the

right-angle corners. For that purpose, we first perform a Delaunay
triangulation of the right-angle corners. That triangulation embeds
a graph structure which enables us to use min-cut cost as a cluster-
ing measure. The weights wi, j of the edges ei, j are function of the
distance between corners Ci and C j (Fig. 5(middle)):

wi, j = exp

(
−
∥∥Ci−C j

∥∥2

σ2

)
(13)

The choice of the Delaunay triangulation is motivated by the speed
of computation and the regularity of the faces generated from reg-
ular data. To find the best rectangle partition we start from the
bounding box of the triangulation and we split it recursively us-
ing a greedy approach based on the min-cut cost. The cost of a split
S(R,x) cutting a rectangle R through axis x into two subrectangles
RX and RX relies on the edges cut and the density of edges in the
subrectangles.

S(R,x) =
∑ei, j∈cut(RX ,RX )

wi, j

∑ei, j∈RX
wi, j

+
∑ei, j∈cut(RX ,RX )

wi, j

∑ei, j∈RX
wi, j

(14)

The idea is to scan the vertical axis x and the horizontal axis y
to find the minimum cost min

(
minx S(R,x),miny S(R,y)

)
where to

split the rectangle R. Then we repeat that procedure recursively on
the two subrectangles RX and RX until the min-cut cost S of the
whole partition {Rk}1≤k≤P is small enough, with

S =
P

∑
k=1

S(Rk) =
P

∑
k=1

∑ei, j∈cut(Rk ,Rk)
wi, j

∑ei, j∈Rk
wi, j

. (15)

Finally rectangles Rk are set to the bounding box of the corners
inside and ranked with respect to their partition score S(Rk) (Fig.
5(right)).

6 EXPERIMENTS

In this section, we present experimental results of our method on
real data. We first compare our algorithm for detecting the Manhat-
tan VPs with two state-of-the-art methods:

• Tardif’s method for detecting VPs with J-Linkage and LSD
[19], using the Matlab implementation available at 1,

• Lezama et al.’s method for finding VPs via points alignment
in primal and dual domains [15], using code available at 2.

1https://code.google.com/p/vpdetection/
2http://dev.ipol.im/˜jlezama/vanishing points/



We ran the three algorithms on the York Urban Database [9].
This database is composed of 102 images of indoor and outdoor
urban environments. In order not to bias the results, we used the
same set of line segments extracted with LSD [10] for each of the
three methods. In most of the images the 3 Manhattan directions
are visible but in some images there are only 2. The three methods
are compared using two different metrics for measuring the dis-
tance between the expected VPs and the ground-truth VPs. The
first metric M1 is the average of the geodesic distance on the sphere
from each ground truth direction to the expected direction. The sec-
ond metric M2 is the geodesic distance on SO(3) [11]. As M2 is
measured in the rotation manifold, it also embeds a measure of the
orthogonality of the solution. The cumulative error histograms ob-
tained for these two metrics are shown in Fig. 6.
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Figure 6: Cumulative error histograms for the York Urban DB using
M1 metric (left) and M2 metric (right).

Our prior information on the VPs regularizes the data. So even
when the set of line segments is noisy it can help the algorithm not
to fall into a meaningless local maximum and find the correct solu-
tion. That allows our algorithm to be more accurate than Tardif’s
method for both metrics. Lezama algorithm obtains the best results
when the M1 metric is used. However, their results are very similar
to ours when using M2. This is due to the fact that a triplet result-
ing in a small error with M1 can have much higher value with M2.
Each direction can be close to the ground truth direction but keep
away from the orthogonality of the triplet. As our main purpose
is image rectification, it is important that the solution remains on
SO(3). In our experiments, we noticed that an image looks visually
rectified roughly up to an error of 0.1 in M2 metric. We get 91/102
images under that threshold against 88/102 for Lezama and 83/102
for Tardif.

While in terms of accuracy our algorithm does not significantly
improve Lezama’s results, it is much faster (Tab. 1). This is mainly
due to the fact that we reduced both dimensionality and search
space (due to the prior) in our MAP solving. In our method the
execution time is dominated by the spherical mean-shift step. We
implemented this part of our Matlab code in C. However, it is im-
portant to notice that both Lezama and Tardif implementations also
use C code with Matlab wrapping for the time-consuming parts of
their algorithms.

Methods Lezama Tardif our
Mean time in seconds 11.30 2.66 1.49

Table 1: Comparison of the mean time per image on a Intel Xeon
W3565 Quadcore 3.2 Ghz with 8Go RAM

Results of our HOG+SVM corner classifier are shown on Fig.7.
For a building where both facades are visible, the non-rectified one
is almost completely devoid of right-angle corners. Rectangle clus-
tering generally fits a coarse bounding box of the facade. However,
it can be noticed that spurious right-angle corners are often detected
around the horizon line. This is not surprising, as any horizontal
line in the scene at the height h of the camera is projected to the
horizon line. As all vertical lines in the scene are orthogonal to

the horizon line in the rectified image, corners of the scene at the
intersection of a horizontal segment at height h (regardless of its
compass orientation) and a vertical segment are indeed right-angle
corners on the horizon line. Clusters of such corners generally have
a weak ranking in the partition, but can still lead to spurious facade
detections. As the main purpose is to limit matching hypothesis
oversegmentation of the facade is not a really a problem. However
a further merging step could find the biggest rectangle and discard
the false detection due to the horizon line.

7 CONCLUSION

We presented a method for facade rectification and detection in ur-
ban environment. A Bayesian inference approach was proposed to
recover the Manhattan directions in the camera frame. Our algo-
rithm performs better or as well as state-of-the-art techniques and
is much faster, mainly as a result of using a suitable prior. In ad-
dition, a SVM was used to identify right angle-corners in rectified
images. These corners were clustered into rectangular regions in
order to identify facades aligned with the Manhattan frame. This
approach performed very well in a large variety of frames.

Several improvements could be made to our algorithm. For in-
stance, in this work, the MAP estimate of our model is retained as
the VP triplet used for image rectification. However, as a result
of our algorithm, several candidate triplets are obtained associated
with probability measures. These candidate may be evaluated with
regard to criteria measured in the rectified image. For instance, the
ratio between the number of right-angle and non-right angle corners
may be such a criterion.

Now that we are able to automatically rectify and detect facades
in images, our future work will focus on feature matching between
faces of a 3D model and a new image, leading to a facade recogni-
tion and pose computation procedure. Of course, once a facade is
rectified, a much more appropriate strategy than the basic one pre-
sented in Fig. 1 can be found to match the facade with the model.
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