
HAL Id: hal-01235704
https://hal.science/hal-01235704v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed thermal tasks on many-body systems
through a single quantum machine

Bruno Leggio, Pierre Doyeux, Riccardo Messina, Mauro Antezza

To cite this version:
Bruno Leggio, Pierre Doyeux, Riccardo Messina, Mauro Antezza. Distributed thermal tasks on many-
body systems through a single quantum machine. EPL - Europhysics Letters, 2015, 112, pp.40004.
�10.1209/0295-5075/112/40004�. �hal-01235704�

https://hal.science/hal-01235704v1
https://hal.archives-ouvertes.fr


epl draft

Distributed thermal tasks on many-body systems through a single
quantum machine

Bruno Leggio1, Pierre Doyeux1, Riccardo Messina1 and Mauro Antezza1,2

1 Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier - F-34095 Montpellier, France
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Abstract –We propose a configuration of a single three-level quantum emitter embedded in a
non-equilibrium steady electromagnetic environment, able to stabilize and control the local tem-
peratures of a target system it interacts with, consisting of a collection of coupled two-level systems.
The temperatures are induced by dissipative processes only, without the need of further external
couplings for each qubit. Moreover, by acting on a set of easily tunable geometric parameters, we
demonstrate the possibility to manipulate and tune each qubit temperature independently over
a remarkably broad range of values. These findings address one standard problem in quantum-
scale thermodynamics, providing a way to induce a desired distribution of temperature among
interacting qubits and to protect it from external noise sources.

Introduction. – The study of thermodynamic phe-
nomena at the quantum scale is nowadays becoming more
and more challenging [1–12]. This is certainly due to
the rapid development of technologies capable of produc-
ing and addressing single quantum systems, which opened
in these last years an unforeseeable range of possibilities
to test and exploit quantum features at different scales
[13–19]. One of the most investigated quantum thermo-
dynamic systems is what goes under the name of absorp-
tion quantum thermal machine [20–24], under its many
different forms. Studies of non-equilibrium or many-body
quantum heat engines have been presented in [25,26]. Nev-
ertheless, in the field of quantum absorption thermal ma-
chines a full account of the role of many-body interactions
is still missing. Indeed, the theoretical description of their
functioning has been mostly limited to models consisting
of very few quantum systems, usually few two-level sys-
tems (2LSs or qubits) or three-level systems (3LSs), ex-
tracting heat from independent macroscopic reservoirs in
order to perform thermodynamic tasks. Two regimes have
received particular attention: the one under which a 3LS
or few 2LSs can produce a steady heat flux between two
macroscopic reservoirs [20,21,23,24], and the situation in
which a quantum 3LS can tune the temperature of a single
qubit [20,22,27,28], achieving either its refrigeration or its
heating. Both these setups, although supplying important

insight into quantum thermodynamics, cannot give a full
account of the underlying atomic-scale thermodynamics,
since the former does not allow any quantum correlations
between the machine and its target, while the latter can-
not account for collective phenomena in the target body.
Thus the fundamental regime in which quantum effects
are combined with many-body correlations in the under-
lying thermodynamic structure of machine-target interac-
tion has not yet been explored.

Up to this level of description, the delivery of a thermo-
dynamic task to a collection of nq qubits would require the
use of nq machines. An even worse scenario is met when
different local tasks must be delivered to a many-qubit
system, the goal being to bring each qubit to a different
temperature. In this case, in addition to nq machines,
also nq sets of macroscopic reservoirs must be supplied,
as their temperatures fix the steady task a machine can
deliver.

A standard problem of this kind usually met in exper-
iments is the necessity to keep interacting qubits at dif-
ferent temperatures in order for them to mediate and sus-
tain steady energy flux from a colder to an hotter object,
as theoretically proposed in [20, 23, 27]. However, practi-
cal realizations of this idea have been facing the nontriv-
ial problem of keeping each qubit in thermal equilibrium
with its corresponding object without allowing qubit-qubit
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Fig. 1: The physical setup consists of an OTE electromagnetic
field produced by a sapphire slab of thickness δ, at temperature
TS , embedded in a thermal blackbody radiation at temperature
TW 6= TS . Such a field plays the role of Markovian environment
for a system of quantum emitters (atoms), all placed at the
same distance z from the slab surface: the qubit system is the
target body, on which the three-level machine M (at distance
r from all the qubits) delivers thermodynamic tasks.

thermalization [16]. The need arises then for a simple and
realistic scheme to induce a steady temperature distribu-
tion among many interacting 2LSs.

In this Letter we address this need, proving at the same
time that nq different temperatures on nq qubits can be
imposed and maintained through a single 3LS system and
a single realistic out-of-thermal-equilibrium (OTE) elec-
tromagnetic environment. As we will show, this multi-
tasking quantum thermal machine needs only two thermal
baths and it can realize a broad variety of tasks. The
temperatures induced by it on a set of qubits are eas-
ily tunable just by changing geometric parameters of the
many-body target, even without modifying the tempera-
ture of the bath.

Physical system. – Our multitasking machine is
shown in Fig. 1. A sapphire slab of finite thickness
δ = 0.05µm (whose optical data are taken from [29]) is
kept at a fixed temperature TS = 900 K by means of a
standard reservoir, and embedded in the blackbody radia-
tion held at room temperature TW = 300 K by the second
thermal bath. The resulting electromagnetic field in the
empty space thus neither is a blackbody radiation nor has
a well defined temperature. Moreover, its spectral features
are affected by the dielectric response function of the slab.
At a distance z from the slab a collection of quantum emit-
ters (the target body TB and the 3LS machine M, hereby
collectively referred to as atoms) is placed. In particular,
the target body consists of a collection of nq 2LSs, with all
the qubits lying on a circle of radius r and having the same
transition frequency ωa. Finally, a 3LS is placed at the
center of the circle. Its three transitions, all allowed, have
different frequencies and one of the two low-frequency ones

is in resonance with the qubits, while the high frequency
transition is resonant with the first electronic resonance
of sapphire at ωS = 0.81 × 1014 rad/s. We choose here
ωa = 0.1ωS . These parameters are known to produce the
optimal working condition for the 3LS machine to act on
a single qubit [22]. The total Hamiltonian of the system is
HT = He +Hf +Hef , where He is the free Hamiltonian of
the quantum emitters, Hf is the one of the electromagnetic

field and Hef = −
∑nq

n=1 dn ·E(Rn)−
∑3

t=1 d
(t)
3LS ·E(R3LS),

describing the coupling between each emitter transition
and the field E under the dipole approximation. Here dn,
n = 1, . . . , nq is the field-induced dipole of the n-th qubit

at position Rn, while d
(t)
3LS is the field-induced dipole of

the t-th transition of the 3LS at position R3LS. All these
dipoles are here assumed to have the same magnitude.

In the limit of weak emitters-field coupling [30], the dy-
namics of the state ρ of the sole atomic part of the system
can be described by means of the Markovian master equa-
tion [11,31,32]

ρ̇ = − i
~
[
Hat, ρ

]
+DTB(ρ) +DM(ρ) +Dnl(ρ), (1)

having introduced the effective atomic Hamiltonian Hat =
He + Hint, consisting of the free part and of the dipole-
dipole coupling between each pair of resonant atomic tran-
sitions, corresponding to exchange of virtual photons be-
tween two atoms.

For two resonant transitions i and j, the coupling term
has the form hij = Λij(σ

†
iσj +σ†jσi) and Hint =

∑
i<j hij .

Here σi (σ†i ) is the lowering (raising) operator of transition
i and Λij is a dipole-dipole coupling term whose expression
in terms of the system parameters can be found in [31].

The dissipative part of the dynamics, accounted for by
the term DTB(ρ)+DM(ρ)+Dnl(ρ), is described by super-
operators of the general form

L(a, b) = aρb† − 1

2

{
b†a, ρ

}
. (2)

The two dissipative terms DTB(ρ) and DM(ρ) charac-
terize in particular local coupling of each transition in
the target body and in the machine with the electro-
magnetic environment. They have the form of standard
thermal-like dissipation, which for the i-th transition reads
Dloc

i = γ+i D
em
i (ρ) + γ−i D

ab
i (ρ), where Dem

i (ρ) = L(σi, σi)

and Dab
i (ρ) = L(σ†i , σ

†
i ) describe respectively emission and

absorption of a photon through the transition i. Therefore
DTB(ρ) +DM(ρ) =

∑
iD

loc
i .

Finally, the dissipative term Dnl(ρ) couples resonant
transitions, and is the real counterpart of the virtual pro-
cess given by Hint: it describes processes in which pairs
of resonant transitions i and j collectively emit or absorb
real photons into/from the field. For a fixed pair, this
process is given by Dnl

ij = γ+ijD
em
ij (ρ) + γ−ijD

ab
ij (ρ), where

Dem
ij (ρ) = L(σi, σj) and Dab

ij (ρ) = L(σ†i , σ
†
j ) have the same

structure of Dem
i (ρ) and Dab

i (ρ), but describe collective
two-atom emission and absorption processes.
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All these effects are a manifestation of emitters-field in-
teraction, and their rates γ±i , γ

±
ij and Λij are given in terms

of the OTE field correlation functions, which at station-
arity can be exactly calculated [33–35]. They depend on
the transition frequency, the interatomic separations, the
atoms-slab distance, the dipole orientations and the slab
dielectric properties, geometry and temperature. The de-
tailed expressions for all these parameters are derived and
discussed in [31].

Two transitions at different frequencies, all the other pa-
rameters being the same, have thus different photon emis-
sion/absorption rates. In other words, they feel their re-
spective local environments at different temperatures, the
associated Boltzmann factor at the transition frequency
being γ−i /γ

+
i . As a consequence, the 3LS perceives three

different field temperatures on its three transitions, such
that its populations do not follow a simple thermal dis-
tribution [11, 22]. Referring to the three levels of M as
|0〉, |1〉 and |2〉, if the transition |0〉 ↔ |1〉 is in contact
with a colder effective environment than the transition
|0〉 ↔ |2〉, the dynamics thus induced tends to increase
the ratio p2/p0 and to reduce p1/p0. As such, this process
has the net effect of increasing the ratio p2/p1 which is
equivalent to increasing the temperature θM of the tran-
sition |1〉 ↔ |2〉 (defined through its Boltzmann factor
p2/p1 = exp

[
− ~ω12/(kBθM)

]
).

The OTE field is thus an optimal tool to manipulate
the temperatures of atomic transitions in a 3LS. If, in
turn, the 3LS is coupled to a qubit through the resonant
dipole-dipole interaction Λ on its transition |1〉 ↔ |2〉, such
a 2LS will thermalize to a temperature θ2LS intermedi-
ate between θM and the one of its effective environment
(hereby referred to as Tenv) [22]. Since Tenv is the natural
temperature at which the qubit would thermalize in the
absence of M, any difference between θ2LS and Tenv sig-
nals the achievement of a thermal task by the 3LS on the
2LS. In particular, when Λ � γ+2LS (which is the case for
a broad range of machine-qubit distances [31]), the qubit
temperature θ2LS will be steadily driven very close to the
one of M. Through this mechanism, it has been shown in
[22] that a qubit can be refrigerated, heated up and even
brought to population inversion by the same field-machine
configuration, just by changing the atoms-slab distance z.

The purpose of this Letter is to exploit this mechanism
to induce a steady distribution of temperatures θn on nq
qubits, with in general θn 6= θm for n 6= m in 1, . . . , nq.

Machine-induced thermodynamics. – In tackling
this question, we analyze a model system where the target
body is composed of nq = 4 qubits. Initially each 2LS is
placed on one vertex of a square inscribed in the circle on
which the qubits lie, which defines the xy plane as shown
in Fig. 2. Their dipoles, all of the same magnitude, point
toward the center of the circle where the machine M is
placed. The dipole of M points toward one 2LS, labeled
as qubit 1. This corresponds to the configuration shown in
Fig. 2 with ϕ = 0. All the results shown here are obtained

Fig. 2: Model system. Four 2LSs are placed along a circle
around the 3LS M, with their dipoles pointing always toward
M. The grey configuration for qubit 1 corresponds to the reg-
ular disposition of qubits, and it defines the value ϕ = 0. Such
a configuration also defines the reference frame of the system,
with the x and y axes oriented as in the figure.

with the open-source package QuTiP [36].
The pair {M, 1} is thus in a configuration analogous to

the one studied in [22]. Fig. 3 gives the steady tempera-
tures θk, k = 1, . . . , 4 of each qubits versus z for r = 75µm,
compared with the steady temperature τ1 reached by the
2LS in the 1-qubit case with the same qubit-machine dis-
tance. For graphical purposes, Fig. 3 shows the behaviour
of −1/θk, −1/τ1 and −1/Tenv, with the correspondent
values of temperature given on the right vertical scale.
The temperature of each qubit induced by their interac-
tion with M follows the same qualitative z-behaviour and
the same tasks as the one achieved for the single qubit
case. Thus, despite a quantitative change between the
1- and the 4-qubit configurations (∼ 70% for the peak
in population inversion, ∼ 0.6% for the peak in refriger-
ation), this thermodynamic setup can deliver tasks also
on many-qubit systems. However, as one sees from Fig.
3, all the qubits temperatures are almost the same, thus
no significative steady distribution can be achieved in this
configuration. For instance, note that in this regular dis-
position of qubits, θ1 = θ3 and θ2 = θ4, all of them being
anyway much closer to each other than to Tenv.

Before proceeding further, note that the regular 2LSs
disposition just considered is quite a particular one, be-
ing characterized by the fact that the dipoles of qubits 2
and 4 are orthogonal to the one of M, all of them being
parallel to the slab surface. In this condition, neither the
dipole-dipole coupling Λ nor the collective dissipation γij
couples M to 2 and 4 [31]. This means that qubits 2 and
4 do not perceive at all the presence of M. Their tem-
perature change with respect to Tenv is thus due to their
interaction with the rest of the qubits system, which on
the one hand undergoes the effect of M and, on the other,
relays this effect on the pair {2, 4}. This is an example
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Fig. 3: Steady qubits temperatures, represented as −1/θk for
k = 1, 3 (long-dashed red line), for k = 2, 4 (short-dashed blue
line), −1/τ1 for the 1-qubit case (solid black line), compared
with the qubits environmental temperature Tenv (dot-dashed
green line), versus the atoms-slab distance z. The qubits
are in a regular disposition, being placed on the vertices of
a square, with their dipoles pointing toward the circumcenter
of the square. In both the 1-qubit and the 4-qubit cases, the
2LS-machine distance is r = 75µm.

of very effective interplay among dissipative effects, atom-
atom pairing (the interaction between M and each atom
of the pair {1, 3}) and many-body interactions within the
target body. As a consequence, we argue that by tun-
ing one of these two features one can exert a control on
the way the machine task is distributed among the 2LSs.
In particular, we will consider two control parameters in
what follows: the geometrical position of atom 1 along
the circle circumscribing the square and the direction of
the dipole of atom 4. Both of these parameters will affect
one or both of the two fundamental interactions on which
the task distribution is based. In particular, moving one
qubit along the circle will change its coupling strength
with both the other 2LSs and M, introducing a bias in the
many-body interactions within the target body and in the
machine-body coupling. The orientation of the dipole of
an appropriately chosen 2LS, on the other hand, will only
affect its interaction with the rest of the qubits.

External control of the steady temperature dis-
tribution. – Consider thus the atomic system to be
placed at a distance z ' 2.7µm from the slab, where
the peak of population inversion is achieved for a single
qubit. We now begin to change the position of qubit 1,
by rotating it of an angle ϕ around the point where the
machine is placed, as shown in Fig. 2. Whereas its dipole
always points toward M, its interaction with the rest of the
qubits will significantly change, growing much stronger as
qubit 1 approaches one of the other 2LSs. For each an-

Fig. 4: Steady qubits temperatures represented as −1/θk for
k = 1 (solid blue line), 2 (long-dashed red line), 3 (short-dashed
blue line) and 4 (dot-dashed green line), versus the angular
displacement ϕ of qubit 1. The other geometrical parameters
are z ' 2.7µm and r = 75µm. The plateau regions correspond
to the approach of one of the values ϕ = (k − 1)π/2 for k =
2, 3, 4 (the atomic positions are represented by colored circles)
and describe the situation of very strong coupling between two
qubits. The upper horizontal scale reports the values of the
linear distance rϕ travelled by qubit 1 along the circle.

gle ϕ, we imagine to wait long enough for the system to
reach a steady state, referred to as ρ(ϕ) and depending on
the angular position ϕ ∈ [0, 2π] of qubit 1. All the ther-
modynamic quantities evaluated on this state will then be
functions of ϕ. ϕ is defined such that ϕ = (k−1)π/2 corre-
sponds to the regular position of qubit k = 1, 2, 3, 4 on the
square. Of course, the three positions ϕ = π/2, π, 3π/2,
where qubit 1 would sit on top of another 2LS, are ide-
alized situations, and correspond to infinite interaction
strength Λ. These values of ϕ must then be read as lim-
iting cases for two qubits being much closer to each other
than to any other constituent of the atomic system.

Fig. 4 reports the steady temperatures of each 2LS as a
function of ϕ. As one can see, the temperature of qubit 1
gets strongly modulated by ϕ, repeatedly crossing the pop-
ulation inversion line. Moreover, depending on its angular
displacement, qubit 1 interacts very strongly with one of
the other 2LSs, such that the pair is effectively decoupled
from the rest of the atomic system. In these cases, the
temperatures of qubit 1 and of its paired 2LS fall down to
the value of Tenv (the lower plateau around 350 K). This is
due to the fact that very strong correlations between qubit
1 and its paired 2LS are built due to the vicinity of the 2
atoms, a situation in which monogamy forbids the pair to
create any kind of correlations with anything external. As
such, the paired atoms are completely decoupled from the
machine and, as a consequence, equilibrate with their lo-
cal environment. The width of these plateaus corresponds
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to the regime in which the dipole-dipole interaction am-
plitude Λ1j between the paired atoms is much larger than
any other coupling strength of the system. Note indeed
that, in a broad range of ϕ before and after such plateaus,
the temperatures of the two paired qubits are almost over-
imposed. The central plateau at ϕ = π is special, as it
corresponds to a complete decoupling of the target body
from the machine. This is due to the dipole orientation
chosen here: 1 and 3 are strongly paired and as such de-
coupled from M, while the two 2LSs left do not directly
interact with M whatsoever due to their dipoles being or-
thogonal to dM. As such, the machine is unable to deliver
any task on TB, which thermalizes as a whole with the
environment at Tenv.

The regions around plateaus provide thus a mechanism
to significantly divide the 2LSs temperatures into two
groups, one at positive and one at negative values in the
example analyzed here (and, more in general, one close to
θM and one close to Tenv). But probably the most inter-
esting region for the purpose of creating a steady temper-
ature distribution in TB is the one in between two con-
secutive plateaus. For π/2 < ϕ < π, for instance, the four
qubits temperatures are all different, the same happening
for π < ϕ < 3π/2. Given the radius of the circle on which
qubit 1 moves, the linear difference between the two posi-
tions at ϕ = π/2 and ϕ = π is approximately of 106µm (or
117µm along the circle), which is a realistic and achievable
scale of distances between two quantum emitters in real
experiments [37]. Within this scale, a broad distribution
of steady qubit temperatures can be realized: consider the
exemplary case of ϕ = 2.5 rad: the four qubits tempera-
tures are θ1 = −1190 K, θ2 = 6700 K, θ3 = −1820 K and
θ4 = 1280 K.

We stress here that any dissipative dynamics inducing
different states on single constituents of a many-qubit sys-
tem creates a distribution of local temperatures, since a
2LS is always in a Gibbs state. The novelty here is the
achievement of a detailed control over such a distribution
only by means of geometrical parameters. In particular,
by appropriately modulating z, ϕ and possibly r one can
exert such control over local thermal state of each con-
stituent of the multipartite target body. Such an effect
is also very robust against interaction with thermal reser-
voirs in the weak-coupling limit, as already signaled by the
difference between θk of each qubits and Tenv of their elec-
tromagnetic bath. One can thus engineer proper values
of local qubit temperatures in order to assure the proper
functioning of them as, for instance, thermal machine for
macroscopic bodies [20]. Note that the physics just de-
scribed remains the same when analyzed at different values
of z, the only difference being in the range of values for the
various θ. Such a range is indeed fixed to be a subinterval
of [Tenv, θM] (or of [θM, Tenv] in the case of refrigeration).

The second parameter whose tuning we want to explore
is the direction of one of the qubits dipoles, as shown in
the inset of Fig. 5. We choose here in particular the 2LS
we refer to as qubit 4 in Fig. 2. Its feature is to have

Fig. 5: Steady qubits temperatures represented as −1/θk for
k = 1, 3 (dot-dashed green line), 2 (long-dashed red line) and
4 (solid black line), versus the orientation α of the dipole of
qubit 4. The other geometrical parameters are z ' 2.7µm and
r = 75µm.

its dipole orthogonal to the one of M, and as such not to
interact directly with it. As a consequence, a rotation of
its dipole in the plane yz, as represented in the inset of Fig.
5, keeps the 2LS always decoupled from the machine and
only affects its interaction with the rest of the qubits. Fig.
5 shows the dependence of the qubits temperatures on the
angle α between the direction of the dipole of qubit 4 and
the z axis. As such, α = 0 means a dipole orthogonal
to the atomic plane and thus to the slab surface, while
α = π/2 corresponds to the dipole pointing toward the
machine.

The possibility of controlling the value of θ4 is evident
here, the temperature ranging continuously from 386 K for
α = 0 to −2022 K for α = π/2. The values of the other
three qubits temperatures are only slightly affected by α
and are relatively close to each other. As such, the rota-
tion of one dipole is an efficient mechanism to decouple
the temperature of one qubit from the rest of the system,
and to assign it a steady value at will. The underlying
mechanism must of course be looked for in the structure
of dipole-dipole coupling: for α = 0, qubit 4 is decou-
pled from the rest of the atomic system 1 and as such
thermalizes with its local environment at the temperature
Tenv = 386 K. By increasing α one triggers and strength-
ens the coupling of the 2LS labeled as 4 with the rest of
the target body, and starts receiving then, indirectly, the

1As a matter of fact, having fixed a particular pair of atoms and
calling ŵ the direction joining two atoms and ĥ the one perpendicu-
lar to the atomic plane, a wh interaction between dipoles exists, due
to the electromagnetic contribution of the slab [31]. In practice, how-
ever, such an interaction is negligibly small with respect to co-planar
dipoles couplings and will thus have no detectable consequence on
the qubits thermodynamics.
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task of the machine. As long as the qubit-qubit coupling
is comparable with the coupling of qubit 4 with its local
environment, however, the steady value of θ4 will be some-
thing in between Tenv and θM. This competition between
the driving of the local field and the task of the machine
varies continuously and smoothly with α, allowing one to
adjust it at will. Finally, for α big enough, the machine
effect becomes dominant and θ4 becomes almost indepen-
dent on the dipole orientation of qubit 4.

Conclusions. – In this Letter, we have demonstrated
the possibility of externally control and distribute the tem-
perature of each constituent of a many-qubit quantum sys-
tem. The mechanism we propose is simple and yet power-
ful and stable: by means of a single three level system and
an out-of-thermal-equilibrium steady electromagnetic field
one can tune and stabilize the local qubit temperatures to
values at will in a remarkably broad range, only depending
on the details of the three level system and of the realistic
parameters characterizing the electromagnetic field. The
local temperatures can be easily tuned, by means of easily
handleable parameters such as qubits position or dipole
orientations. The OTE field naturally mediates for the in-
teraction between qubits and between them and the 3LS.
Moreover, the latter is usually much stronger than the one
between each qubit and a possible thermal reservoir con-
nected to it, such that our paradigm overcomes the usual
problem of obtaining a configuration of interacting qubits
having however strongly different temperatures. This need
arises when practically realizing microscopic machines to
produce steady heat fluxes between meso- or macroscopic
reservoirs [20], for which each of the interacting qubits
must also be in local thermal equilibrium with one of these
reservoirs.

Our results thus pave the way for the practical exploita-
tion of the new generation of microscopic and quantum
thermal machines recently thoroughly studied.
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