Distributed thermal tasks on many-body systems through a single quantum machine
Résumé
We propose a configuration of a single three-level quantum emitter embedded in a non-equilibrium steady electromagnetic environment, able to stabilize and control the local temperatures of a target system it interacts with, consisting of a collection of coupled two-level systems.The temperatures are induced by dissipative processes only, without the need of further external couplings for each qubit. Moreover, by acting on a set of easily tunable geometric parameters, we demonstrate the possibility to manipulate and tune each qubit temperature independently over a remarkably broad range of values. These findings address one standard problem in quantum-scale thermodynamics, providing a way to induce a desired distribution of temperature among interacting qubits and to protect it from external noise sources.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...