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Abstract

Two event-triggered algorithms for digital implementation of a continuous-
time stabilizing controller are proposed in this work. The first algorithm
updates the control value in order to keep the time evolution of a given
Lyapunov-like function framed between two auxiliary functions; whereas the
second one actualizes the control value so that the state trajectory of the
system stays enclosed between two a priori defined templates. In both cases,
a natural hybrid formulation of the event-based stabilizing control problem is
used to prove the main results of this work. Furthermore, the existence of a
minimum inter-event time greater than zero is proved. Numerical simulations
are provided to illustrate the digital implementation of the event-sampling
algorithms for nonlinear systems.

Keywords: Hybrid systems; Lyapunov methods; global asymptotic stabil-
ity; event-triggered sampling; reachability analysis

1. Introduction

Usually, state feedback control laws applied to dynamical systems are im-
plemented digitally; and the core idea of this discrete-time implementation
consists in sampling the continuous-time control law periodically with a suf-
ficiently small sampling period. However, this procedure may be constrained
in practice. On the one hand, reducing the sampling period to a level that
preserves acceptable performance of the controlled system requires a fairly

1This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
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powerful and so expensive hardware [8]. On the other hand, today’s systems
are complex and compound by several subsystems controlled by a single
CPU. Consequently, reducing the communication between the CPU and the
subsystems is a challenge of great interest which allows enhancing the ability
to control more complex systems and reducing energy consumption.

To reach this goal, numerous control strategies called event-based ap-
proaches have been proposed in the literature, see [14] for a recent framework
encompassing the most recent existing event-triggered control techniques.
They aim to update the control value only when a significant event occurs.
Usually, this event is defined as a deviation threshold on the state vector
or on the input vector. In this work, new criteria to design event-triggered
sampling algorithms for a large class of nonlinear systems are proposed where
the control updating decision is based on the dynamical behavior of auxiliary
systems.

The first sampling algorithm updates the control value in order to guaran-
tee that the Lyapunov-like function of the event-based system stays framed at
each time instant between the Lyapunov functions of the auxiliary systems.
The global stability of the event-controlled system is guaranteed without re-
quiring the ISS stability of each subsystem and satisfying a supplementary
small gain condition as needed in [3], where scalar interconnected systems are
considered. The second sampling algorithm is based on a component by com-
ponent comparison of the plant state with a priori defined state templates.
In fact, in this case, the control updating procedure aims to force the state
trajectory of the event-based system to never leave the state enclosure gener-
ated by the auxiliary systems. Moreover, the existence problem of a minimal
inter-event time bigger than zero is solved. This algorithm is inspired from
the design of event-based controllers by using dead-band methods (see e.g.,
[9] for an introduction of this method). Consider in particular [13] where
only single-input-single-output linear systems are considered. See also recent
papers on send-on-delta control techniques dealing with bandlimited signal
as in [2].

A preliminary version of this work focused on the case of linear systems
has been presented in [11].

The paper is organized as follows. In Section 2 preliminary definitions
and notions about hybrid systems, useful to prove our main contributions,
are introduced. The problem under consideration is formulated in Section 3
as stability issue of hybrid systems. Sections 4 and 5 state the main contri-
butions of this work regarding the design of event-triggered state feedback
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controls for nonlinear systems. Numerical simulations are provided in Sec-
tion 6 when focusing on a nonlinear system borrowed from [3]. Section 7
collects concluding remarks.

Notation. In this article the Euclidean inner product of two vectors x and
y will be denoted by x·y, the induced norm will be denoted by |·|. Given a set
A, and a point x, |x|A is the distance of x relative to A, that is infz∈A |x−z|.
intA and A stand respectively for the interior and the closure of A. Given
a vector x in Rn, x> stands for the transpose of x. The Lie derivative of a
function V with respect to the vector f , i.e., ∇V · f will be denoted by LfV .
The inequality operators ≺, �, � and � between vectors must be understood
component by component, e.g. x ≺ y if and only if xi < yi for all i where
xi and yi are the ith components of x and y respectively. The i-th vector of
the canonical basis is denoted by ei. A function α : [0,∞)→ R is of class K
if it is zero at zero, continuous and strictly increasing. It is of class K∞ if it
is of class K and is unbounded. A function ρ : [0,∞) → R belongs to PD
(positive definite) if it is continuous, ρ(s) > 0 for all s > 0 and zero at zero.

2. Basic notions on hybrid systems

This section is devoted to briefly introduce basic definitions and notions
on hybrid systems [6] needed to prove the main results of this paper. By
definition, hybrid systems are complex dynamical systems that exhibit both
continuous and discrete dynamic behavior and viewed as a set of ordinary
differential equations (ODE) governed by a finite-state automaton [6]. Math-
ematically, these dynamical systems can be described as follows

ẋ = f(x), if x ∈ F ,

x+ ∈ g(x), if x ∈ J ,
(1)

where x ∈ Rn stands for the state of (1) with the vector field f : Rn → Rn.
The set-valued mapping g : Rn ⇒ Rn is the reset function of (1). The sets
F and J are two closed subsets of Rn respectively called flow and jump
sets. Note that, in this work, the design of the two event-triggered sampling
algorithms is based on the flow and jump sets. We will define these sets later.

So, the hybrid dynamics involve the notion of compact hybrid time domain
(see [6, Definition 2.3]). A set E is a compact hybrid time domain if

E =
J−1⋃
j=0

([tj, tj+1], j) ,
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for some finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ . It is a hybrid time
domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . J}) is a compact hybrid
time domain. A solution x to (1) consists of a hybrid time domain dom x
and a function x : dom x→ Rn such that x(t, j) is absolutely continuous in
t for a fixed j and (t, j) ∈ dom x satisfying

(S1) for all j ∈ N and almost all t such that (t, j) ∈ dom x,

x(t, j) ∈ F , ẋ(t, j) = f(x(t, j)),

(S2) for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j) ∈ J , x(t, j + 1) ∈ g(x(t, j)).

When the state x(t, j) belongs to the intersection of the flow set and of
the jump set, then the solution can either flow or jump. Let us emphasize
that the state of (1) should be either in F or in J , and there is no solution
issuing from Rn \ (F ∪ J ).

A solution x to (1) is said to be complete if its domain is unbounded
(either in the t-direction or in the j-direction), Zeno if it is complete but
the projection of dom x onto R≥0 is bounded, and maximal if there does not
exist another solution x̃ to (1) such that x is a truncation of x̃ to some proper
subset of its domain. Hereafter, only maximal solutions will be considered.

In literature (see e.g. [6, Definition 3.6]), one associates to the hybrid
system (1) the following stability definition.

Definition 1. Let A be a closed subset of Rn and H be the hybrid system
defined in (1). The set A is said to be

• stable for H: if for each ε > 0 there exists δ > 0 such that each solution
x to H with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all (t, j) ∈ dom x;

• pre-attractive forH: if all complete solutions satisfy limt+j→∞ |x(t, j)|A =
0;

• globally pre-asymptotically stable for H: if it is both stable and pre-
attractive for H;

• globally asymptotically stable for H: if it is globally pre-asymptotically
stable for H and if each solution to H is complete.
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3. Problem statement

Consider a nonlinear system

ẋp = fp(xp, u), (2)

where fp: Rnp × Rm → Rnp is continuously differentiable, xp stands for the
state of the plant and u stands for the control.

Assume that there exists a continuous state feedback control law u =
k(xp) for which system (2) in closed loop with k is globally asymptotically
stable. Then, the aim of this work is to design event-based sampling al-
gorithms for the stabilizing state feedback control u = k(xp) by combining
reachability analysis with stability analysis of hybrid systems. These sam-
pling algorithms depend on the state of two auxiliary autonomous systems

ẋa = fa(xa), (3a)

ẋb = fb(xb), (3b)

as illustrated by Figure 1. In (3), fa : Rna → Rna and fb : Rnb → Rnb are
two continuously differentiable functions.

ẋp = fp(xp, s)

ṡ = 0

s+ = k(xp)

x ∈ F ?

x ∈ J ?

s xp

F
J

ẋa = fa(xa)

ẋb = fb(xa)

xa

xb

Figure 1: Event-based sampling algorithm for the state feedback controller k(xp)

So, the closed-loop system presented in Figure 1 is more formally written
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as a hybrid system H

H :


ẋp = fp(xp, s)
ẋa = fa(xa)
ẋb = fb(xb)
ṡ = 0

x ∈ F ,


x+p ∈ {xp}
x+a ∈ ka(xa, xp)
x+b ∈ kb(xb, xp)
s+ ∈ {k(xp)}

x ∈ J ,

(4)

where x = (x>p , x
>
a , x

>
b , s

>)> in Rn stands for the state of this system, n =
np + na + nb + m, ka and kb are two set-valued mappings defining the dis-
crete dynamics of xa and xb components, and F and J are two closed sets.
Roughly speaking, this hybrid implementation is the data of a flow and a
jump condition, that define respectively when holding and when updating the
control input of system (2). To prove our main results, and to derive these
piecewise-constant controller design methods, it is assumed that a Lyapunov
function for the closed loop system ẋp = fp(xp, k(xp)) is available (without
any ISS property), see Assumption 1 below for a precise statement of the
needed hypothesis.

4. Comparing values of Lyapunov functions (Algorithm 1)

The core idea of the first algorithm is to keep the time evolution of a
Lyapunov-like function Vp of (2) with a piecewise constant input framed
between two systems called respectively slow system (with state Vs) and fast
system (with state Vf ). To achieve this goal, first, this algorithm detects
online the time instants when the Lyapunov-like function reaches one of
the boundary Lyapunov functions. Then, it updates the control values in
order to redirect the Lyapunov-like function towards the inside of the region
formed by the slow system with state Vs and fast system with state Vf . This
procedure is illustrated in Figure 2.

In this framework, systems (3a) and (3b) will be respectively called slow
and fast systems because their Lyapunov functions will bound the Lyapunov
function for (2). In the sequel, indices (a, b) are replaced by (f, s) to better
fit the context of the present section.

The following assumption will be useful to derive our first main result.
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Figure 2: Graphical illustration of the first event-based sampling algorithm.

Assumption 1. There exist an open set O ⊂ Rnp+np+np containing the ori-
gin, a continuous function k : dom k → Rm, a continuously differentiable
function Vp : dom Vp → R, a function ρs ∈ K such that,
• for all xp ∈ dom k, it holds

α1(|xp|) ≤ Vp(xp) ≤ α2(|xp|); (5)

• domVp = dom k and domVp × domVp × domVp contains a neighborhood
of O
• for all (xp, xf , xs) ∈ O, it holds

(xp, xp, xp) ∈ O , k(xp) ∈ dom k (6)

• for all (xp, xf , xs) ∈ O, 0 6= Vp(xf ) ≤ Vp(xp) ≤ Vp(xs), it holds

Lfp(.,k(.))Vp(xp) < LfsVp(xs),
LffVp(xf ) < Lfp(.,k(.))Vp(xp),

LfsVp(xs) ≤ −ρs(|xs|).
(7)

Remark 1. For a given closed-loop asymptotically stable nonlinear system
ẋp = fp(xp, k(xp)), the slow and fast systems can be respectively defined as
follows

ẋs = −βsfp(xs, k(xs))
ẋf = −βffp(xf , k(xf ))

where βs ∈ (0, 1) and βf > 1. This approach is employed for the example
considered in Section 6 below. ◦
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Remark 2. A stronger assumption than Assumption 1 is when it is assumed
moreover that O = Rnp+np+np and when the functions k and Vp are defined
on all the space. It yields the following more restrictive assumption:
There exist a continuous function k : Rnp → Rm, a continuously differentiable
function Vp : Rnp → R, two functions α1 and α2 ∈ K∞ and a function ρs ∈ K
such that, for all (xp, xf , xs) ∈ Rnp+np+np , 0 6= Vp(xf ) ≤ Vp(xp) ≤ Vp(xs), it
holds

Lfp(.,k(.))Vp(xp) < LfsVp(xs),
LffVp(xf ) < Lfp(.,k(.))Vp(xp),

LfsVp(xs) ≤ −ρs(|xs|).
◦

So, the first main result is to find appropriate sets F and J so that
the attractor is globally asymptotically stable for the hybrid system H. This
problem will be solved in Theorem 1 below under Assumption 1, by exploiting
Lyapunov methods for hybrid systems (borrowed mainly from [6]).

4.1. First main result

Using Assumption 1, it is possible to exploit the comparison of the values
of the Lyapunov function Vp and to derive a piecewise-constant feedback law
for the nonlinear control system (2). This is done in our first main result:

Theorem 1. Under Assumption 1, the set {0}× {0}× {0}×Rm is globally
pre-asymptotically stable for the hybrid system H defined by

F = {x ∈ O × dom k, Vp(xf ) ≤ Vp(xp) ≤ Vp(xs)}
J = Jf ∪ Js

Jf =

{
x ∈ O × dom k,

{
Vp(xf ) = Vp(xp) and Vp(xp) ≤ Vp(xs)

and LffVp(xf ) ≥ Lfp(.,s)Vp(xp)

}
Js =

{
x ∈ O × dom k,

{
Vp(xs) = Vp(xp) and Vp(xp) ≥ Vp(xf )

and LfsVp(xs) ≤ Lfp(.,s)Vp(xp)

}
kf (xf , xp) = {xp} , ks(xs, xp) = {xs}, ∀x ∈ Jf

kf (xf , xp) = {xf} , ks(xs, xp) = {xp}, ∀x ∈ Js

kf (xf , xp) = {xp} ∪ {xf} , ks(xs, xp) = {xp} ∪ {xf}, ∀x ∈ Jf ∩ Js

and by (4), with indices (f, s) instead of (a, b).

Before proving this result, let us note that it is quite different to that
obtained in [19]. In fact, in [19], it is assumed that the time derivative of the
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Lyapunov function is known at each time instant. In Theorem 1, we relax this
assumption by comparing the Lyapunov-like function Vp with the Lyapunov
functions Vs and Vf linked to the slow and fast systems, respectively. The
proof of the previous result is based on the computation of a weak Lyapunov
function and the LaSalle invariance principle is applied. The computation
of a strict Lyapunov function is still an open question. It would yield to a
simpler proof by applying [6, Theorem 3.18].

Proof. Let us introduce the following function V : domV → R, defined
by, for all x ∈ domV := Rnp × Rns × domVp × Rm,

V (x) = Vp(xs),

and denote
A = {0} × {0} × {0} × Rm . (8)

Following [6, Definition 3.16], V is a Lyapunov function candidate.
Note that, due to (5) and the expression of F in Theorem 1, we have, for

all x ∈ F ,

|xf | ≤ α−11 (Vp(xf )) ≤ α−11 (Vp(xp)) ≤ α−11 (Vp(xs))
≤ α−11 α2(|xs|)

and similarly
|xp| ≤ α−11 α2(|xs|).

Therefore, for all x ∈ F ,

|x|A = |xp|+ |xf |+ |xs| ≤ (I + 2α−11 α2)(|xs|) (9)

where I stands for the identity map. Therefore, noting |xs| ≤ |x|A and using
again (5), the definition of V implies that, for all x in F ,

V (x) ≤ α2(|xs|) ≤ α2(|x|A) (10a)

and
V (x) ≥ α1(|xs|) ≥ α1(I + 2α−11 α2)

−1(|x|A). (10b)

Let us now introduce the map

G :


xp
xf
xs
s

⇒


{xp}

kf (xf , xp)
ks(xs, xp)
{k(xp)}

 (11)
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which is the right-hand side of the discrete dynamics of (4). Note that, due
to (6), G(J ) ⊂ F and observe that F∪J = F . Therefore, defining α̃1 ∈ K∞
by α̃1 = α1(I + 2α−11 α2)

−1, it is deduced from (10)

α̃1(|x|A) ≤ V (x) ≤ α2(|x|A) , ∀x ∈ F ∪ J ∪G(J ). (12)

Now denote by F the map given by the right-hand side of the continuous
dynamics of (4), that is the map

F :


xp
s
xf
xs

 7→


fp(xp, s)
0

ff (xf )
fs(xs)

 .

Due to (7), (9), ρs ∈ K, and the expression of V , it holds, ∀x ∈ F ,

LFV (x) ≤ −ρs(|xs|) ≤ −ρs(I + 2α−11 α2)
−1(|x|A). (13)

Moreover it clearly follows from the expression of V and G that, for all
x ∈ J , V (G(x)) = V (x). Therefore with [6, Proof of the uniform stability
in Theorem 3.18] (see also the comment at the beginning of the proof of [6,
Proposition 3.24]), the closed set A is stable for the hybrid system H.

To prove that A is pre-attractive for H as defined in Definition 1, let us
first prove that each solution to H is bounded. Due to LFV (x) ≤ 0, for all x
in F , and V (G(x)) = x, for all x in J , it follows that V is bounded for any
solution to H. With (24), it follows that the distance to A is bounded. Due
to the expression of A in (8), it follows that all components of the solution
are bounded, except maybe the last one, that is the s-component. Due to the
flow and jump dynamics of this component in (4), and since the function k is
continuous, the boundedness of the xp component implies the boundedness
of the s-component. Therefore all solutions to H are bounded.

To complete the proof of the pre-attractivity, consider now a complete
solution to H. The proof of the convergence to A relies on the invariance
principle, see e.g., [18, Theorem 4.3]. To do that, let us first note that that
the Standing Assumption of [18, Definition 2.3] is satisfied since the flow
and jump sets are closed, and since the dynamics in the hybrid system H is
continuous. Consider a solution x̄ to H which is included in a level set of the
function V . Let us show that this solution x̄ should be in A, i.e. that the
xp, xf and xs components of x̄ should be 0.
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Note that for each solution to H such that it jumps at a given time (t, j)
then, either the state is in A (and then the solution has to stay in A after
time (t, j)), or, due to (7) and the expressions of F and J , the solution has
to flow after (t, j).

Due to (13) and since ρs(I +2α−11 α2)
−1 ∈ PD, then the solution x̄ cannot

flow, except if it is in A. Moreover, it cannot jump, except if it is in A, since,
as it has been proven just before, after each jump, either the solution is in
A or it has to flow. Therefore x̄ should be in A.

Therefore with [18, Theorem 4.3], any precompact solution to H ap-
proaches A. Moreover, as we have already proven, each complete solution
is bounded and thus precompact. Therefore each complete solution to H
approaches A, and A is pre-attractive for H.

This concludes the proof of Theorem 1. 2

Remark 3. It is worth pointing out that, from the stability point of view,
the event-triggered sampling algorithm can be designed only with the slow
Lyapunov function. Here, we have prefered to present the general case where
the convergence rate of the event-based system must belong into a desired
interval. ◦

4.2. Existence of a minimum inter-event time

Let us prove the existence of a (strictly) positive duration between two
jump instants for solutions to the hybrid system H considered in Theorem
1. This property is crucial when implementing this control strategy, since it
prevents infinite number of events and infinite number of control updates for
digital implementations. This minimal inter-event time is proven in the next
result

We are now in position to state the existence of a minimal inter-event
time, in the context of Theorem 1, as long as the solution stays outside a
neighborhood of the attractor A. To be more precise, we have

Proposition 1. Assume Assumption 1 and O = Rnp+np+np hold. For all
0 < r < R, there exists tmin > 0 such that for all solutions to H jumping at
two hybrid times (t1, j1) < (t2, j2), and satisfying

r ≤ |x(t, j)|A ≤ R, ∀(t1, j1) ≤ (t, j) ≤ (t2, j2) , (14)

it holds t2 − t1 ≥ tmin .
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Proof. Pick 0 < r < R. Due to (10), there exists M and M such that
for all x satisfying r ≤ |x|A ≤ R, it holds M ≤ V (x) ≤ M . Let the set
S = {x, M ≤ V (x) ≤ M}. Since V satisfies (12) in the proof of Theorem
1 and since α̃1 ∈ K∞ and α2 ∈ K∞, the projection of S in the first 3np

components is compact. Moreover, due to the continuity of the function k,
due to the fact that the image of a compact set by a continuous function is
compact, and due to the expression of the dynamics of the s-variable in (4),
it follows, on the one hand, that the solutions to H, that are included in S,
evolve in a compact set, denoted K, whose projection in the 3np components
does not contain the origin.

On the other hand, due to (7) in Assumption 1 and the expressions of
the flow and jump sets in Theorem 1, after each jump, each solution is either
in A, or it is in the following subset of the flow set described by (7):

Fsub =

x,


0 6= Vp(xf ) ≤ Vp(xp) ≤ Vp(xs),
Lfp(.,k(.))Vp(xp) < LfsVp(xs),
LffVp(xf ) < Lfp(.,k(.))Vp(xp).

 .

The set Fsub has a positive distance to the jump set J defined in Theorem 1.
Moreover, since the flow dynamics defining H is defined by a continuous
map, and since the set K is compact, we get that all solutions evolving in
K have a finite maximal speed M . Thus, flowing in K from Fsub to J
needs a uniform positive time (with a positive lower bound tmin given by the
distance between Fsub to J over M). Therefore any solution, evolving in
K and having a jump, has to flow for at least a uniform nonzero positive
time tmin > 0. This minimal time between jumps is uniform for all solutions
evolving in K and a priori valid only for solutions whose state is in K and
thus for all solutions to H satisfying (14).

This concludes the proof of Proposition 1. 2

Note that the proof of the previous result has some connections with the
proof of [5, Proposition 6], where intermediate (continuous and discrete) time
and uniform boundedness of solutions in compact sets are considered.

Since a consequence of Proposition 1 is that all solutions to H are com-
plete, combining Theorem 1 and Proposition 1, we get the following:

Corollary 1. Under Assumption 1, with O = Rnp+np+np, the set {0}×{0}×
{0}×Rm is globally asymptotically stable for the hybrid system H defined in
Theorem 1.
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Proof. To prove this corollary, due to Theorem 1, it remains to prove
that all solutions are complete.

Let us prove by contradiction that all (maximal) solutions are complete.
To do that, let us consider a maximal and incomplete solution x to H.
Then its hybrid time domain is bounded in the t-direction. Therefore due
to Proposition 1, for any 0 < r < R, the solution cannot stay in the set
{x, r < |x|A < R}. Since each solution to H is bounded (as proven in
the proof of Theorem 1), there exists R > 0 such that the solution lies in
{x, |x|A < R}. Therefore, we get that for any r > 0, the solution x cannot
stay in the set: {x, r < |x|A}. In other words, there exists a sequence of time
(tn, jn) in dom x such that, denoting xn = x(tn, jn), it holds |xn|A → 0, as
n→∞. Since the solution x is incomplete, the hybrid time domain dom x
is bounded, and there exists a subsequence (also denoted (tn, jn)) and (T, J)
in [0,∞)× N such that (tn, jn)→ (T, J), as n→∞.

Now, using again the boundedness of solutions to H, there exists a sub-
sequence such that xn → x∞ with x∞ ∈ A.

Moreover, if x reaches the attractor, then (by the stability property proven
in Theorem 1), it remains at the attractor and the solution is also defined for
all hybrid times. Therefore, T should be the maximal value of dom x in the
t-direction and J should be the maximal value of dom x in the j-direction.
Now, defining x̃ as the function equal to x for all (t, j) in dom x and equal
to x∞ hereafter, we get a solution to H, and thus a contradiction with the
maximality of x.

Therefore all solutions to H are complete (maybe there are some Zeno
solutions to H). This completes the proof of Corollary 1. 2

5. Comparing the state components (Algorithm 2)

The second event-based sampling algorithm compares the state of the
nonlinear control system (2) and the states of two asymptotically stable aux-
iliary systems. Here these systems are called lower and upper system and
their dynamics are described respectively by

ẋl = fl(xl), (15a)

ẋu = fu(xu). (15b)

In (15), fl : Rnp × Rnc → Rnp × Rnc and fu : Rnp × Rnc → Rnp × Rnc are
two continuously differentiable functions, where nc is a positive integer which
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stands for the dimension of an additional state vector which can be used to
design the upper and lower systems. Note that, here the indices (a, b) of
the hybrid system introduced in (4) are replaced by (l, u). So, at each time
instant where the state trajectory of (2) with a piecewise constant input
intersects the state trajectories generated by the bounding stable systems
(15), the sampling algorithm updates the control value in order to redirect
the state trajectory of (2) towards the inside of the region defined by the
upper xu and lower xl solutions to (15). This procedure is illustrated in
Figure 3

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

20

State vector evolution x
p

time

x
1

0 2 4 6 8 10 12 14 16 18 20
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0

2

4

time

x
2

Figure 3: Graphical illustration of the second event-based sampling algorithm.

Before introducing the main assumption needed to prove our results in
this context, let us start by defining a projection operator.

Definition 2. Let π : Rnp × Rnc → Rnp be the projection operator defined
by, for all (xp, xc) ∈ Rnp × Rnc, π(xp, xc) = xp.

So, the following assumption will be useful:

Assumption 2. There exist an open set O ⊂ Rnp × (Rnp × Rnc) × (Rnp ×
Rnc) containing the origin, a continuous function k : dom k → Rm, two
continuously differentiable functions Vl : domVl → R and Vu : domVu → R,
two functions α1 and α2 ∈ K∞ and a function ρ ∈ K such that
• for all (xp, xc) ∈ domVl, it holds

α1(|(xp, xc)|) ≤ Vl(xp, xc) ≤ α2(|(xp, xc)|), (16a)
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and for (xp, xc) ∈ domVu, it holds

α1(|(xp, xc)|) ≤ Vu(xp, xc) ≤ α2(|(xp, xc)|); (16b)

• dom k × domVl × domVu contains a neighborhood of O;
• for all (xp, xl, xu) ∈ O, it holds

xp, xl, xu ∈ O , k(xp) ∈ dom k; (17)

• for all (xp, xl) ∈ dom k×domVl such that π(xl) � xp 6= 0, ∃i = 1, . . . , np, π(xl)i =
xpi and π(xl) 6= xp, it holds

(π(fl(xl))− fp(xp, k(xp))) · ei < 0 (18)

where ei denotes the i-th vector of the basis of Rnp;
• for all (xp, xu) ∈ dom k × domVu such that 0 6= xp � π(xu), ∃i =
1, . . . , np, xpi = π(xui), and xp 6= π(xu), it holds

(π(fu(xu))− fp(xp, k(xp))) · ei > 0; (19)

• for all (xl, xu) ∈ domVl × domVu, it holds

LflVl(xl) ≤ −ρ(|xl|),
LfuVu(xu) ≤ −ρ(|xu|).

(20)

This assumption is slightly different to the ones considered in [11], where
it is necessary to consider additional functions (compare in particular with
[11, Assumption 2]).

Remark 4. This assumption holds for any bounded monotone system (see
[20]), where xc is not needed for the upper and lower systems. Some methods
to design the lower and upper systems are proposed in [16, 17]. In addition,
for controllable linear systems one can compute a state transformation matrix
such that the transformed linear system is monotone with respect to the
new state vector (see [11, 15]). Furthermore, a large class of biological and
biotechnological systems satisfies this assumption (see [21, 1, 7, 4]). ◦

The second main result of this paper is to derive a hybrid implementation
of a piecewise constant controller for (2) under Assumption 2. This is done
formally in Theorem 2 below by using techniques on hybrid systems.
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5.1. Second main result
Our second main result exploits the order preserving properties of dy-

namical systems [20] so that the state trajectory of the event-based controlled
system, described in appropriate coordinates, stays framed between the state
trajectories generated by the upper and lower system.

We need a mild technical assumption on the comparison functions con-
sidered in Assumption 2:

Assumption 3. The functions α1, α2, ρ in Assumption 2 are such that there
exist α3 ∈ K∞, and three positive values M1, M2 and M3 satisfying

α1(s+ s′) ≤M1(α1(s) + α1(s
′)) , ∀s ≥ 0, s′ ≥ 0, (21a)

α2(s) + α2(s
′) ≤M2α3(s+ s′) , ∀s ≥ 0, s′ ≥ 0. (21b)

ρ(s+ s′) ≤M3(ρ(s) + ρ(s′)) , ∀s ≥ 0, s′ ≥ 0. (21c)

It can be checked that Assumption 3 holds for any linear controllable system
selecting k as a stabilizing controller.

Using Assumptions 2 and 3, it is possible to exploit the comparison of
the components of the state to derive a piecewise constant controller for the
nonlinear control system (2). It yields a hybrid system of the form:

H̃ :


ẋp = fp(xp, s)
ẋl = fl(xl)
ẋu = fu(xu)
ṡ = 0

x̃ ∈ F̃ ,


x+p = xp
x+l = xl
x+u = xu
s+ = k(xp)

x̃ ∈ J̃ ,

(22)

where x̃ = (x>p , x
>
l , x

>
u , s

>)> in Rñ, ñ = np + (np + nc) + (np + nc) +m. This
hybrid system is considered in our second main result:

Theorem 2. Under Assumptions 2 and 3, the set {0} × {0} × {0} × Rm is

globally pre-asymptotically stable for the hybrid system H̃ defined by

F̃ = {x̃ ∈ O × dom k, π(xl) � xp � π(xu)}

J̃ =

x̃ ∈ O × dom k,

π(xl) � xp � π(xu)
and ∃i = 1, . . . , np, such that
π(xl)i = xpi and (π(fl(xl))− fp(xp, k(xp))) · ei ≥ 0

or
π(xu)i = xpi and (π(fu(xu))− fp(xp, k(xp))) · ei ≤ 0
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and by (22).

Proof. Let us introduce the following function Ṽ : dom Ṽ → R, defined by,
for all x̃ ∈ dom Ṽ := Rnp × domVl × domVu × Rm,

Ṽ (x̃) = Vl(xl) + Vu(xu),

and denote Ã = {0} × {0} × {0} × Rm. Following [6, Definition 3.16], Ṽ is
a Lyapunov function candidate.

Note that, due to the expression of F̃ in Theorem 2, we have, for all
x̃ ∈ F̃ , and for all i = 1, . . . , np,

|xpi| ≤ max{|xli|, |xui|} ≤ |xli|+ |xui|,

and thus
|xp| ≤ |xl|+ |xu|.

Therefore, for all x̃ ∈ F̃ ,

|x̃|Ã = |xp|+ |xl|+ |xu| ≤ 2(|xl|+ |xu|) (23)

and, using (16) and (21b), the definition of Ṽ implies that, for all x̃ in F̃ ,

Ṽ (x̃)≤α2(|xl|) + α2(|xu|) ≤M2α3(|xl|+ |xu|)
≤M2α3(|x̃|Ã),

(24a)

and

Ṽ (x̃)≥α1(|xl|) + α1(|xu|) ≥M−1
1 α1(|xl|+ |xu|)

≥M−1
1 α1(

1

2
|x̃|Ã). (24b)

where (21a) has been used in the second inequality.
Moreover, as in the proof of Theorem 1, using (17), denoting by G the

map given by the right-hand side of the discrete dynamics of (22), then it
holds

F̃ ∪ J̃ ∪G(J̃ ) = F̃
Therefore, defining α̃1 and α̃2 ∈ K∞ by α̃1(s) = M−1

1 α1(
1
2
s) and α̃2(s) =

M2α3(s), for all s ≥ 0, it is deduced from (24)

α̃1(|x̃|Ã) ≤ Ṽ (x̃) ≤ α̃2(|x̃|Ã) , ∀x̃ ∈ F̃ ∪ J̃ ∪G(J̃ ).
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Now denote by F the map given by the right-hand side of the continuous
dynamics of (22). Due to (20), (21c), (23), ρ ∈ K, and the expression of Ṽ ,

it holds, for all x̃ ∈ F̃ ,

LF Ṽ (x̃) ≤ −ρ(|xl|)− ρ(|xu|) ≤ −M−1
3 ρ(|xl|+ |xu|),

≤ −M−1
3 ρ(

1

2
|x̃|Ã). (25)

Therefore, with [6, Proof of the uniform stability in Theorem 3.18], the closed

set Ã is stable for the hybrid system H̃.
To conclude the proof of Theorem 2 it remains to prove the pre-attractivity.

First let us note that all the solutions to H̃ are bounded. To do that, from
LF Ṽ ≤ 0, for all x in F , and Ṽ (G(x)) ≤ V (x), for all x in J , and from the

expression of Ã and (24b), we first deduce (as in the proof of Theorem 1) the

boundedness of all components of any solution to H̃, except the s-component.
Then the boundedness of the s-component follows from the continuity of the
function k and from jump dynamics in (22). The remaining proof of the
pre-attractivity relies on the invariance principle.

To apply this invariance property, note that, since the flow and jump sets
of H̃ are closed and since the dynamics is continuous, it follows that the
Standing Assumption of [18, Definition 2.3] is satisfied. Consider a solution

x̄ to H̃ which is included in a level set of the function Ṽ . Let us show that
this solution x̄ should be in Ã, i.e. that the xp, xl and xu components of x̄
should be 0.

Due to (25) and since ρ ∈ PD, the solution cannot flow, except if it is

in Ã. Moreover, it cannot jump, except if it is in Ã, since, as it has been
proven just before, after each jump, either the solution is in Ã or it has to
flow. Therefore x̄ should be in Ã.

Therefore with [18, Theorem 4.3], any precompact solution to H̃ ap-

proaches Ã. Moreover each complete solution that is not in A is bounded
and thus precompact. Therefore each complete solution to H̃ approaches Ã,
and Ã is pre-attractive for H̃.

This concludes the proof of Theorem 2. 2

Remark 5. Theorems 1 and 2 state two event-triggered algorithms to de-
sign, by emulation, event-based controllers. The main difference between the
two theorems are the event-triggering conditions. Indeed, Theorem 1 com-
pares the norms of the state of three systems (or more precisely the values

18



of the Lyapunov function), whereas Theorem 2 exploits the comparison of
the states componentwise. It gives different piecewise-constant controllers
for (2). ◦

Under the additional assumption O = Rnp× (Rnp×Rnc)× (Rnp×Rnc), it
is possible to prove the existence of a positive minimal inter-event time in the
context of Theorem 2. This could be done in a similar way as in Proposition
1. This yields the following result which is similar to Corollary 2.

Corollary 2. Under Assumption 2, with O = Rnp×(Rnp×Rnc)×(Rnp×Rnc),
the set {0} × {0} × {0} × Rm is globally asymptotically stable for the hybrid

system H̃ defined in Theorem 2.

Proof. To prove this result, assuming O = Rnp × (Rnp ×Rnc)× (Rnp ×Rnc),
we follow the steps of proof of Proposition 1 and we prove that the solutions
enjoy a minimal inter-event time property as long as the state evolves in a
given compact set. This yields a completeness property of solutions to H̃,
and implies with Theorem 2 that the set {0} × {0} × {0} × Rm is globally

asymptotically stable for H̃. 2

6. Illustrative example

Consider the nonlinear system borrowed from [3]{
ẋp1 = xp1xp2 + x2p1u1
ẋp2 = x2p1 + u2

(26)

with state variables (xp1, xp2) ∈ R2 and the input vector u = (u1, u2) ∈ R2.
This system is stable under the following state-feedback control law [3]

u1(xp) = −k1xp1 and u2(xp) = −k2xp2 (27)

where k1 = 16 and k2 = 6 and admits the following quadratic function as a
Lyapunov function

Vp(xp) =
1

2
x>p xp . (28)

By direct computation one can show that

V̇p(xp) = −µ(|xp|) = −(x2p1, xp2)Q(x2p1, xp2)
>

where Q is the positive definite matrix Q =

[
k1 −1
−1 k2

]
. Then, it is clear

that there exist functions α1 and α2 ∈ K∞, satisfying

α1(|xp|) ≤ Vp(xp) ≤ α2(|xp|) , ∀xp ∈ R2. (29)
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6.1. Applying method from Theorem 1

First, following Remark 1, given two positive values such that βs ∈ (0, 1)
and βf > 1, let us design the ”slow” and ”fast” systems:{

ẋs1 = βs(xs1xs2 − k1x3s1)
ẋs2 = βs(x

2
s1 − k2xs2)

(30)

{
ẋf1 = βf (xf1xf2 − k1x3f1)
ẋf2 = βf (x2f1 − k2xf2)

(31)

Letting O = R2 × R2 × R2, due to (28), we get that Assumption 1 holds
and thus, with Corollary 1, the hybrid system H is globally asymptotically
stable.

Let us compare the solutions of (26) in closed loop with (27) with solutions
to the hybrid system H given by Theorem 1. More precisely, consider the
initial conditions xs(0) = (6, −5)> for (30), xf (0) = (2, −1)> for (31), and
x(0) = (4, −3)> for (26) in closed loop with (27) and for H considered in
Theorem 1. The time evolution are given in Figure 4. As shown in this figure,
with only 8 control updating time instants, one obtains a similar result to
the case of continuous-time control. Moreover, the same example has been
considered in [3] where a similar result is obtained with 38 events.

Figure 5 contains a zoom on the time evolution of Vp(xs), Vp(xf ) and
Vp(xp). It can be noted that, when closing the loop with the piecewise con-
stant control u, the Lyapunov-like function of the plant stays always framed
between Vp(xf ) and Vp(xp).

6.2. Applying method from Theorem 2

Before designing the upper and lower systems, note that the sign of the
state trajectory of the first state variable of the system (26), in closed loop
with (27), is constant and depends on the sign of the initial value. Thus,
system (26) under the control law (27) is monotone with respect to the
positive orthant R≥0 × R≥0 if xp1(0) ≥ 0 and monotone with respect to the
orthant R≤0 × R≥0 if xp1(0) ≤ 0. So, for xp1(0) positive, one can use the
following upper and lower systems{

ẋu1 = xu1xu2 − k1x3u1
ẋu2 = x2u1 − k2xu2

(32)

{
ẋl1 = xl1xl2 − k1x3l1
ẋl2 = x2l1 − k2xl2

(33)
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Figure 4: Top pictures show the time evolution of the state variables (dashed lines stand
for the event based controlled system and continuous lines stand for the continuous-time
controlled system). Bottom left picture shows the time evolution of Vp(xs), Vp(xf ) (con-
tinuous lines) and Vp(xp) (dashed line). Bottom right picture shows the time evolution of
the piecewise constant control law.

and, for negative xp1(0), one can use the following upper and lower systems{
ẏu1 = yu1xu2 − k1y3u1
ẋu2 = y2u1 − k2xu2

(34)

{
ẏl1 = yl1xl2 − k1y3l1
ẋl2 = y2l1 − k2xl2

(35)

where yl1(0) ∈
[
0,−xp1(0)

]
and yu1(0) ≥ −xp1(0).

Due to (32), (33), (34) and (35), the functions Vu : R2 → R and Vl : R2 →
R can be defined by

Vu(xu) = Vp(xu) and Vl(xl) = Vp(xl) . (36)

Letting O = R2×R2×R2, due to (28) and (36), we get that Assumptions
2 and 3 hold and thus, with Corollary 2, the hybrid system H is globally
asymptotically stable.

Now, let us compare the solutions of (26) in closed loop with (27) with
solutions to the hybrid system H given by Theorem 2. Consider the initial
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Figure 5: Time evolution of Vp(xp) (dashed black line), Vp(xs) (red line), and Vp(xf ) (blue
line).

conditions xu(0) = (8, 0)> for (32), xu(0) = (1, −6)> for (33), and xp(0) =
(4, −3)> for (26) in closed loop with (27) and for H considered in Theorem
2. The time evolutions are given in Figure 6. As shown in this figure, with
only 11 control updating time instants, one obtains a similar result to the
case of continuous-time control. Note that, here the components (u1, u2) of
the piecewise control law are updated separately. In fact, we preferred to
do that to show the possibility to use our method to deal with the case of
distributed control systems [3] where the complex system is composed by
scalar subsystems.

Figure 7 shows a zoom on the time evolution of state variables: upper
and lower systems (in red and blue bold lines), event-based controlled system
(in dashed lines) and continuous-time controlled system (in tiny black lines).
So, it can be noted that, when closing the loop with the piecewise constant
control u, the state trajectories of this system stay always framed between
the state trajectories of the upper and lower systems.

7. Conclusion

Based on bounding methods for nonlinear systems and stability analysis
of hybrid systems, two event-triggered stabilizing controllers have been pro-

22



0 0.5 1 1.5 2
0

2

4

6

8

time (s)

x
p
1

0 0.5 1 1.5 2
−6

−4

−2

0

2

time (s)

x
p
2

0 0.5 1 1.5 2
0

10

20

30

40

time (s)

V
p
, 
V

u
, 

V
l

0 0.5 1 1.5 2
−80

−60

−40

−20

0

20

time (s)

S
1
, 
S

2

Figure 6: Top pictures show the time evolution of the state variables (dashed lines stand
for the event based controlled system and continuous lines stand for the continuous-time
controlled system). Bottom left picture shows the time evolution of the Lyapunov functions
of the three systems (bold lines stand for the upper and lower systems and the tiny
line stands for the event based controlled system). Bottom right picture shows the time
evolution of the piecewise constant control law.

posed for nonlinear system for which a static stabilizing controller is given.
The control updating strategy is based either on the value of a Lyapunov-like
function, or on the comparison of the plant state with given state templates.
The obtained stability properties are illustrated by numerical simulations on
a nonlinear system. With the first event-based controller, one guarantees that
the speed of convergence of the system is included in a given interval formed
by the convergence rate of the auxiliary systems (fast and slow); whereas
with the second event-based controller, one ensures that the behavior of the
system does not violate some specifications defined by a state enclosure.

This paper lets some issues open. In particular, it could be interesting
to combine these event-sampling algorithms with interval observer design
methods in order to replace, in the control updating criteria, the state vector
by its estimate. A preliminary result in that direction has been presented in
[12]. It could be also interesting to apply the present work with particular
class of nonlinear systems, as the ones with saturating inputs (see e.g. [10]
where reset controllers have been computed for such systems).
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