N
N

N

HAL

open science

Towards an Automatic Parking System using
Bio-Inspired 1-D Optical Flow Sensors
Stefano Mafrica, Alain Servel, Franck Ruffier

» To cite this version:

Stefano Mafrica, Alain Servel, Franck Ruffier.

Towards an Automatic Parking System using Bio-
Inspired 1-D Optical Flow Sensors. IEEE International Conference on Vehicular Electronics and

Safety (ICVES) 2015, Nov 2015, Yokohama, Japan. hal-01235593

HAL Id: hal-01235593
https://hal.science/hal-01235593
Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01235593
https://hal.archives-ouvertes.fr
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ISM UMR 7287, 13288 Marseille, France.
Email: stefano.mafrica@univ-amu.fr

Abstract—Although several (semi-) automatic parking sys-
tems have been presented throughout the years [1]-[12], car
manufacturers are still looking for low-cost sensors providing
redundant information about the obstacles around the vehicle,
as well as efficient methods of processing this information, in
the hope of achieving a very high level of robustness. We
therefore investigated how Local Motion Sensors (LMSs) [13],
[14], comprising only of a few pixels giving 1-D optical flow
(OF) measurements could be used to improve automatic parking
maneuvers. For this purpose, we developed a low computational-
cost method of detecting and tracking a parking spot in real time
using 1-D OF measurements around the vehicle as well as the
vehicle’s longitudinal velocity and steering angle. The algorithm
used was composed of 5 processing steps, which will be described
here in detail. In this initial report, we will first present some
results obtained in a highly simplified 2-D parking simulation
performed using Matlab/Simulink software, before giving some
preliminary experimental results obtained with the first step in
the algorithm in the case of a vehicle equipped with two 6-
pixel LMSs. The results of the closed-loop simulation show that
up to a certain noise level, the simulated vehicle detected and
tracked the parking-spot assessment in real time. The preliminary
experimental results show that the average refresh frequency
obtained with the LMSs was about 2-3 times higher than that
obtained with standard ultrasonic sensors and cameras, and that
these LMSs therefore constitute a promising alternative basis for
designing new automatic parking systems.

I. INTRODUCTION

Since the pioneering works by Paromtchik ef al. [1] and
the first commercial Intelligent Parking Assist System (IPAS)
[2], a large range of (semi-) automatic parking methods have
been developed over the years using all kinds of sensors, from
ultrasonic sensors [3]-[5] to cameras [6]-[8], laser scanners
[9], [10], and radar systems [11], [12].

On the one hand, high-performance automatic parking
systems require costly sensors, such as laser scanners [9],
[10] and radars [11], [12] and large computational resources
to reconstruct the surrounding 3-D environment in real time
during parking maneuvers.

On the other hand, most of the (semi-) automatic parking
pilots available on the market involve the use of ultrasonic
sensors and rear-view cameras [5], [7], [15]-[17] to detect
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a free parking spot while the driver is driving along a row
of parked vehicles and to autonomously control the steering
system by estimating the vehicle’s ego-position via odometry.

To improve IPAS systems, recent research works and
industrial developments using Around View Monitor Systems
(AVMSs) have been proposed [8], [18], [19]. AVMSs mainly
use wide-angle cameras (such as fish-eye and catadioptric
cameras) directed toward the ground, giving a view of the
surrounding environment, to detect and track parking-spots’
ground marks during parking maneuvers.

However, the autonomous vehicles of the future will require
more accurate redundant information than that provided by the
systems currently available on the market, mainly because of
(1) the narrow field of view (FOV) and the short distance range
of the ultrasonic sensors used and (ii) the low luminosity range
and the low sampling frequency of standard cameras.

As far as we know, the challenge for designing the IPASs of
future autonomous vehicles consists in finding low-cost, fast-
response sensors providing redundant information about the
obstacles present around the vehicle, combined with a sensor-
data processing system requiring very low computational re-
sources.

We therefore investigated how Local Motion Sensors
(LMSs) [13], [14], giving 1-D optical flow (OF) measurements
using methods based on findings obtained on the fly’s visual
system [20] could be used to improve automatic parking
maneuvers.

Thanks to their wide luminosity range and their sensitivity
to small contrasts [14], [21], LMSs comprising only a few
autoadaptive pixels seem to constitute a promising alternative
to standard cameras in situations where the lighting conditions
are highly variable and the visual patterns created by the
vehicle’s body, for example, show small contrasts. In addition,
an array of LMSs would have the following advantages with
respect to ultrasonic sensors and cameras: (i) faster responses
(up to 200 Hz); (i) a custom FOV (such as 180°); (iii) a longer
distance range than ultrasonic sensors; (iv) less computational
cost than cameras.

In this paper, we present the first results toward developing
a low computational-cost method of performing automatic
parking maneuvers whereby a parking spot can be detected
and tracked in real time based on a visual motion sensor setup
performing 1-D OF measurements around the vehicle. The
algorithm used for this purpose was composed of 5 processing
steps, as described in Sec. IV.



As proof of concept, some results obtained in a simplified
2-D parking simulation implemented in Matlab/Simulink in
closed loop will first be presented. Then, to report on the work
in progress, we will give some preliminary experimental results
corresponding to the first step in the algorithm in the case of
a vehicle equipped with two 6-pixel LMSs on a vehicle.

In Sec. II, the principles underlying an elementary LMS
and the visual-sensor setup used in the simulation will be de-
scribed. In Sec. III, the point and line motion model used will
be presented. In Sec.IV, the various steps in the algorithm we
developed will be outlined. In Sec. V and VI, we will present
and discuss the results of some simulations and preliminary
outdoor experiments. Some conclusions will be reached in the
last section.

II. LOCAL MOTION SENSORS FOR PARKING
MANEUVERS

Figure 1 shows the principles underlying a 2-pixel LMS
[22] and a photo of a 6-pixel LMS [13].
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Fig. 1. (a) Principle of a 2-pixel LMS. The OF produced by a contrast moving

in front of the LMS can be computed taking w(t) = %, where Ay is the

interreceptor angle and 7 is the time lag between the two photoreceptors’
output signals [22]. (b) Photo of a 6-pixel LMS. (Adapted from [13]).

A defocused lens placed in front of 2 photoreceptors
determines the interreceptor angle Ay between the 2 photore-
ceptors’ axes and gives them a Gaussian angular sensitivity, on
similar lines to what occurs in many insects’ eyes. The width
of the angular sensitivity determines the photoreceptors’ FOV.

A visual contrast moving in front of the LMS will induce
a time lag 7 between the photoreceptors’ output signals. By
measuring this time lag, the optical flow can be computed as

follows: w(t) = % [22].

Let us take the case where one N-pixel LMS is installed at
each of the four corners of the vehicle, giving up to 4(N—1) 1-
D OF measurements all round the car. In order to obtain a 180°
FOV of each LMS, N is taken to be such that N x Ay = 180°,
where Ay is the interreceptor angle, as shown in Fig. 1. As it
is difficult in practice to obtain a 180° FOV with just one lens,
there could be M N-pixel LMSs, so that M x N x Ay = 180°.

Figure 2 gives a diagram of the visual-motion sensor setup
on a vehicle, in the case where 4 neighboring visual signals
give 3 1-D OF measurements.

If the environment is relatively smooth, i.e. there are only
small variations in the distance between the visual patterns and
the LMS in the photoreceptors’ FOV, we can assume that the
photoreceptors will detect visual points on their axes instead
of patterns in their FOV. When an OF measurement w; is
delivered at the time ¢, this will therefore be just as if a visual
point has moved from the ¢ — 1-th to the ¢-th photoreceptor’s
axis, and this point is now (at ¢ = £) on the i-th axis.

Fig. 2.

(a) Diagram of the visual-motion sensor setup on a vehicle. The
N-pixel LMSs are placed at the four corners of the vehicle, where N is such
that N x Ap = 180°. (b) An example where 4 neighboring visual signals
give 3 local OF measurements.

In this preliminary study, we assumed that the neighboring
visual points detected formed straight lines corresponding to
the simplified 2-D profiles of the surrounding parked vehicles.

III. POINT AND LINE MOTION MODELING

As the vehicle’s velocity is relatively low during parking
maneuvers, we focused here on the 2-D kinematic model for
a car-like vehicle moving on a plane.

Figure 3 is a top-view diagram of a car-like vehicle with
a 1-D OF sensor installed on one corner.
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Fig. 3. Top-view diagram of a car-like vehicle with a 1-D OF sensor installed
on one corner.

According to Fig. 3 and the Ackermann steering geometry
for car-like vehicles, the equations for a point P moving on
the same plane as the vehicle can be written as follows:
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where u = [V} ¢]T are the vehicle’s longitudinal velocity and
its steering angle, respectively; L is the distance between the
rear and front wheel axes; Pz, = [z,y,]T is the position
vector of the 1-D OF sensor with respect to the body frame
< B >; Bzp = [zpyp]?, Bx; = [x;y;]T are the position
vectors of the point P with respect to the body frame < B >
and the sensor frame < s >, respectively; ZVp = [Vp, Vp, |7
is the velocity vector of P with respect to the inertial frame
< I >; and w; is the angular velocity of P with respect to
< s >, i.e. the OF measured between the i-th and i — 1-th
pixel of the sensor (see Sec. II). Note that the sensor frame
< s > is parallel to the body frame < B > (i.e. the rotation
matrix between the two frames is the identity matrix), and the



upper left index B indicates that the vectors are projected onto
the body frame < B >. For the sake of simplicity, this index
will be dropped in what follows.

As P must lie on the i-th pixel’s axis (see Sec. II), its
coordinates x;, y; must satisfy the following equation:

sin;xz; — cos Yy = 0, 3)
where 1); is the orientation of the i-th pixel’s axis, i.e. the

angle known to exist between Px; and the z-axis of < s >.

A straight line in the body frame < B > can be described
by the following equation:

@+ gy = a7 + 7 )
where Bx; = [z;]T is the position vector perpendicular to

the line [ projected onto the body frame < B >.

If the line [ does not move with respect to the inertial frame
< I >, we can assume that [ is located on the X -axis of < [ >.
In this case, in line with Fig. 3, the following equations hold:
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where 0 is the angle between the X-axis of < I > and the
x-axis of < B >.

IV. PARKING-SPOT DETECTION AND TRACKING

The algorithm presented here (see Figure 4 ) first computes
the positions of the points detected by the LMSs using only
1-D OF measurements and the vehicle’s velocity and steering
angle (Step 1), and it then looks for straight lines in the clouds
of points using the RANSAC method [23] (Step 2). These lines
are then classified by Naive Bayes Classifiers (NBCs) (Step 3)
to ensure a geometrical coherence with respect to the simplified
parking-spot geometry. Lastly, the vectors perpendicular to the
parking lines and the intersection points between these lines
are estimated by means of Extended Kalman Filters (EKFs)
(Steps 4 and 5). A nonlinear tracking control is eventually
performed based on the estimation of the vehicle’s ego-position
with respect to the parking lines and corners, but we will not
focus on this process here.
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Fig. 4. Block diagram of the parking-spot detection and tracking algorithm.

Estimate Corners
(EKFs)

Figure 5 shows an example of the results obtained in
each step in the algorithm at one sampling interval during the
simulation. This example involves the case of perpendicular
parking, but the present algorithm can be applied to the case
of parallel parking as well without making any changes.

In the simulated 2-D parking environment, the parked
vehicles were simulated in the form of rectangular shapes (Fig.
5(a)) and the OF measurements of the LMSs were computed

analytically as the angular velocity of the points of intersection
between the lines simulating the parked vehicles and the pixels’
axes. A white Gaussian noise (n) with the standard deviation
on 1s added to the positions of the intersections in order
to obtain a non-linear noise in the OF measurements, which
resembles the real sensors’ noise more closely.

Step 1 - Computing 2-D Points:

Let us now assume that the point P in Fig. 3 does not
move with respect to < I > or that its velocity components
(Vpg, Vpy) are negligible with respect to the visual motion
induced by the vehicle’s motion, so that we can take Vp = 0.

If we know the vehicle’s longitudinal velocity and its
steering angle (V,¢), it is possible by combining equation
(1), (2) and (3) to compute the P coordinates as follows':

Vi (L tan ¢ —xs tan ¢—y, tan 1, tan ¢)

s 75 :EE . Ti = (tan? ¢;+1)(Lw;+Vy tan ¢) (62)
2 |y =z tan
™ z; =0

Y =E: _ Vi(L—ys tan ¢) (6b)
2 Yi = Lw;+V5 tan ¢

Figure 5(b) gives the cloud of points computed at one
sampling interval during the simulation.

Step 2 - Finding Lines:

To detect a parking spot, first we want to find four straight
lines fitting some subsets of the cloud of points obtained in
Step 1. Then, to validate this spot, these four lines must satisfy
two main conditions: they must be nearly perpendicular two by
two, and the distance between the two lines in the two pairs of
parallel lines must be greater than the vehicle’s width and its
length, respectively (see Fig. 5(a)). The validation procedure
may depend on the specific parking environment (e.g. on
whether it is parallel or perpendicular) and require some
information from other sensors, and this part will therefore not
be discussed here as it goes beyond the scope of this paper.

To look for more than one regression line in a cloud of
points, we have to perform some linear clustering in order to
obtain subsets containing only one line each.

In this study, we used a modified version of the RANdom
SAmple Consensus (RANSAC) method [23], as it provides
outliers in a statistically robust way, giving a good compromise
between the level of performance and the computational cost
with subsets which may be dependent but are not very numer-
ous and are clearly separated linearly (as in the case of the
4 parking lines dealt with here). As previously done in many
vision-based applications such as those designed for motion
segmentation [24], the generic RANSAC algorithm is applied
recursively to the subset of outliers, i.e., to all the points that
do not belong to the consensus set, and whenever a line is
detected, it yields the position vector &; = [Z; 7;]7 satisfying
equation (4). The recursion is stopped when either four lines
are detected or no lines are detected in the subset of outliers,
i.e., no consensus set is obtained in a maximum number of
iterations n. It is worth noting that in order to maintain the
high frequency provided by LMSs, we performed only a small
number of iterations (n = 100). The robustness of the whole

I'Substituting (1) into (2) is possible because the sampling period At is
low enough with respect to the dynamics of x;,y;. However, a similar result
can be obtained in cases where this condition is not met, by taking a discrete
approximation of (1).
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Fig. 5.

Example of results obtained in each step in the parking-spot detection and tracking algorithm at one sampling interval during the simulation. (a) The

simplified 2-D parking spot with the position vectors perpendicular to the 4 lines defining the spot. (b) The points detected on the pixels’ axes, the positions of
which were computed using the 1-D OF measurements delivered by the LMSs placed at the vehicle’s corners (Step 1). A white Gaussian noise is added to the
positions of these points in order to add a non-linear noise to the OF measurements. (c) The position vectors of the lines obtained by RANSAC in the cloud
of points (Step 2). (d) The position vectors of the lines classified by NBCs (Step 3). (e) The position vectors of the lines estimated by EKFs (Step 4). A first
approximation of the parking corners’ position is given by the points of intersection between each pair of perpendicular lines. (f) The position vectors of the

parking corners estimated by EKFs (Step 5).

algorithm is in fact increased by applying optimal classification
(Step 3) and estimation (Step 4,5) methods to the straight lines
obtained.

At each sampling interval, the h-th line &;, given by the
algorithm can correspond to any of the four lines defining the
parking spot (x;, ,), or even to none of them.

Figure 5(c) shows the four lines detected by RANSAC in
the cloud of points presented in Fig. 5(b). Note that x;, (the
green line in Fig. 5(c)) differs from the corresponding line x;,
(the pink line in Fig. 5(a)), while &;,,Z;, (the red and pink
lines in Fig. 5(c)) are not in the right order as they correspond
to x;,,x;, (the green and red lines in Fig. 5(a)).

Step 3 - Classifying Lines:

Let us take the four straight lines x;, , defining the
parking spot (Fig. 5(a)) and consider that they belong to four
classes L1 4.

To determine whether the h-th line &;, detected in Step 2
belongs to the j-th class £;, we used Naive Bayes Classifiers
(NBCs), giving normal and uncorrelated probability distribu-
tions for the two components of &;,. We therefore computed
the Bayes probability as follows?:

_ , (L), [L5)p(y, |£5)
P = P(Lj |20, ) = = p(£1h7]1/lh) e

(g, —pa; )2

T
p(a,|L;) = <€ 77

2
27ramj

P, y) = Y-y PIL)p(20,|1£5)p(01, | £5)

where we considered p(L;) = 1, [fa; py,)” = ifj(k) and
(02, 04,17 = fi(@,(k—1),u(k—1)), with k denoting the k-
th sampling period (i.e., t = kAt), and &;, = [, glj]T being

(same for y;,, ) O

2The hypothesis that the two components of &; ,, had normal and uncorre-
lated probability distributions was adopted on the basis of what was observed
statistically during several simulations with trajectories of various kinds.

the position vector of j-th line estimated by the EKF and Z;
its “a priori” estimate (see the next subsection for details).

We classified the line @;, in the class £; if p;; =
max; p pj,n and p;p > 0.95. To avoid any misunderstandings,
we specified the j-th classified line Z;, = [z, glj]T

Figure 5(d) shows the three lines which were classified out
of the four lines in Fig. 5(c). In particular, &;, (the green line
in Fig. 5(c)) was dropped because it was too different from
the corresponding line «;, (the pink line in Fig. 5(a)), while
Z;,,Z;, (the red and pink lines in Fig. 5(c)) were classified as
T, %, (the green and red lines in Fig. 5(a)).

Step 4 - Estimating Lines:

In order to obtain a robust continuous estimation of the
parking line vectors, an Extended Kalman Filter (EKF) based
on a discrete approximation for the model presented in (5) was
implemented for each of the four lines x;, , by taking the
lines classified in Step 3 (&;, ,) to be actual measurements.

For each line, we took the first-order discrete approxima-
tion for the model presented in (5) as follows:

Ty, = fl(wlk,laukfla'wlk,l)
= (fl(wlk71auk71) +wlk,1)At+wlk,1 ) (8)
2, = hi(zy,,v1,) = 2y,

where the index k denotes the k-th sampling period (i.e., t =
kAt); wy, v; denotes the model and the measurement noise,
respectively, and they are assumed to be independent white
noises and to have normal probability distributions, i.e. p(w) ~
N(0,Q) and p(v) ~ N (0, R), where @, R are the covariance
matrices which, in the present case, are diagonal’.

At each sampling period, the steps involved in each EKF
can be summarized as follows:

3The hypothesis that the components of the model and the measurement
noise had normal and uncorrelated distributions was adopted on the basis of
what was observed statistically during several simulations with trajectories of
various kinds.



2, = fi(#, ,,ur-1,0)

2) P, =F P FF+ W QW[

3) Ky=P HF(HyP;HI + V,RV,I)™?

4) @lk :@l_k +Kk(zlk —hl(:i‘l_k,()))

S) P,=(I-KiH)P "
where ' = %,H = Z—Z,W = %,V = g—'lff are the
Jacobian matrices; P, P~ are the error covariance matrix and
its “a priori” estimate, respectively; and I is the identity matrix.

In the present study, the j-th EKF was enabled when the
j-th line was detected and validated for the first time on the
basis of the time correlation in the values of &;; (hypothesis
test), but in practice, this could be done using other sensors
such as ultrasonic sensors, cameras or radars installed on the
vehicle.

The initial estimate of #;; was set at the first value of Z;,
validated, while the initial estimate of P, was set at the identity
matrix.

When there was no measurement of the j-th EKF, i.e. no
Zy, in Step 3, the Kalman gain K was set at zero, so that it
was still possible to have an estimation of x;, based on the “a
priori” prediction i‘fj

Figure 5(e) shows the four lines estimated by the four
EKFs. Note that although there was no measurement corre-
sponding to &;, in Fig. 5(d), we still had an estimation of
.

Step 5 - Estimating Corners:

The position vectors of the four parking corners can be
estimated in terms of the intersection point between each
pair of perpendicular lines estimated in Step 4. This makes
it possible to compute the j-th corner vector Z., = [Z, e,])”
by substituting &;, and &;,_, into (4) and combining the two
resulting equations. Here we dealt only with the two outer
corners (the green and red circles in Fig. 5(e)). We took
I, .. to specify the position vectors of the left and right
corners, respectively.

This estimate of the corners’ positions was not accurate
enough to be able to perform a feedback tracking control on
it. In particular, when the car is crossing the lines, i. e. ; ~ 0O,
a very small error in &; can lead to a very large error in &..

In order to obtain a robust continuous estimation of the
corner vectors, an EKF based on a discrete approximation of
the model presented in (1) was implemented for each of the
two outer corners (x.,, ., ), by taking the line intersection
points defined above (&.,, Z.,) to be actual measurements.

The same procedure as that applied with the EKF on x;
in the previous subsection can be used with the EKF on x.
(taking the same model and the same measurement noise). We
only had to replace the index [ by the index ¢ and take the
function fp(x.,u) defined in (1) instead of f;(x;, u).

The EKFs for x., and .. were enabled when the EKFs
for x;,,x;, and x;,, x;, were enabled, respectively (the blue
and green lines and the blue and red lines, respectively, in Fig.
5(e)).

The initial estimates for &., and &.. were set at the first
value of the intersection point between &;,,&;, and &;,,&;,,
respectively, while the initial estimate of Pj was set at the
identity matrix.

Note that although we defined the parking spot by the
above four lines =x;, ,, the parking spot can be detected

even if x;, is not found (i.e. in the case of an “open” or
“homogeneous” background), and depending on the automatic
pilot’s requirements, a tracking control of the ego-vehicle’s
trajectory can eventually be performed only on the basis of
the two outer corners’ positions (z.,, €., ) and the two lateral
lines’ orientations (x;,,x;,). For safety reasons, information
about the parking-spot depth (i.e. the distance between the
vehicle and x;,) should be provided by means of other sensors
(e.g. ultrasonic sensors or cameras).

V. CLOSED-LOOP SIMULATION RESULTS

In the simulation presented here, we used 40-pixel LMSs
with Ap = 4.5° (N x Ap = 40 x 4.5° = 180°) and a
white Gaussian noise with standard deviation o,, = 1072
The algorithm was run at 100 H z, giving a sampling period of
At = 10ms. We decided to simulate the case of perpendicular
parking because it involves more complex maneuvers than
parallel parking, which gives noisier OF measurements than
the parallel case. In addition, to obtain results that are closer to
the real case, we took into account only the OF measurements
in [—350°, —1°] and [1°,350°] (see [13], [14]).

For the simulated results presented here, the stages of the
parking controller can be summarized as follows:

Parking stage 1 - Vy constant, ¢ in closed loop:

Drive at constant velocity (Vy = 1) parallel to the
first parking line z;, (blue line in Fig. 5) until the two outer
corners ., ., are found: if the distance between x. and
.. is greater than a minimum value of the parking-spot
width then go to the next step, otherwise continue to look

for a parking spot. To drive parallel to x;,, the steering angle
was computed as ¢ = arctan(k:¢L6 ;fell ), where 6, is the
vehicle’s orientation with respect to x;, estimated by the first

EKF (see equation (8)), * = 7 and L = 2m.

Parking stage 2 - Vy and ¢ constant:

Drive away from the parking spot at constant velocity and
steering angle (V; = 172, ¢ = —7) for a fixed time in
order to bring the vehicle to a suitable pose for facilitating the
backwards maneuver. Then, compute the reference trajectory
X of the vehicle’s ego-position with respect to the inertial
frame < I > centered to one of the two corners. The trajectory
from the actual pose to the desired pose, i.e. being in the
middle between x., and x. and parallel to x;, (or x;,),
was computed as a third-order polynomial function using
the boundary conditions on the initial and final position and
velocity.

Parking stage 3 - Vi and ¢ in closed loop:

Drive backwards following the reference trajectory by
applying a feedback linearizing control based on the Ack-

ermann model as follows [25]: V; = f\/XCQJchQ and

¢ = arctan(L%), where Xc = [XC Y;]T = X: +
f

k(X — X¢,) and X = (X V)T = X7 + kao( X — X)),
X, being the estimation on the vehicle’s ego-position with
respect to the left corner, ie. X, = —'Rpd,,, and 'Ry
being the rotation matrix from < B >to < I >.*

4We used the estimation &, (left corner) since the estimation &, (right
corner) was not enough reliable during the first part of the maneuver because
we have no measurements for x;, due to the occlusion.



Parking stage 4 - Vy constant , ¢ in closed loop:

Drive backwards at low constant velocity (V; = —0.5 )
parallel to x;, (or ;) by computing the steering angle as

¢ = arctan(kyL""2), with 0* = —7,

5

until the parking
maneuver is done.

Figure 6 shows the errors in the line and corner position
vectors which occurred in Steps 2 to 5, as described in Sec.
IV, during a given trajectory of the simulated vehicle.
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Fig. 6. Errors in the line and corner position vectors occurring during a given
trajectory of the simulated vehicle at: (a) Step 2 (&;—&;); (b) Step 3 (z;—Z;);
(c) Step 4 (x; —&;); (d) Step 4 (xc — Ec); () Step 5 (zc — &c). The colors
in this figure correspond to those of the lines and corners presented in Fig. 5.
The continuous and dotted curves correspond to the x and y coordinates of
the vectors, respectively.

In Step 2, the errors between the real lines and the lines
obtained with RANSAC (x; — &;) were sometimes relatively
large (Fig. 6(a)). As explained above, this was due to the fact
that the lines given by RANSAC were sometimes not in the
right order (for instance, the second line obtained occasionally
corresponded to the third one, as in Fig. 5(c)), or they were
sometimes spurious lines.

In Step 3, the errors between the real lines and the lines
classified by NBCs (x; — &;) were much smaller, but they
could still be relatively large, depending on the noise (Fig.

6(b)).

>The gains kg, k1, ke > 0 were dynamically adapted in order to avoid any
saturation of the control inputs.

In Step 4, the errors between the real lines and the lines
estimated by the EKFs (x; — &;) were about one order of
magnitude smaller, and an estimation was still delivered even
when no corresponding line was found, i.e. no measurement ;
was obtained (Fig. 6(c)). However, when the car was crossing
the lines, i. e. «; ~ 0, a very small error in &; could lead to
a very large error in . (corresponding to the shaded regions
in Fig. 6(d)).

In Step 5, the errors between the real corners and those
estimated by the EKFs (x.—&.) were much smaller, especially
when crossing lines (Fig. 6(e)).

The preliminary controller and the results presented here
could be further improved, for instance by looking for the right
corner’s position x., in the cloud of points while the vehicle
is in the blind zone for the z;, (see Fig. 6) in order to improve
the reliability on the estimation &, and perform a closed-loop
maneuver based on the estimation of both corners’ positions.

VI. PRELIMINARY EXPERIMENTAL TESTS

Preliminary tests were carried out on a real vehicle (Peu-
geot 3008) in order to check the validity of the first step in
the algorithm presented in Sec. IV. In particular, two 6-pixel
LMSs (Ayp & 1.5° [13] and 3.8° [14]) and a webcam (Logitech
B905) were tied to a supporting slab which was attached to the
front fender, as shown in Fig. 7(a). The slab could be moved
and rotated along the z-axis in order to adjust the sensors’
height and their orientation.

Figure 7(b) shows an example of the OF measured by one
of the two 6-pixel LMSs presented in Fig. 7(a) (Ap =~ 3.8°
[14]) when the vehicle was moving alongside two parallel
parked vehicles. Figure 7(c) shows the vehicle’s trajectory,
along with the positions of the 2-D points computed by
applying equation (6) to the OF measurements in Fig. 7(b).

Fig. 7. (a) A picture of the sensor’s supporting slab attached the front fender
with the two 6-pixel LMSs and the webcam. (b) Example of the OF measured
by one of the two 6-pixel LMSs presented in Fig. 7(a) (Ap ~ 3.8° [14])
when the vehicle was moving alongside two parallel parked vehicles. The
dotted lines indicate the OFs produced by each of the two parked vehicles,
and f,, indicates the average refresh frequency of the OF measurements in
each dotted-line region. (c) The simulated vehicle’s trajectory, along with the
positions of the 2-D points computed by applying equation (6) to the OF
measurements presented in Fig. 7(b). The picture in the lower part of the
figure is the webcam image taken when the vehicle was in the position shown
here (webcam’s FOV ~ 45°).
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Fig. 8. Example of vehicle’s trajectory along with the positions of the 2-D points computed using the OF measured by one of the two 6-pixel LMSs presented
in Fig. 7(a) (Ap ~ 3.8° [14]) when the vehicle was moving along a (a) parallel and (b) a perpendicular parking lane at a longitudinal velocity ranging from 3
to 9 7. The pictures in the lower part of each subfigure are the webcam images taken when the vehicle was in the positions presented in the top part, and the

dotted lines give a rough indication of the webcam’s FOV (~ 45°).

To compute the OF measurements w;, the time lag 7;
between the i-th and ¢ — 1-th pixel output signal (see Fig. 1, 2)
was estimated using a cross-correlation method inspired by the
Reichardt-Hassenstein model [26]. First we delayed one of the
two signals by a time 7, = kAt in a fixed time window, and
we then computed the cross-correlation between the delayed
and non-delayed signals. We then set 7; at a value equal to the
time lag 75 giving the maximum cross-correlation, as long as
this maximum was greater than 0.99. As the precision in 7; is
constant and w; is inversely proportional to 7;, the precision
in w; is proportional to w; itself, as we can notice by looking
at Fig. 7(b).

The data acquisition and the data processing were per-
formed on a laptop PC (Intel Core i7-2620M CPU 2.70 GHz)
with RTMaps software. In particular, the pixel output signals
delivered by the LMSs were sampled at a rate of 1 kH z by the
embedded micro-controller (Microchip dsPIC33FJ128GP802)
and transmitted to the PC via serial communication, whereas
the vehicle’s longitudinal velocity and its steering angle were
acquired at 20 H z by the PC via the vehicle’s CAN bus. The
OF and the positions of the 2-D points were computed at a
frequency of 100 H z.

Figure 8 shows two examples of the vehicle’s trajectory
along with the positions of the 2-D points computed using
the OF measured by one of the two 6-pixel LMSs presented
in Fig. 7(a) (Ay ~ 3.8° [14]) when the vehicle was moving
along a parallel (Fig. 8(a)) and a perpendicular parking lane
(Fig. 8(b)) at a longitudinal velocity ranging from 3 to 9 .

The refresh frequency of the OF measurements, that is to
say the ratio between the number of measurements performed
in a given time interval and the time interval itself, can vary
significantly, depending on the empty spaces and the contrasts
provided by the car bodies (see the pictures in the lower part
of Fig. 8(a) and (b)), giving both dense and sparse clouds
of points. However, the average refresh frequency f, for
the OF produced by the parked vehicles ranged from 30 to
65 H z, which is about 2-3 times greater than those of standard

ultrasonic sensors and cameras.

A few 2-D points were generated in the center of Fig. 8(a)
as the vehicle was moving along an empty parking place lined
with small traffic poles (see the third picture in Fig. 8(a)). No
measurements were made here on the background of the spots
because it was too far from the LMS. In fact, the analog band-
pass filter implemented on the LMS (see [14]) cuts off the low-
frequency variations in the photoreceptors’ signals produced
by the slow visual motion of the background. This issue can
be fixed by adjusting the analog filtering part of the LMS, but
this has not been shown here.

It is worth noting that in the case of both parallel and
perpendicular parking, it is possible to recognize the shapes
of the parked vehicles in the clouds of points, even though
few measurements are sometimes made due to the reflections
on the car bodies (see, for instance, the fourth picture in Fig.
8(a)).

In the case of perpendicular parking, the measurements
were noisier than in the parallel case, mainly because of (i)
the occlusions of the cars’ sides and (ii) the misalignment of
the cars (see for instance the first and second pictures in Fig.
7(b)).

The qualitative results presented here validate the first step
in the algorithm we have developed. Although it was not
possible, in the case of this example, to apply the other steps
in the algorithm because there were too few points in each
sampling interval, it seems likely that by using LMSs with a
larger number of pixels (or several 6-pixel LMSs) delivering
1-D OF measurements all round the vehicle, we will probably
have enough points to be able to apply all the steps.

VII. CONCLUSIONS

In this paper, we have presented a low computational-cost
method for detecting and tracking a parking spot in real time
based on a visual motion sensor setup performing 1-D OF
measurements around the vehicle.



The advantages of this method can be summed up as
follows:

e the average refresh frequency is about 2-3 times higher
than with standard ultrasonic sensors and cameras;

e it produces redundant information about a parking
spot, in cases where ultrasonic sensors and cameras
are liable to be inaccurate (e.g., when the parked
vehicles are too far apart or too close, under wide-
range lighting conditions and when indistinct visual
patterns are visible on the car bodies);

e it can detect a candidate parking spot before passing
it, thanks to the long-distance, wide-angle range of
view;

e it can track the parking spot in real time, thanks to
the wide-angle range of view, as well as the high-
frequency measurements and low computational-cost
processing;

e it makes it possible to eventually apply a nonlinear
tracking control strategy using the estimation of the
vehicle’s ego-position with respect to the parked ve-
hicles.

For these reasons, LMSs can provide a good additional
information to automatic parking systems as well as to other
automotive applications. In particular, by using LMSs with
several pixels (or several few-pixel LMSs) giving a 180° FOV
at each of the car’s four corners, it should be possible to apply
the present method in real time to performing safe closed-loop
parking maneuvers.

Although we focused here only on the information pro-
vided by the LMSs, data provided by other sensors (such as
ultrasonic sensors) could be integrated into the algorithm to
achieve more robust performances.

Studies to improve the closed-loop parking maneuvers and
experimental tests with several LMSs on a real car-like robot
are now under way.
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