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Summary. In this work, a new physically stabilized and locking-free formulation of the 

SHB8PS element is presented. This is a solid-shell element based on a purely 3D formulation. 

It has eight nodes as well as five integration points, all distributed along the “thickness” 

direction. Consequently, it can be used for the modeling of thin structures, while providing an 

accurate description of the various through-thickness phenomena. The reduced integration 

has been used in order to prevent some locking phenomena and to increase computational 

efficiency. The spurious zero-energy deformation modes due to the reduced integration are 

efficiently stabilized, whereas the strain components corresponding to locking modes are 

eliminated with a projection technique following the Enhanced Assumed Strain (EAS) method. 

1 INTRODUCTION 

Over the last decade, considerable progress has been made in the development of three-

dimensional finite elements capable of modeling thin structures (see references 
1, 2, 3, 4, 5

). The 

coupling between solid and shell formulations is a good way to provide continuum finite 

element models that can be efficiently used for structural applications. These solid-shell 

elements have numerous advantages for the analysis of various complex structural forms that 

are common in many industrial applications. Their main advantage is to allow the meshing of 

complex structural forms without the classical problems of connecting zones meshed with 

different element types (continuum and structural elements for instance). Another important 

benefit of solid-shell elements is the avoidance of tedious and complex pure-shell element 

formulations. In this work, a new locking-free formulation for the SHB8PS solid-shell 

element is performed. More specifically, this work focuses on the elimination of the residual 

membrane and shear locking phenomena persisting in the previous formulations. By using 

orthogonal projection of the discrete gradient operator, these severe shear and membrane 

locking modes are removed. Several numerical experiments in linear and non linear 

benchmark problems show that this new formulation of the SHB8PS element is effective and 

allows fast convergence without locking phenomena. 

1



2 FORMULATION OF THE SHB8PS ELEMENT 

The element’s coordinates ix  and displacements  are interpolated using the 

isoparametric trilinear shape functions 

( 1,...,3)i iu =

( ), , ( 1, ..., 8) 
I

IN ξ η ζ = . By introducing the Hallquist’s 

vectors ( ib , i = 1,..., 3), defined in ref. 
6
 as: 

, (0,0,0)       1, 2,3         T

i i
b N i Hallquist Form= = (1)

where , / iiN N x∂ ∂= , one can show that the discrete gradient operator, which relates the linear 

deformations to the nodal displacements (i.e., ( )
S

u B d∇ = ⋅ ), is given by Eqn. (2). This B -

matrix uses the following variables: 
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(2)

Despite the geometry of the element (eight-node hexahedron), several modifications are 

introduced in order to provide it with shell features. Among them, a shell-like behavior is 

intended for the element, by modifying the three-dimensional constitutive law so that the plane-

stress conditions are approached and by aligning all the integration points along a privileged 

direction, called the thickness. The stiffness matrix is then obtained by Gauss integration: 
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Because the 
,i

hα  functions 3, 4;  1, 2, 3( i )α = =  vanish at the five Gauss points, of coordinates 

 the 0,  0,
I I I

ξ η ζ= = ≠ B -matrix Eqn. (2) reduces at its 
12

B  part, with only the 
,i

hα  terms 

1, 2;  1, 2, 3( i )α = = . This leads to six hourglass modes generated by 
3 4and h h . These spurious 

modes are stabilized following the approach given in ref. 
7
. Moreover, we apply an assumed 

strain method in order to eliminate locking. The B -matrix is thus projected onto B  as: 

12 34B B B= + (4)

Consequently, the stiffness matrix, Eqn. (3), can be rewritten as: 
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12e S
K K K= +

TAB
 (5)

The first term 
12

K  is obtained by Gauss integration, Eqn. (3). The second term 
STAB

K

represents the stabilization stiffness: 

12 34 34 12 34 34

e e e

T T T
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K B C B dv B C B dv B C B dv

Ω Ω Ω

+ += ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫ ∫ (6)

3 NUMERICAL RESULTS AND DISCUSSIONS 

The performance of this new formulation has been tested through a variety of linear and 

non linear mechanical problems. In all of these tests, the new version showed better 

performance than the previous formulation. In particular, the improvement is significant in the 

pinched hemispherical shell test. This test has become very popular and is used by many 

authors. It is severe since the shear and membrane locking phenomena are very important and 

emphasized by the problem geometry (distorted, skewed elements). As reported by many 

authors, in this doubly-curved shell problem, the membrane locking is much more severe than 

shear locking. Fig. 1 shows the geometry, loading and boundary conditions for this problem. 

Figure 1: Schematic of hemispherical shell 

The radius is R=10, the thickness t=0.04, the Young’s modulus E=6.825×10
7
, Poisson’s 

ratio ν =0.3. Using the symmetry, only a quarter of the hemisphere is meshed using a single 

element through the thickness and with two unit loads along directions Ox and Oy. The 

analytical solution for the radial displacement at the load point is 0.0924. The convergence 

results are reported in Tab. 1 in terms of the normalized displacement at the load point. The 

new version of the SHB8PS element is compared to the former one and to the three elements 

HEX8, HEXDS and H8-ct-cp. The HEX8 element is a standard, 8-node, full integration solid 

element (8 Gauss points). The HEXDS element is an 8-node, four Gauss points solid element 

(see ref. 
8
). The H8-ct-cp element was developed in ref. 

9
. Tab. 1 shows that the new version 

of the SHB8PS element provides an excellent convergence and shows no locking. 
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This new version has also been tested on a variety of non linear, elastic and elastic-plastic 

problems. We demonstrate that the projection adopted in this formulation better eliminates the 

locking phenomena. As shown particularly in the pinched hemisphere test, Tab. 1, this element 

also demonstrates an excellent efficiency and convergence through numerous other tests. 

SHB8PS

previous 

version

HEX8 HEXDS H8-ct-cp
SHB8PS 

new 

version Number of 

elements Ux/Uref Ux/Uref Ux/Uref Ux/Uref Ux/Uref 
12 0.0629 0.0005 0.05 0.8645 
27 0.0474 0.0011 1.0155 
48 0.1660 0.0023 0.408 0.35 1.0098 
75 0.2252 0.0030 0.512 0.58 1.0096 

192 0.6332 0.0076 0.701 0.95 1.0008 
363 0.8592 0.0140 0.800 1.0006 
768 0.9651 0.0287 1.0006 

1462  0.9910 0.0520 1.0009 

Table 1: Normalized displacement at the load point of the pinched hemispherical shell 
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