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Modeling and control of flow with dynamical boundary actions

André F. Caldeira, Christophe Prieur, Daniel Coutinho and Valter J. S. Leite

Abstract— In this paper a flow inside a pipe is
modeled by a hyperbolic system (written in terms of a
partial differential equation). One boundary condition
is given by the coupling with a finite-dimensional dy-
namic model of heating column and a static modeling
of ventilator. Then, the classical finite-dimensional
technique is applied for the linearization of first or-
der hyperbolic systems with dynamics associated to
the boundary conditions. The discretization of the
infinite-dimensional system is used and an augmented
discrete linear system with dimension depending on
the step size of discretization in space is obtained.
The results are illustrated on simulations considering
a Poiseuille flow experimental setup.

I. Introduction

This paper considers fluid transport which is a phe-
nomenon often encountered in many industrial applica-
tions such as hydraulic networks [3], [14], gas flow in
pipelines [1], [6], flow regulation in deep pits [15], among
others. The fluid transport is modeled by conservation
laws, which are first-order hyperbolic Partial Differential
Equations (PDEs), commonly used to express the funda-
mental balance law that occur in many physical systems
when small friction or dissipation effects are neglected
[3]. It is well-known, that measurements and actuators
in distributed parameter systems are not usually avail-
able. It is more usually for them to be located at the
boundaries.

The stability problem of boundary control in time in-
variant hyperbolic systems has been attracted attention
of academic community for a long time, see, e.g., the
references [7], [8] and [12]. Moreover, a strict Lyapunov
function approach is proposed in [13] for the boundary
control with integral actions of hyperbolic systems of
conservation law that can be diagonalized by means of
Riemann invariants. The stability problem of linear and
quasi-linear hyperbolic systems in the presence of dy-
namic behavior at the boundary conditions is addressed
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in [5]. Reference [6] addresses the problem of boundary
observer design for one-dimensional first order linear and
quasi-linear strict hyperbolic systems with n rightward
convecting transport. The boundary control can have a
faster reaction when compared to waves traveling time,
because no time response limitation is taken into account
at the boundary conditions. In certain applications such
as [10], [2], the wave traveling can be considered much
slower than the actuator time response. A static rela-
tionship between the control input and the boundary
condition can be considered in many cases. However,
there are applications where the dynamics associated
with the boundary control cannot be neglected [4].

The major concern in this paper regards the modeling
of a flow inside a pipe (fluid transport phenomenon)
with boundary control strategy applied in a physical
experimental setup. This problem is modeled by a non-
linear hyperbolic system with coupled equations and a
boundary condition given by the coupling with a finite-
dimensional dynamic model of a heating column and a
ventilator static model. The tracking problem of this
complex dynamics is addressed in a simple manner by
means of classical control tools such as linear approx-
imations, finite difference schemes and integral action,
leading to an augmented discrete-time linear system.
Hence, a classical pole placement design methodology
consisting of a state observer and a state feedback con-
trol law is applied to improve the closed-loop dynamics
tracking performance. A numerical example considering
the Poiseuille flow experimental setup is presented to
illustrate the proposed strategy.

The rest of this paper can be summarized as follows.
Section II introduces the description of fluid transport
systems and the modeling of Poiseuille flow with dy-
namics at the boundary conditions. In Section III, it
is presented an augmented discrete-time linear system
obtained by means of linear approximation and spatial
discretization with the inclusion of integral action for
the steady-state tracking of constant reference signals.
Section IV illustrates the proposed approach by means
of a numeric example and Section V ends the paper.

II. System Description and Modeling

The fluid transport system is normally used for indus-
trial applications. Such as ventilation system of mining
industry [16] and hydraulic networks [14]. To investigate
the phenomenon of fluid transport in a Poiseuille flow
with dynamics at the boundary conditions, an exper-
imental setup has been designed to test and validate



control strategies. The Figure 1 shows the schematic of
the proposed device.

Fig. 1. Experimental setup (Poiseuille Flow)

This device is constituted by a heating column encas-
ing a resistor, a tube, two ventilators, a gas speed meter
and three distributed temperature sensors. The control
objective is the outlet temperature tracking by driving
the power dissipated on the heating resistor at different
air flow speeds through the tube (input ventilator). Only
the outlet temperature, the outlet flow speed, the outlet
pressure and the heating column temperature will be
considered as measurements for a closed-loop boundary
control strategy. In this work, it is assumed that only the
first ventilator (input ventilator) is the actuator and the
output ventilator is set to be off.

The modeling of the experimental setup is done by con-
sidering three subsystems: the tube, the heating column
and the ventilator. One-dimensional transport model is
used to describe the gas density, speed and pressure
variations in the tube. For the dynamic boundary con-
ditions, it is considered a zero-dimensional model of
control volume approach with heat exchanges coming
from the heating resistor in the column. In addition,
the Bernoulli’s equation is used to relate the pressure,
temperature and speed with the ventilator rotation for
the static boundary condition, and the perfect gases law
is used to convert density on temperature.

A. Heating Column Model

The control volume is based on reference [4]. Fig. 2
represents a control volume approach for the heating
column.

Fig. 2. Control volume approach

Consider the internal energy of a perfect gas:

U0 = Cvm0T0, (1)

where U0 is the gas internal energy, T0 is the gas temper-
ature, m0 is the mass inside the column and Cv is the
specific heat of the gas for constant volume. The time
derivative of (1) is:

U̇0 = Cvm0Ṫ0 + CvT0ṁ0. (2)

Using the first law of thermodynamics, the internal
energy of the gas inside the column can be alternatively
given by:

U̇0 = hinṁin + houtṁout + dQ+ dW, (3)

where hin and hout are the specifics enthalpy getting in
and out of the volume with a mass flow rate ṁin and
ṁout, respectively. dQ quantifies the heat exchanges and
dW is the work done by the gas. In the case of the heating
column, there are two flows interacting with the volume,
the input mass flow rate ṁin and the output mass flow
rate ṁout. As the gas does not perform any work, then
dW = 0. In order to write (3) in terms of temperature,
the specific enthalpy of a gas is used defined by h =
CpT with Cp being the specific heat constant at constant
pressure. Therefore, (3) can be redefined as:

U̇0 = CpTinṁin − CpT0ṁout + dQ, (4)

where Tin is the heating column input temperature. To
simplify the model, consider the following two hypothe-
sis:

H1.1 The pressure dynamics in the heating column
is much faster than the temperature dynamics,
which allows a quasi-static behavior of the mass
and pressure to be considered;

H1.2 p0 ≈ pin, where pin is the input pressure and p0
is the pressure inside the column.

Thus, H1.1 and H1.2 allow (2) and (4) to be respec-
tively rewritten as:

U̇0 = Cvm0Ṫ0, (5)

U̇0 = Cpṁin(Tin − T0) + dQ. (6)

For simplicity, the temperature dynamics can be ex-
pressed in terms of the gas density by introducing the
following change of variable (perfect gases law):

ρ0 =
pin
RT0

, (7)

where R is the ideal gas constant. Taking the time
derivative of (7) into account, the following holds:

Ṫ0 = − R

pin
T 2
0 ρ̇0. (8)

In addition, equalizing (5) and (6) and using (7)-(8) along
with the perfect gases law to replace the mass inside
the control volume m0 in terms of the pressure and the
specific gas constant R, it is obtained:

ρ̇0 = −RγTinṁin

pinV0
ρ0 −

R

pinV0Cv
ρ0dQ+

γṁin

V0
, (9)

where ρ0 = m0
V0

is the density inside the heating column,

V0 is the column volume and γ =
Cp
Cv

.



B. Flow model in the tube

Consider the ideal gas flow through a constant sec-
tion, where all the friction losses and heat transfers are
neglected. Hence, the Euler equations can be used to
model the system. The equations consist of conservation
of mass, momentum and energy and they can be written
in terms of the primitive variables density ρ, particle
speed v and pressure p. In this case, the flow is assumed
to be one-dimensional leading to the following system of
PDEs (which are three nonlinear coupled equations):

Wt + AWx = 0, (10)

where W =

 ρ
v
p

 and A =

 v ρ 0

0 v
1

ρ
0 a2ρ v

, with

a =

√
γp

ρ
representing the sound speed in ideal gas and γ

the adiabatic constant. Further, t ≥ 0 is the time variable
and x ∈ [0, L] is the space variable with L = 1.5 being
the tube length.

C. Ventilator Model

The ventilator is a power driven machine that moves
a continuous volume of air by converting rotational
mechanical energy to an increase in the total pressure of
the moving air. From [11], there are three relationships
among fan pressure, speed, power and flow rate, which
are stated as ventilator laws. In this work, it is only
considered one ventilator installed at the input side of
the tube as the actuator, a flow rate proportional to the
ventilator speed. Thus, the ventilator rotating speed is
the control action.

Bernoulli’s equation is used to relate the density, speed
and pressure with the ventilator rotation. Using the
ventilator law, the boundary condition is modeled, for
x = 0 and t ≥ 0, by means of:

pa +
1

2
ρ(0, t)v(0, t)2 = KnC(t)2 (11)

where the pa is the atmospheric pressure, Kn is a con-
stant coefficient, C(t) is the ventilator rotating speed,
and ρ(0, t) and v(0, t) represent gas density and velocity
at the input side of tube, respectively.

D. Outputs T (L, ·), v(L, ·), p(L, ·) and T (0, ·)
The outputs considered in this work are the particle

temperature, speed and pressure at the outlet of the tube,
respectively, T (L, ·), v(L, ·) and p(L, ·). The dynamic
boundary condition is the temperature in the heating
column T (0, ·). The outputs v(L, ·) and p(L, ·) are ob-
tained directly, but the outputs T (L, ·) and T (0, ·) are
obtained by means of the nonlinear relationship (7). The
pressure inside the tube is considered constant (equal to
the atmospheric pressure, pa). The pressure at the inlet
pin and outlet pout of the tube are considered equal, since
the pressure differential introduced by the ventilator is
supposed to be small.

III. Augmented Discrete-Time System

This section is composed of three main steps: (i) the
linearization of the coupled nonlinear hyperbolic system
(flow model in the tube), the nonlinear ordinary differen-
tial equation (ODE) that represents the heating column,
the Bernoulli’s equation for the ventilator model and the
nonlinear relationship between density and temperature;
(ii) discretization of the linear system resulting from
the first step; and (iii) the representation of the system
dynamics in terms of an augmented finite-dimensional
discrete-time system, and the development of stability
analysis and control design conditions.

A. Linearization

1) Flow model in the tube: system (10) admits a
steady-state (ρ∗, v∗, p∗) and the deviations of the states
(ρ, v, p) with respect to their steady-state values are
defined as ρ̄ = ρ− ρ∗, v̄ = v − v∗, p̄ = p− p∗.

Thus, the linearization of system (10) at this equilib-
rium is given by

W̄t + A∗ W̄x = 0, (12)

with W̄ =

 ρ̄
v̄
p̄

 and A∗ =

 v∗ ρ∗ 0

0 v∗
1

ρ∗

0 a∗2ρ∗ v∗

.

2) Heating Column Model: whereas the pressure inside
the tube is constant (and equal to the atmospheric
pressure), the input mass flow rate will be expressed as

ṁin = v(0, t)ρ(0, t)At, (13)

where At is the tube cross section area.
Taking (13) into account, the boundary condition (9)

can be expressed as:

ρ̇(0, t) = −RγTinv(0, t)ρ(0, t)At
pinV0

ρ(0, t)

− R

pinV0Cv
ρ(0, t)dQ+

γv(0, t)ρ(0, t)At
V0

. (14)

Defining

A = −RγTinAt
pinV0

, B = − R

pinV0Cv
and C =

γAt
V0

,

we obtain:

ρ̇(0, t) = Av(0, t)ρ(0, t)2 + BdQρ(0, t)

+ Cv(0, t)ρ(0, t). (15)

Then, linearizing (15) and defining dQ = U2(t) yields:

˙̄ρ(0, t) = A
(
v̄(0, t)ρ∗2 + 2v∗ρ∗ρ̄(0, t)

)
+ B

(
U∗
2 ρ̄(0, t) + ρ∗U2(t)

)
+ C

(
v∗ρ̄(0, t) + ρ∗v̄(0, t)

)
, (16)

where ρ̄(0, t) = ρ(0, t) − ρ∗ is a small deviation around
the equilibrium point; ρ∗ and v∗ are the same equilibrium
points used for flow model in the tube; and U∗

2 is a
constant control action at the equilibrium point.



Hence, reorganizing (16) leads to

˙̄ρ(0, t) =
(

2v∗ρ∗A+ BU∗
2 + Cv∗

)
ρ̄(0, t)

+
(
Aρ∗2 + Cρ∗

)
v̄(0, t) + Bρ∗U2(t). (17)

3) Ventilator Model: linearizing equation (11) assum-
ing that pa is constant, the following boundary condition
is derived:

ρ̄(0, t)v∗2 + 2ρ∗v∗v̄(0, t) = 4KnC
∗C̄(t), (18)

and then defining C̄(t) = U1(t), C∗ = U1
∗ and reorga-

nizing (18) yields

v̄(0, t) =

(
− v∗

2ρ∗

)
ρ̄(0, t) +

(
4KnU1

∗

2ρ∗v∗

)
U1(t), (19)

with U1
∗ being a constant control action at the equilib-

rium point.
4) Outputs T (L, ·), v(L, ·), p(L, ·) and T (0, ·): the

linear output v̄(L, ·) and p̄(L, ·) are obtained directly
from the linear flow model in the tube. It is required
to use the linearization of (7) to deal with T̄ (L, ·) and
T̄ (0, ·), hence the following relationship is obtained

T̄ (L, t) = −poutρ̄(L, t)

Rρ∗2
, T̄ (0, t) = −pinρ̄(0, t)

Rρ∗2
. (20)

B. Discretization

1) Flow model in the tube: in order to spatially dis-
cretize the linear hyperbolic system (12), we shall make
use of the forward and backward difference quotients for
Wt and Wx, respectively.

Let 4t and 4x be respectively the time and space
steps satisfying a CFL condition [9]. Then, by routine
manipulations over j = 0, 1, ..., N and i = 1, 2, ..., α with

N being a given integer and α = L
4x , the PDE (12) is

approximated by means of

ρ̄d(i, j + 1) = b1 ρ̄d(i, j) + b2 ρ̄d(i− 1, j)

− b3 v̄d(i, j) + b3v̄d(i− 1, j), (21)

v̄d(i, j + 1) = b1 v̄d(i, j) + b2 v̄d(i− 1, j)

− b4 p̄d(i, j) + b4 p̄d(i− 1, j), (22)

p̄d(i, j + 1) = b1 p̄d(i, j) + b2 p̄d(i− 1, j)

− b5 v̄d(i, j) + b5 v̄d(i− 1, j), (23)

where b1 =

(
1 − 4t4xv

∗

)
, b2 =

(
4t
4xv

∗

)
, b3 =(

4t
4xρ

∗

)
, b4 =

(
4t
4xρ∗

)
and b5 =

(
4t
4xγp

∗

)
.

2) Ventilator Model: the discretization of (19) is ob-
tained by applying a standard discretization j4t leading
to

v̄d(0, j) =

(
− v∗

2ρ∗

)
ρ̄d(0, j) +

(
4KnU1

∗

2ρ∗v∗

)
U1(j). (24)

3) Heating Column Model: considering j4t, the dis-
cretization of the heating column liner approximation in
(17) is as follows

ρ̄d(0, j+ 1) =
(

1 +4t
(

2v∗ρ∗A+BU∗
2 + Cv∗

))
ρ̄d(0, j)

+4t
(
Aρ∗2 + Cρ∗

)
v̄d(0, j) +4t

(
Bρ∗

)
U2(j) (25)

with 4t being the period of sampling. Thus, in view of
the above, we derive the following expression by replacing
v̄d(0, j) as (24) and reorganizing (25)

ρ̄d(0, j + 1) = Q1 ρ̄d(0, j) +Q2 U1(j) +Q3 U2(j), (26)

where Q1 =


(

1 +4t
(

2v∗ρ∗A+ BU∗
2 + Cv∗

))
+

((
4t(Aρ∗2 + Cρ∗)

)(
− v∗

2ρ∗

)) ,

Q2 =

((
4t
(
Aρ∗2 + Cρ∗

))(
4KnU1

∗

2ρ∗v∗

))
and Q3 =

4tBρ∗.

4) Outputs T (L, ·), v(L, ·), p(L, ·) and T (0, ·): the
discrete linear approximate outputs v̄d(L, ·) and p̄d(L, ·)
are obtained directly from the discrete linear approxi-
mate flow model in the tube. For T̄ (L, t) and T̄ (0, t) as
described in (20) is applied the standard discretization
step j4t leading to:

T̄d(0, j)= −pinρ̄d(0, j)
Rρ∗2

, T̄d(L, j)= −poutρ̄d(L, j)
Rρ∗2

. (27)

C. Discrete-Time Linear Approximation

After the steps of linearization and discretization, an
augmented discrete-time linear model can be obtained.
To this end, let the augmented state vector be defined
by:

X (j) =
[
ρ̄d(1, j) ρ̄d(2, j) · · · ρ̄d(α, j)

v̄d(1, j) v̄d(2, j) · · · v̄d(α, j)

p̄d(1, j) p̄d(2, j) · · · p̄d(α, j)
]T
, (28)

and the boundary points as follows

Xc(j) =
[
ρ̄d(0, j) v̄d(0, j)

]T
. (29)

The boundary condition p̄d(0, j) is considered constant
and it is not used for the boundary control problem.

Since the boundary control is not directly applied to
the states components density ρ̄d(0, j) and speed v̄d(0, j),
it is employed the ventilator speed U1(j) (installed in the
initial part of the tube) and the power dissipated on the
heating resistor U2(j) (installed in the heating column) as
the boundary control actuation. Thus, the control input
vector of the discrete-time approximation is defined as:

U(j) =
[
U1(j) U2(j)

]T
. (30)

Notice that we have a static boundary condition and
a dynamic boundary condition. Hence, to obtain the
boundary condition related to the density ρ̄d(0, j), we use
the dynamic model of the heating column. Therefore, the
augmented state vector is redefined as follows

Z(j) =

[
X (j)
ρ̄d(0, j)

]
. (31)



Then, the discrete-time linear approximation will be as
follows:

Ω :

{
Z(j+1) = AZ(j) +BU(j),

y(j) = CZ(j),
(32)

where j is the sampling time index; Z(j) ∈ R3α+1 is
the augmented state vector; U(j) ∈ Rm represents the
control input vector; y(j) ∈ Rp represents the output
signals; and A, B and C are constant matrices as defined
in (33) at the top of next page.

To implement a state feedback control law, a standard
Luenberger-like observer is designed. That is, the follow-
ing control law is considered

U(j) = KẐ(j), (34)

where Ẑ(j) is the state of the following observer

Ω̂ : {Ẑ(j+1)=(A− LC)Ẑ(j) +BU(j) + Ly(j), (35)

with K ∈ Rm×3α+1 and L ∈ R3α+1×p to be determined
such that (A−BK) and (A− LC) are Schur stable.

IV. A Numerical Example

Let the following system parameters: adiabatic con-
stant γ = 1.4; molar mass of dry air M = 28.97 g/mol.K;
ideal gas constant R = 8.3143 J/(mol.K); specific heat
constant for constant pressure Cp = 1.005 KJ/Kg.K for
constant volume Cv = 0.718 KJ/Kg.K; initial pressure
pin = 1 × 105 Pa; initial temperature Tin = 304 K;
column volume V0 = 4×10−3m3; tube cross section area
At = 6.4 × 10−3m2; tube length L = 1.5 m; and the
constant coefficient of ventilator model Kn = 1×10−4. In
addition, define the discretization steps as 4t = 0.0075
and 4x = 0.036 which ensure the numerical stability
condition of [9] (i.e., b1 < |1| – with b1 = 0.5032).

Firstly, some simulations are performed aiming to val-
idate the proposed models, i.e., the hyperbolic nonlinear
system (10) with nonlinear boundary conditions (9) and
(11) referred as HSNL, the hyperbolic linear approxima-
tion (12) with linear boundary conditions (17) and (19)
referred as HSL and the augmented discrete-time linear
approximate system (32) which is referred as ADLS. For
these three models, it is imposed an initial condition and
it is verified the steady-state convergence. To this end,
it is considered control inputs U∗

1 = 150 rpm and U∗
2 =

300 watts which yield steady-state values ρ∗ = 1.1 kg/m3

(or, equivalently, T ∗ = 320.92 K), v∗ = 2.02 m/s and
p∗ = 1 Bar (or, equivalently, 1 × 105 Pa in SI units).
Figure 3 shows the time response of temperature, speed
and pressure at the tube outlet, and the heating column
temperature (tube inlet) for all three models. The initial
condition was set to ρ = 1.1614 kg/m3, v = 1.8 m/s and
p = 1 Bar. Notice when converting the value of the initial
condition ρ = 1.1614 kg/m3 in temperature for HSNL
using (7) that we have obtained 304 K and for the linear
approximate models using the linear relationship (20) or
(27), we have obtained 301.4 K. It turns out that all
models have converged to the expected values.
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Fig. 3. Temperature, speed and pressure at x = L and temperature
at x = 0 (i.e., heating column temperature) time responses for the
models HSNL (——), HSL (– – –), and ADLS (–·–·–).

Now, a controller for tracking a constant reference tem-
perature at x = L is designed (considering the discrete-
time linear approximate model ADLS) by adapting the
control law proposed in (34) with (35). To this end, a
discrete-time integrator is added to the system dynamics
of (32) leading to the following state space realization:

Ω̃ : {Z̃(j+1) = ÃZ̃(j) + B̃U(j) +BrTref (36)

where Z̃(j) = [ Z(j)T ξ(j) ]T is the enlarged state
vector, ξ(j) is the integrator state, and

Ã=

[
A 0
−Cr 1

]
, B̃=

[
B
0

]
, Br=

[
0
1

]
,

with Cr and Tref being respectively a constant matrix
such that T̄d(L, j) = CrZ(j) and the desired temperature
at x = L. Then, the control law (34) is modified to be as
follows:

U(j) = K̃Z̆(j), (37)

where K̃ = [ K Kr ] and Z̆(j) = [ Ẑ(j)T ξ(j) ]T .
Figure 4 shows a comparison of the hyperbolic linear
PDE model HSL, as in (12), with linear boundary
conditions (17)-(19) (– – –) and the discrete-time ap-
proximate model ADLSC (–·–·–) using in both cases a
controller designed for the ADLSC model. Notice that
the controller is able to track the reference temperature
Tref = 325 K considering both models demonstrating
that the designed control law can be applied for boundary
control of hyperbolic PDE systems at the cost of some
performance degradation.

V. Concluding Remarks

In this paper, we have presented the boundary control
of first order hyperbolic PDE systems associated to
dynamic boundary conditions. Classical techniques such
as linear approximation and discretization have been
applied to an experimental setup (consisting of a tube,
heating column and ventilator) leading to an augmented
discrete-time linear approximate model. Then, an output
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Fig. 4. Time evolution of temperature in x = L and x = 0 for HSL,
using the designed control for ADLSC (– – –) and the ADLSC,
(–·–·–).

feedback plus integrator control law is derived to track a
constant reference temperature. Simulation results have
demonstrate the potentials of the proposed approach.
Future research will be concentrated in applying these
results on the experimental setup.
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