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Abstract

Investigation of laser matter interaction with electromagnetic codes requires to

implement sources for the electromagnetic fields. A way to do so is to prescribe

the fields at the numerical box boundaries in order to achieve the desired fields

inside the numerical box. Here we show that the often used paraxial approxima-

tion can lead to unexpected field profiles with strong impact on the laser matter

interaction results. We propose an efficient numerical algorithm to compute the

required laser boundary conditions consistent with the Maxwell’s equations for

arbitrarily shaped, tightly focused laser pulses.

Keywords: electromagnetic codes; Maxwell solver; particle-in-cell (PIC)

codes; tight focusing; vector beams

1. Introduction

Electromagnetic codes are useful tools to study various problems in mi-

crowave engineering, plasma physics, optics and other branches of natural sci-

ence. Such codes solve Maxwell’s equations coupled to constitutive equations

describing the matter. In studies of laser matter interaction, external electro-5

magnetic waves (the ”laser”) have to enter the computational domain in order

to interact with the matter. In the case of particle-in-cell (PIC) codes like

CALDER [1], PICLS [2] or OCEAN [3], it is common practise to prescribe ex-
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ternal electric and magnetic fields at the numerical box boundaries. Very often,

the paraxial approximation [4, 5] is used to calculate the required fields at the10

boundaries. However, the paraxial approximation is valid only if the angular

spectrum of the laser pulse is sufficiently narrow. Thus, it is not possible to

use this approximation for strongly focused pulses. For several beam types, e.g.

Gaussian, higher order approximations have been presented [6, 7], but they are

rather complicated and therefore not easy to implement. Moreover, for more15

exotic beam shapes, like vector beams or even sampled experimental profiles, it

may be even impossible to find an explicit analytical solution.

In this paper, we propose a simple and efficient algorithm for a Maxwell

consistent calculation of the electromagnetic fields at the boundaries of the

computational domain. We call them laser boundary conditions (LBCs). Our20

algorithm can describe any kind of laser pulses, in particular tightly focused,

arbitrarily shaped and polarized. Such laser pulses become more and more

popular in the context of laser driven radiation and particle sources as well as

laser material processing [8, 9, 10, 11, 12, 13, 14].

The paper is organized as follows. Section 2 details the problem we want25

to solve. In Sec. 3, the theory of laser propagation in vacuum is reviewed.

Section 4 describes in detail our algorithm for the computation of Maxwell

consistent LBCs, and in Sec. 5 we present two illustrative examples: A tightly

focused Gaussian beam and a longitudinal needle beam. Section 6 summarizes

the results and offers perspectives for potential applications.30

2. Schematic presentation of the laser injection

In numerical studies of laser matter interaction, it is common practise to

define the laser by its propagation in vacuum, for example, by position and

shape of the pulse at focus. In this paper, we choose to prescribe the pulse in a

plane P parallel to a boundary of the rectangular numerical box, i.e., typically35

in the focal plane (see Fig. 1). The laser (red) is passing through the plane P,
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Figure 1: Schematic picture of the laser (red) injection problem into the computational do-

main: Electric and magnetic fields E0, B0 are prescribed in the plane P [here the (x, y)-plane

at z = z0]. The fields EB, BB at the boundary (blue) are unknown and have to be calculated.

where the fields1 E0, B0 are prescribed for all times t. The goal is to calculate the

fields EB, BB at the boundary from E0, B0. As we will see in Sec. 4, choosing P

parallel to a boundary allows us to resort to Fast Fourier Transforms (FFTs) in

the numerical computation of the LBCs. It is of course possible to prescribe the40

fields in an arbitrary plane and use the general solution given in the next Section

to calculate the LBCs. However, in this case one cannot exploit the advantage

of an efficient computation with FFTs (Sec. 4) and will have to evaluate the

spatial Fourier integrals directly, for example by performing discrete sums.

3. Laser field propagation in vacuum45

Let E0(r⊥, t) = E(r⊥, z = z0, t) and B0(r⊥, t) = B(r⊥, z = z0, t) be the

electromagnetic fields in the plane P. In the following, we want to compute E,

B in the whole space and for all times. We will see that not all components of

E0, B0 can be prescribed independently. Moreover, we will comment on how to

handle evanescent fields, and finally discuss the paraxial limit.50

1Vectors are typed in bold.
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3.1. Propagation of electromagnetic fields and their interdependencies

Electromagnetic fields in vacuum are governed by Maxwell’s equations. In

frequency or temporal Fourier space they read

∇ · Ê(r, ω) = 0 ∇× Ê(r, ω) = iωB̂(r, ω) (1)

∇ · B̂(r, ω) = 0 ∇× B̂(r, ω) = −iω
1

c2
Ê(r, ω) . (2)

Here, ω is the frequency variable, c is the vacuum speed of light, and ˆ denotes

the Fourier transform with respect to time t. For the definition of the Fourier

transforms as used in this paper see Appendix A. The wave equation for the

electric field E in frequency space reads (analogue for the magnetic field B)

∆Ê(r, ω) +
ω2

c2
Ê(r, ω) = 0 . (3)

Written in spatial Fourier space (with wavevector k as spatial Fourier variables)

Eq. (3) would reduce to an algebraic equation and lead to the vacuum dispersion

relation k2 = ω2/c2. However, we want to describe propagation of E0 along z.

To this end, we keep the z variable and perform the Fourier transform with

respect to the transverse variables r⊥ only. Transforming Eq. (3) to transversal

spatial Fourier space, where k⊥ = (kx, ky)T is the transversal wavevector, gives

k2z(k⊥, ω)Ē(k⊥, z, ω) + ∂2z Ē(k⊥, z, ω) = 0 , (4)

where kz(k⊥, ω) =
√
ω2/c2 − k2x − k2y, and ¯ denotes the temporal and trans-

verse spatial Fourier domain. The fundamental solutions of Eq. (4) are the

forward (+) and backward (−) propagating, plane or evanescent waves (ana-

logue for the magnetic field B)

Ē±(k⊥, z, ω) = Ē±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) . (5)

It is important to note that E±0 , B±0 cannot be chosen arbitrarily. In fact,

only two out of six vector components (for forward and backward direction,

respectively) are independent. For example, we can choose to prescribe E±0,⊥ in
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the plane P. Then, by exploiting Eqs. (1) and (5), we get

Ē±⊥(k⊥, z, ω) = Ē±0,⊥(k⊥, ω)e±ikz(k⊥,ω)(z−z0) (6)

Ē±z (k⊥, z, ω) = ∓
k⊥ · Ē±⊥(k⊥, z, ω)

kz(k⊥, ω)
(7)

B̄±(k⊥, z, ω) =
1

ωkz(k⊥, ω)
R±(k⊥, ω)Ē±⊥(k⊥, z, ω) , (8)

with the matrix

R±(k⊥, ω) =


∓kxky ∓

[
k2z(k⊥, ω) + k2y

]
±
[
k2z(k⊥, ω) + k2x

]
±kxky

−kykz(k⊥, ω) kxkz(k⊥, ω)

 . (9)

Obviously, we are imposing kz 6= 0, which is implicitly assumed when stating

that the laser is passing through the plane P. Thus, the laser must not have

any components propagating parallel to P. In complete analogy, one could

prescribe the transverse magnetic fields B±0,⊥ in the plane P and exploit Eqs. (2)55

to compute B± and E± in the whole space. In Appendix B, we give an

alternative method for computing of Maxwell consistent laser fields based on the

vector potential in the Lorentz gauge. Such description can be advantageous in

specific cases, for example radially polarized doughnut beams [15], where only

one component of the vector potential is sufficient to describe the whole laser.60

3.2. Evanescent fields and the paraxial limit

For k2x + k2y > ω2/c2, kz(k⊥, ω) becomes imaginary and Eq. (5) describes

evanescent waves, with exponentially growing or decaying amplitude in z direc-

tion. In free space propagation, evanescent waves violate energy conservation

and are thus unphysical and do not exist. In order to get rid of evanescent waves,65

the spatial Fourier spectrum of E0 and B0 has to be filtered in transverse spa-

tial Fourier space, such that it contains only components with k2x + k2y < ω2/c2.

This condition is nothing else then ensuring the Abbe diffraction limit [4] for

the fields prescribed at z = z0, which, for instance, forbids to focus a beam to

arbitrary small transverse size.70
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In contrast, if the spatial Fourier spectrum of E0 and B0 is nonzero only for

k2x + k2y � ω2/c2, one can expand kz as a Taylor series and approximate

kz(k⊥, ω) ≈ |ω|
c
− c

2|ω|
(
k2x + k2y

)
. (10)

Then, Eqs. (6)–(8) simplify as

Ē±⊥(k⊥, z, ω) ≈ Ē±0,⊥(k⊥, ω)e±i[
|ω|
c −

c
2|ω| (k

2
x+k

2
y)](z−z0) (11)

Ē±z (k⊥, z, ω) ≈ 0 B̄±x (k⊥, z, ω) ≈ ∓1

c
Ē±y (k⊥, z, ω) (12)

B̄±z (k⊥, z, ω) ≈ 0 B̄±y (k⊥, z, ω) ≈ ±1

c
Ē±x (k⊥, z, ω) , (13)

which is well known as the paraxial or Fresnel approximation [5].

4. Implementing the laser boundary conditions

Let us now describe a practical implementation of LBCs based on the solu-

tion of Maxwell’s equations as derived in the previous Section. In the following,

the laser will propagate in forward direction (+) along z, i.e., we inject the

laser from the left side of the box (see Fig. 1). We prescribe the electric field

E0,⊥(r⊥, t) in the plane P at z = z0, for example a Gaussian profile in t and

r⊥. Then, we want to calculate the fields EB(r⊥, t) and BB(r⊥, t) at the bound-

ary z = zB on the numerical grid for all times. Let us consider an equidistant

rectangular grid xi, yj , indices i, j running from 1 to Nx, Ny, respectively, and

with spatial resolution δx, δy. We evaluate E0,⊥ at the grid points xi, yj for

equidistant times tn, n is running from 1 to Nt, with temporal resolution δt:

Eijn
0,⊥ = E0,⊥(xi, yj , tn) . (14)

The following algorithm computes the electric and magnetic fields Eij
B (t) and

Bij
B (t) at the boundary z = zB for any given time t ∈ [t1 − zB−z0

c , tNt − zB−z0
c ]:

1. Calculate Êijn
0,⊥ via discrete Fourier transforms (DFTs) in time [16]:

ωn =
2π

Ntδt

(
−Nt

2
+ n

)
(15)

Êijn
0,⊥ =

δt

2π

Nt∑
l=1

Eijl
0,⊥e

iωntl , n = 1, . . . , Nt . (16)
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2. Calculate Ēijn
0,⊥ via two-dimensional DFTs in transverse space:

kix =
2π

Nxδx

(
−Nx

2
+ i

)
kjy =

2π

Nyδy

(
−Ny

2
+ j

)
(17)

Ēijn
0,⊥ =

δxδy

(2π)2

Nx,Ny∑
l,m=1

Êlmn
0,⊥ e

−i(kixx
l+kjyy

m) , i, j = 1, . . . , Nx,y . (18)

3. Calculate transverse electric field components at the boundary (z = zB):

kijnz = <
√

(ωn)2

c2
− (kix)2 − (kjy)2 (19)

Ēijn
B,⊥ =

Ēijn
0,⊥e

ikijnz (zB−z0) for kijnz > 0

0 for kijnz = 0

. (20)

Here, < denotes the real part of a complex number. Note that we have set75

kijnz ≡ 0 and Ēijn
B,⊥ ≡ 0 for indices i, j, n with (kix)2 + (kjy)2 ≥ (ωn)2/c2, in

order to suppress evanescent waves (see Sec. 3.2).

4. Calculate the longitudinal electric field component at z = zB:

EijnB,z =

−
kixE

ijn
B,x+k

j
yE

ijn
B,y

kijnz
for kijnz > 0

0 for kijnz = 0

. (21)

5. Calculate the magnetic field at z = zB:

Rijn =


−kixkjy (kix)2 − (ωn)2

c2

(ωn)2

c2 − (kjy)2 kixk
j
y

−kjykijnz kixk
ijn
z

 (22)

B̄ijn
B =


1

ωnkijnz
RijnĒijn

B,⊥ for kijnz > 0

0 for kijnz = 0

. (23)

6. Calculate Êijn
B and B̂ijn

B via two-dimensional inverse DFTs:

Êijn
B,⊥ =

(2π)2

NxNyδxδy

Nx,Ny∑
l,m=1

Ēlmn
B ei(k

l
xx
i+kmy y

j) (24)

B̂ijn
B,⊥ =

(2π)2

NxNyδxδy

Nx,Ny∑
l,m=1

B̄lmn
B ei(k

l
xx
i+kmy y

j) . (25)

7



0

Figure 2: Sketch of the electric field amplitude for a multi-cycle laser pulse in frequency

domain. The spectrum is significantly different from zero only in Nω � Nt frequency points.

7. Calculate Eij
B (t) and Bij

B (t) for any given time t ∈ [t1− zB−z0
c , tNt− zB−z0

c ]:

Eij
B,⊥(t) =

(2π)

Ntδt

Nt∑
n=1

Êijn
B e−iω

nt (26)

Bij
B,⊥(t) =

(2π)

Ntδt

Nt∑
n=1

B̂ijn
B e−iω

nt . (27)

The DFTs in steps 1, 2, and 6 can be calculated efficiently by means of FFTs.

There are various FFT libraries available, one of the most popular and efficient

implementations is the FFTW [17]. One has to take into account the particular80

definitions of spatial and temporal Fourier transform used in this paper (see

Appendix A), as well as the conventions of the particular FFT library. For the

FFTW [17], one has to use the forward transform (flag FFTW FORWARD) in step

2, and the backward transform (flag FFTW BACKWARD) in steps 1 and 6.

The Fourier sums in step 7 allow to compute Eij
B (t) and Bij

B (t) for any given85

time t by means of discrete Fourier interpolation. In fact, most of the discrete

frequencies ωn will have a negligible contribution to the spectrum when we are

dealing with not-too-short laser pulses, i.e., a pulse envelope modulated with

the centre frequency ωc (see Fig. 2). By taking only the significant summands

into account when evaluating the Fourier sums Eqs. (26) and (27) reduces sig-90

nificantly both memory consumption and execution time.

When using DFTs to approximate continuous Fourier transforms as in the

proposed algorithm above, one has to be careful with respect to sampling rates

and the inevitable periodic boundary conditions. The initial datum E0,⊥ has

to be well resolved in space and time, and one has to check that the beam fits95
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well in the transverse numerical box for all relevant z (e.g., the beam width may

be larger at the boundary z = zB due to diffraction). Finally, one should not

forget that Eqs. (26) and (27) should be evaluated for times t in the interval

[t1 − zB−z0
c , tNt − zB−z0

c ] only, otherwise a pulse train will be injected due to

periodicity in time.100

In a practical implementation, steps 1-6 will be performed by a pre-processor

before launching the main simulation. Then, only the relevant (nonzero) con-

tents of the arrays Êijn
B and B̂ijn

B (see remark above) will be passed to the main

code and step 7 will be calculated at each time step of the main simulation.

Before going on with examples, we want to make a last remark concerning105

the grid structure of particular Maxwell solvers. For solvers like the ”Directional

Splitting scheme” [18], E and B are discretized on the same equidistant grid

and the above algorithm can be applied directly. For other solvers, like the

”Yee scheme” [19], the fields are described on grids shifted by δx/2, δy/2, δz/2,

respectively. In such case, a straight forward work around would be to run110

the pre-processor several times with transversely shifted grids and/or shifted

boundary, in order to compute the desired field components for laser injection.

5. Examples

5.1. Tightly focused Gaussian pulse

Tightly focused pulses are potentially interesting for various kinds of ex-

periments giving the possibility to achieve high intensities at rather low pulse

energy or to generate micro-plasmas. Here, we are going to simulate a tightly

focused Gaussian pulse and its interaction with an initially neutral gas, that is

going to be ionized during the interaction. The electromagnetic fields resulting

from LBCs in paraxial approximation Eqs. (11)-(13), as they are often applied

in PIC codes, will be compared with LBCs according to the Maxwell consistent

approach Eqs. (6)-(8). For sake of computational costs, we restrict ourselves to

the two dimensional case, where ∂y ≡ 0 accounts for translational invariance

in transverse y direction. For both cases a linear polarized Gaussian pulse is

9



prescribed in the focal plane z = z0 by

E0,⊥(x, t) = E0e
−
(
x
w0

)2
−
(
t
t0

)2

cos(ωct)ex , (28)

with center wavelength 2πc/ωc = λc = 0.8 µm, pulse duration t0 = 20 fs, peak115

intensity I0 = ε0c|E0|2/2 = 5 × 1014 W/cm
2

giving E0 = 61.4 GV/m and

beam width w0 = 0.35 µm. The particular choice of the beam width w0 implies

that non-negligible parts of Ē0,⊥(kx, ω) are evanescent. These evanescent fields

are suppressed in the calculation of EB(r⊥, t) and BB(r⊥, t) at the boundary

z = zB fully compatible with Abbe’s diffraction limit (see Sec. 3.2). This leads120

to a 10% larger full-width-at-half-maximum (FWHM) beam width and smaller

electric field at focus.

We solve Maxwell’s equations numerically using the PIC code OCEAN [3]. In

all simulations we consider an argon atmosphere at ambient pressure. Figure 3

compares snapshots of transversal (Ex) and longitudinal (Ez) electric field com-125

ponents for paraxial (a-c) and Maxwell consistent (d-f) LBCs when the pulse is

at focus. Distortions in the fields produced by the paraxial LBCs [see Fig. 3(b,c)]

are clearly visible, even the focus (position of smallest beam width) is shifted by

more than 1 µm from the expected position at z0 = 0 µm. Both transversal and

longitudinal field amplitudes are not symmetric with respect to the focus. As130

the line-out at focus in Fig. 3(a) shows, non-negligible side-wings appear outside

the main lobe. In contrast, the Maxwell consistent LBCs produce symmetric

fields [see Fig. 3(e,f)] with respect to the focus at z0 = 0, and the line-out in

Fig. 3(d) shows no side-wings in the beam profile. The maximum transversal

electric field amplitude for the paraxial LBCs is significantly lower than that135

achieved with the Maxwell consistent LBCs. For both LBCs, the longitudinal

field amplitude reaches about 30% of the transversal field amplitude, a direct

consequence of the steep transversal gradients in the beam profile.

The code OCEAN fully accounts for ionization according to the quasistatic

ADK theory [20, 21, 22] and uses ionization data from [23]. It is thus instructive140

to inspect the electron plasma generated by the tightly focused laser pulses

for paraxial and Maxwell consistent LBCs. The resulting distributions of the

10



(d) (e) (f)

(a) (b) (c)

Figure 3: Comparison of LBCs in paraxial approximation Eqs. (11)-(13) (a-c) and according

to the Maxwell consistent approach Eqs. (6)-(8) (d-e). Snapshots of transversal fields Ex (b,e)

and longitudinal fields Ez (c,f) of a tightly focused Gaussian pulse (see text for details) reveal

strong distortions in case of the paraxial LBCs. Calculations were performed using the PIC

code OCEAN [3], assuming an argon atmosphere at ambient pressure. In (a) and (d) line-outs

of the transversal electric field Ex at focus are presented, revealing strong side-wings in the

beam profile for the paraxial LBCs. The laser propagates from left to right.

electron density ne after the laser pulse has passed through the interaction region

are shown in Fig. 4. The electron density profiles are even qualitatively different

for paraxial and Maxwell consistent LBCs: The paraxial LBCs give a fish-like145

shape, where before the focus (negative z) the peak electron density appears

off-axis [see Fig. 4(a)], and only up to 60% of the argon atoms get ionized. In

contrast, the Maxwell consistent LBCs produce a cigar like shape with the peak

electron density on the optical axis [see Fig. 4(b)], and a fully ionized plasma

is produced. We would like to stress that these deviations in the plasma profile150

are far from negligible, and may have significant impact on features like back-

reflected radiation or energy deposition in the medium. The observed sensitivity

towards the LBC for tight focusing is not limited to ultrashort low energy pulses

interacting with gaseous media, but should be equally important for solid targets

and higher pulse energies.155
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(a)

(b)

Figure 4: Electron densities ne produced by the tightly focused Gaussian laser pulses shown

in Fig. 3 (see text for details). The profile produced by paraxial LBCs (a) is even qualitatively

different than the one produced by Maxwell consistent LBCs (b). Electron densities are scaled

to the initial neutral density n0. The laser propagates from left to right.

5.2. Longitudinal needle beam

In order to demonstrate generality and ease of use of the proposed Maxwell

consistent LBCs, let us have a look at a (on the first glance) more complicated

example. In [14], the authors describe the ”creation of a needle of longitudinally

polarized light” by tight focusing of a radially polarized Bessel-Gaussian beam.

The radial component of the electric field of such beam at focus reads

E0,⊥(r, t) =

α∫
0

T (θ)
√

cos θ sin(2θ)e−( sin θ
sinα )

2

J1

(
2

sin θ

sinα

)
J1

(ωc

c
r sin θ

)
dθ

× E0 cos(ωct)er .

(29)

Here, the electric field is written in cylindrical coordinates (r, φ, z), and er is

the radial unit vector. The beam profile is given as an integral over the angle

θ, where α denotes the acceptance angle of the focusing optic. Following [14],

we assume a numerical aperture NA = 0.95, corresponding to α ≈ 0.4π. J1(x)

denotes the corresponding Bessel function. The transmission function T (θ) takes

into account a binary-phase optical element, which may further increase the

relative longitudinal field strength as well as the length of the needle, however,

12



(a) (b)

Figure 5: The absolute values of the radial and longitudinal electric fields Er (a) and Ez (b)

of a longitudinal needle beam in the focal region. The fields are normalized to the maximum

Er,max of the radial field Er in the whole space.

to the detriment of the optical efficiency. Here, we consider a five-belt optical

element [14]

T (θ) =

1 for 0 ≤ θ < θ1, θ2 ≤ θ < θ3, θ4 ≤ θ < α

−1 for θ1 ≤ θ < θ2, θ3 ≤ θ < θ4

, (30)

with θ1 = 0.0275π, θ2 = 0.121π, θ3 = 0.19π, and θ4 = 0.26π. As in the previous

example, we consider a laser wavelength of λc = 0.8 µm.

Figure 5 presents radial and longitudinal electric fields of the longitudinal

needle beam from simulations using OCEAN [3] and Maxwell consistent LBCs.160

In agreement with [14] we find a longitudinal field amplitude that exceeds the

radial one in the focal region along several laser wavelengths (∼ 8λc). The

maximum longitudinal field amplitude is about 1.6 times larger than the radial

one, which achieves its maximum out of focus at z = ±4λc. This allows the

longitudinal field to dominate in the focal plane by a factor of 2.5.165

6. Conclusion

Injecting laser pulses into Maxwell solvers requires to prescribe the elec-

tromagnetic fields at the boundaries of the numerical box. Often, these fields

are calculated by using the paraxial approximation. We have shown that for

13



tightly focused beams this approach does not give the expected results. Instead,170

Maxwell’s equations in vacuum have to be solved rigorously in order to find the

proper fields at the boundaries. We proposed an easy to implement algorithm

to achieve this goal, which allows to calculate the LBCs from transversal elec-

tric or magnetic field components defined in a plane, e.g., the focal plane. The

presented algorithm can be parallelized in a straight forward manner and may175

be used with simulations tools employing domain decomposition.

We successfully employed our approach to simulate a tightly focused Gaus-

sian pulse. An accurate handling of the laser injection turns out to be crucial:

Electron density profiles from ionization of neutral argon atoms due to field

ionization are shown to be strongly dependent on the LBCs. Consequently, the180

LBCs may have significant impact on features like back-reflected radiation or

energy deposition in the medium. Furthermore, our algorithm offers a simple

way to simulate more complex pulse configurations or even sampled experimen-

tal beam profiles. Such ”structured light” receives a lot of recent interest from

various communities [24]. As an example we demonstrated a longitudinal needle185

beam, which may be interesting for, among others, laser based material process-

ing or particle acceleration studies. Thus, we believe that our approach will be

useful for a larger community working on electromagnetic simulation codes.
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Appendix A. The Fourier transforms

We define the temporal Fourier transform f̂(r, ω) of a function f(r, t) by

f̂(r, ω) =
1

2π

∫
f(r, t)eiωt dt (A.1)

f(r, t) =

∫
f̂(r, ω)e−iωt dω . (A.2)

Further one, we define the transverse spatial Fourier transform f̄(r⊥, z, ω) of a

function f̂(r, ω) by

f̄(k⊥, z, ω) =
1

(2π)2

∫∫
f̂(r⊥, z, ω)e−ik⊥·r⊥ d2r⊥ (A.3)

f̂(r⊥, z, ω) =

∫∫
f̄(k⊥, z, ω)eik⊥·r⊥ d2k⊥ , (A.4)

where r⊥ = (x, y)T and k⊥ = (kx, ky)T.195

Note the difference in the sign of the exponent for temporal and spatial

transform, which is common practise in the optical context. In particular when

one wants to approximate Fourier integrals by finite sums, and resort to discrete

Fourier transformations (DFTs) or even fast Fourier transforms (FFTs) [16], it

is important to keep track of these sign conventions (see Sec. 4).200

Appendix B. Generating Maxwell consistent solutions using the vec-

tor potential in Lorentz gauge

Introducing electromagnetic potentials A, φ in Lorrentz gauge via

B̂ = ∇× Â Ê = iωÂ−∇φ̂ (B.1)

∇ · Â(r, ω) = iω
1

c2
φ̂(r, ω) , (B.2)

leads to decoupling of φ and the components of A, and one finds (in vacuum) [25]

kz(k⊥, ω)Ā(k⊥, z, ω) + ∂2zĀ(k⊥, z, ω) = 0 . (B.3)

In analogy to Eq. (4), fundamental solutions are the forward (+) and backward

(−) propagating, plane or evanescent waves

Ā±(k⊥, z, ω) = Ā±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) . (B.4)
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By plugging Eq. (B.4) into Eq. (B.1), and using Eq. (B.2) to eliminate φ, electric

and magnetic fields can be expressed in terms of the vector potential at z = z0:

B̄±(k⊥, z, ω) = ik±(k⊥, ω)× Ā±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) (B.5)

Ē±(k⊥, z, ω) = iω

(
1− c2

ω2
k±(ω)k±(ω)T

)
Ā±0 (k⊥, ω)e±ikz(k⊥,ω)(z−z0) . (B.6)

In general, the three components of A±0 can be chosen independently, however,

only two components are necessary to prescribe an arbitrary laser pulse 2. The

use of the vector potential can be nevertheless advantageous, because certain205

beams, like radially polarized doughnut beams [15], can be described by a single

(longitudinal) component of the vector potential.
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