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LINEAR NESTED ARTIN APPROXIMATION THEOREM FOR

ALGEBRAIC POWER SERIES

FRANCISCO-JESÚS CASTRO-JIMÉNEZ, GUILLAUME ROND

Abstract. We give a new and elementary proof of the nested Artin approx-
imation Theorem for linear equations with algebraic power series coefficients.
Moreover, for any Noetherian local subring of the ring of formal power series,
we clarify the relationship between this theorem and the problem of the com-
mutation of two operations for ideals: the operation of replacing an ideal by
its completion and the operation of replacing an ideal by one of its elimination
ideals.

1. Introduction

The aim of the paper is to investigate the nested Artin approximation problem for
linear equations. Namely the problem is the following: if

F (x, y) = 0

is a system of algebraic or analytic equations which are linear in y, with x =
(x1, . . . , xn) and y = (y1, . . . , ym), and if y(x) is a formal power series solution

F (x, y(x)) = 0

with the property that

(1.1) yi(x) depends only on the variables x1, . . . , xσi

for some integers σi, is it possible to find algebraic or analytic solutions satisfying
(1.1)?
In this paper we provide a characterization for a certain class of germs of functions
to satisfy the nested Artin approximation property and we prove that the rings of
algebraic power series satisfy this property.
In order to explain the situation let us consider the following theorem (proved by
M. Artin in characteristic zero and by M. André in positive characteristic):

Theorem 2.1 [Ar68][An75] Let k be a complete valued field and let F (x, y) be a
vector of convergent power series in two sets of variables x and y. Assume given a
formal power series solution ŷ(x) vanishing at 0,

F (x, ŷ(x)) = 0.

Then, for any c ∈ N, there exists a convergent power series solution ỹ(x),

F (x, ỹ(x)) = 0
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which coincides with ŷ(x) up to degree c,

ỹ(x) ≡ ŷ(x) modulo (x)c.

Then M. Artin (see [Ar71, p.7]) asked, whether or not, given a formal solution
ŷ(x) = (ŷ1(x), . . . , ŷm(x)) satisfying

ŷj(x) ∈ kJx1, . . . , xσj
K ∀j

for some integers σj ∈ {1, . . . , n}, there exists a convergent solution ỹ(x) as in
Theorem 2.1 such that

ỹj(x) ∈ k{x1, . . . , xσj
} ∀j.

Shortly after, A. Gabrielov [Ga71] gave an example showing that the answer to
the previous question is negative in general. In fact this example is built from
a counterexample to a conjecture of A. Grothendieck he gave in [Ga71]. This
conjecture of Grothendieck is the following (see [Gr60, p. 13-08]):

If ϕ : C{x}/I −→ C{y}/J is an injective morphism of analytic algebras then the
corresponding morphism ϕ : CJxK/ICKxK −→ CJyK/JCJyK is again injective.
Even if it is obvious that the counterexample of Gabrielov to Grothendieck’s con-
jecture provides a negative answer to the question of M. Artin, the relationship
between these two problems is not clear in general.
The main goal of this note is to clarify that relationship between Grothendieck’s
conjecture and Artin’s question. We show in a general frame (i.e. not only for the
rings of convergent power series but for more general families of rings - cf. Definition
3.1) that Grothendieck’s conjecture is equivalent to the question of M. Artin in the
case where F (x, y) is linear in y (see Theorem 3.9). Let us mention that it is well
known that Grothendieck’s conjecture is equivalent to Artin’s question for some
very particular F (x, y) which are linear in y (see [Be77] and [Ro08]) but it was not
known that they are equivalent for all F (x, y) linear in y.
We also prove (see Theorem 3.9) that these two problems are equivalent to the
problem of the commutation of two operations: the operation of replacing an ideal
by its completion and the operation of replacing an ideal by one of its elimination
ideals (see 3.2).
Moreover, we consider the particular case of the rings of algebraic power series. Let
us recall that a formal power series f(x) ∈ kJx1, . . . , xnK is called algebraic if it is
algebraic over the ring of polynomials k[x1, . . . , xn]. The ring of algebraic power
series is denoted by k〈x1, . . . , xn〉. Indeed after A. Gabrielov gave a negative answer
to both problems, D. Popescu showed that Artin’s question has a positive answer
in the case the ring of convergent power series is replaced by the ring of algebraic
power series:

Theorem 2.2 [Po86] Let k be a field and F (x, y) be a vector of algebraic power
series in two sets of variables x and y. Assume given a formal power series solution
ŷ(x) = (ŷ1(x), . . . , ŷm(x)) vanishing at 0,

F (x, ŷ(x)) = 0.

Moreover let us assume that ŷj ∈ kJx1, . . . , xσj
K, 1 ≤ j ≤ m, for some integers σj ,

1 ≤ σj ≤ n.
Then for any c ∈ N there exists an algebraic power series solution ỹ(x) such that
for all j, ỹj(x) ∈ k〈x1, . . . , xσj

〉 and ỹ(x)− ŷ(x) ∈ (x)c.
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Let us remark that if F (x, y) is a vector of polynomials in y with coefficients in k〈x〉
we may drop the condition that ŷ(x) vanishes at 0 by replacing F (x, y) (resp. ŷ(x))
by F (x, y + ŷ(0)) (resp. ŷ(x) − ŷ(0)). This result has a large range of applications
(see [FB12], [Mir12] or [Sh10] for some recent examples) but its proof is based on
the so-called General Néron Desingularization which is quite involved.

In the second part of this paper we provide a new and elementary proof of Theorem
2.2 for equations F (x, y) = 0 which are linear in y (see Theorem 3.11). This shows
that Theorem 2.2 is really easier in the case F (x, y) is linear in y.

Finally we mention that the question of Grothendieck has been widely studied in
the case of convergent power series rings and it has been shown that the answer
is positive for some particular cases (see for instance [AvdP70], [Gab73], [EH77],
[Mil78], [Iz89] or [To90]). One of them, similar to our situation, is the case of a
morphism ϕ : k{x}/I −→ k{y}/J where the images of the xi are algebraic power
series and the ideals I and J are prime and generated by algebraic power series (it
has been proven in several steps in [To76], [Be77], [Mil78] and [Ro09]). For this
kind of morphisms it is shown that ϕ is injective if and only if ϕ̂ is injective.

2. Acknowledgements

This research was started in the frame of the Jean Morlet Chair Artin Approxima-

tion in Singularity Theory, held at CIRM (Marseille, France) from January until
June 2015. The Chair was held by Prof. Herwig Hauser and the Local Project
Leader was the second author. We are grateful for the hospitality and support of
CIRM during the main stage of this work. We would like to thank Profs. H. Hauser
and M.E. Alonso for their very useful comments and suggestions.

3. Definitions and main results

Definition 3.1. Let k be a field. An admissible family of rings is an increasing
sequence of rings F = (Rn)n∈N satisfying the following properties:

(1) For every integer n ≥ 0 the ring Rn is a k-subalgebra of kJx1, . . . , xnK (in
particular R0 = k).

(2) For every integer n ≥ 0, k[x1, . . . , xn] ⊂ Rn.
(3) For every integer n > 0 the ring Rn is a Noetherian local ring whose

maximal ideal is generated by x1,. . . , xn.
(4) For every integers m,n with 0 ≤ m ≤ n we have

Rn ∩ kJx1, . . . , xmK = Rm.

When an admissible family of rings is given, any element of a member of this family
is called an admissible power series.

Sometimes we will emphasize the dependency of Rn on the variables (x1, . . . , xn)
by writing Rn = k〈〈x1, . . . , xn〉〉 for n ∈ N.

Example 3.2. The following families of rings are admissible:

• The rings of convergent power series over a valued field k.
• The rings of algebraic power series over a field k.
• The rings of formal power series.
• The rings of germs of rational functions at 0 ∈ k

n, k[x1, . . . , xn](x1,...,xn).
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3.1. Krull topology. Let (A,m) be a Noetherian local ring. The Krull topology
of A is the topology in which the ideals mc constitute a basis of neighborhoods of
the zero of A. For a A-module M the Krull topology of M is the one in which
the submodules m

cM constitute a basis of neighborhoods of the zero of M . The

completion of A (resp. M) for the Krull topology is denoted by Â (resp. M̂). We
have the following lemma asserting that the topological closure of a finite module
and its completion coincide:

Lemma 3.3. ([SZ58, Corollary 2, p. 257]) If N is a A-submodule of a finite

A-module M then the closure of N in M̂ is N̂ = ÂN .

Definition 3.4. If M is a A-module where (A,m) is a Noetherian local ring and E
is a subset of M , we say that an element f ∈ M may be approximated by elements
of E if f is in the closure (for the Krull topology) of E in M , i.e. if for every integer
c there exists fc ∈ E such that f − fc ∈ m

cM .

3.2. Strong elimination property. One says that an admissible family of rings
F = (k〈〈x1, . . . , xn〉〉)n has the strong elimination property if for any two sets of
variables x and y and any ideal I of k〈〈x, y〉〉 we have

(3.1) (I ∩ k〈〈x〉〉)kJxK = Î ∩ kJxK

where Î denotes the ideal of kJx, yK generated by I.

Remark 3.5. Since I ∩ k〈〈x〉〉 ⊂ Î ∩ kJxK, Lemma 3.3 shows that (3.1) is equivalent

to say that the elements of Î ∩ kJxK may be approximated by elements of I ∩k〈〈x〉〉.

3.3. Linear nested approximation property. We say that an admissible family
of rings F = (k〈〈x1, . . . , xn〉〉)n has the linear nested approximation property if the
following property holds:
Let m,n, p be positive integers, T be a p × m matrix with entries in k〈〈x〉〉 :=
k〈〈x1, . . . , xn〉〉, b = (b1, . . . , bp) ∈ k〈〈x〉〉

p
and σ : {1, . . . ,m} −→ {1, . . . , n} be a

weakly increasing function. Let y = (y1, . . . , ym) be a vector of new variables.
Then the set of solutions y(x) in

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉

of the following system of linear equations

(S) Ty = b

is dense in the set of formal solutions in

kJx1, . . . , xσ(1)K × · · · × kJx1, . . . , xσ(m)K.

3.4. Strongly injective morphisms.

Definition 3.6. Let ϕ : A −→ B be a morphism of local rings. We denote by ϕ̂ the

induced morphism Â −→ B̂. One says that ϕ is strongly injective if ϕ̂ is injective.

Definition 3.7. We say that an admissible family of rings F = (k〈〈x1, . . . , xn〉〉)n
has the strong injectivity property if for any integers n and m and any ideals I of
k〈〈x1, . . . , xn〉〉 and J of k〈〈y1, . . . , ym〉〉, any injective morphism

k〈〈x〉〉

I
−→

k〈〈y〉〉

J
is strongly injective.
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Remark 3.8. Definition 3.6 is not the classical one. In [AvdP70] a morphism ϕ :

A −→ B is called strongly injective if ϕ̂(Â) ∩ B = ϕ(A). This definition, which
is the classical one, is stronger than the one we use in this paper. Nevertheless
we will prove that if an admissible family of rings (k〈〈x1, . . . , xn〉〉)n has the strong

injectivity property then for any morphism ϕ : A =
k〈〈x〉〉

I
−→ B =

k〈〈y〉〉
J

we have

ϕ̂(Â) ∩B = ϕ(A) (see Corollary 3.10).

3.5. Main results. The first main result of this paper is the following:

Theorem 3.9. For an admissible family of rings F = (k〈〈x1, . . . , xn〉〉)n the follow-
ing properties are equivalent:

(i) F has the strong elimination property.
(ii) F has the linear nested approximation property.
(iii) F has the strong injectivity property.

Corollary 3.10. Let F = (k〈〈x1, . . . , xn〉〉)n be an admissible family having the
strong injectivity property. Then for any morphism

ϕ : A =
k〈〈x〉〉

I
−→ B =

k〈〈y〉〉

J
we have

ϕ̂(Â) ∩B = ϕ(A).

Proof. Clearly ϕ(A) ⊂ ϕ̂(Â) ∩B. Let us prove the reverse inclusion.

Let f̂ ∈ Â such that ϕ̂(f̂) = b ∈ B. Let us denote by ϕi(y) an admissible power
series of k〈〈y〉〉 which is the image of xi by ϕ modulo J , for i = 1, . . . , n. Let
p1(x), . . . , pr(x) be generators of I and q1(y), . . . , qs(y) be generators of J . Thus,
by assumption, there exist formal power series

ĥℓ, l̂k, k̂i

such that

f̂(x) +

r∑

ℓ=1

pℓ(x)ĥℓ(x, y) = b(y) +

s∑

k=1

qk(y)l̂k(x, y) +

n∑

i=1

(xi − ϕi(y))k̂i(x, y).

By the previous theorem the family of rings F has the linear nested approximation
property, thus there exist admissible power series

f(x), hℓ(x, y), lk(x, y), ki(x, y)

such that

f(x) +
r∑

ℓ=1

pℓ(x)hℓ(x, y) = b(y) +
s∑

k=1

qk(y)lk(x, y) +
n∑

i=1

(xi − ϕi(y))ki(x, y).

In particular, by replacing xi by ϕi(y) for all i we see that

ϕ(f) = b.

Thus b ∈ ϕ(A). �

Our second main result is the following:

Theorem 3.11. The family (k〈x1, . . . , xn〉)n of algebraic power series rings over
a field k satisfies the equivalent properties of Theorem 3.9.
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Remark 3.12. Let F = (Rn)n be an admissible family. Let f ∈ Rn such that

f(0) = 0 and ∂f
∂xn

(0) 6= 0. By the implicit function Theorem for formal power series

there exists a unique formal power series h(x′) with x′ = (x1, . . . , xn−1) such that

f(x′, h(x′)) = 0 and h(0) = 0.

Thus, by Taylor’s formula, there exists a formal power series g(x) such that

f(x) + (xn − h(x′))g(x) = 0.

Since ∂f
∂xn

(0) 6= 0 and h(0) = 0 we have g(0) 6= 0, i.e. g(x) is a unit. Hence we

have, where u(x) denotes the inverse of g(x):

f(x)u(x) + xn − h(x′) = 0.

Moreover, since h(x′) is unique, u(x) is also unique and the linear equation

f(x)y2 + xn − y1 = 0

has a unique nested formal solution (h(x′), u(x)) whose first component vanishes
at 0. Thus if the family F satisfies the equivalent properties of Theorem 3.9 then
this family has to satisfy the implicit function Theorem (which is equivalent to say
that the rings Rn are Henselian local rings).
In particular the family of germs of rational functions at the origin of kn does not
satisfy the properties of Theorem 3.9.
Since the ring of algebraic power series in n variables is the Henselization of the ring
of germs of rational functions at the origin of kn, this also shows that the family
of algebraic power series is the smallest admissible family containing the family
of germs of rational functions at the origin of kn and satisfying the properties of
Theorem 3.9.

Remark 3.13. Let F = (Rn)n be an admissible family and f , g two elements of Rn.
Let us assume that f is xn-regular of order d, i.e. f(0, xn) = xd

nu(xn) for some unit
u(xn). By the Weierstrass division Theorem for formal power series there exists a
unique vector

(q(x), a0(x
′), . . . , ad−1(x

′)) ∈ kJxK × kJx′Kd

with x′ = (x1, . . . , xn−1) such that

g(x) = f(x)q(x) +

d−1∑

κ=0

aκ(x
′)xκ

n.

By the uniqueness of (q(x), a0(x
′), . . . , ad−1(x

′)) if the family F has the linear nested
approximation property then

(q(x), a0(x
′), . . . , ad−1(x

′)) ∈ Rn ×Rd
n−1.

Thus F satisfies the Weierstrass division Theorem if it satisfies the equivalent prop-
erties of Theorem 3.9.

Remark 3.14. The example of Gabrielov [Ga71] shows that the family of convergent
power series over a characteristic zero valued field does not satisfy the properties
of Theorem 3.9 (but this family satisfies the implicit function Theorem, it even
satisfies the Weierstrass division Theorem). This example is the following one:
Let

ϕ : C{x1, x2, x3} −→ C{y1, y2}
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be the morphism of analytic C-algebras defined by

ϕ(x1) = y1, ϕ(x2) = y1y2, ϕ(x3) = y1e
y2 .

Then it is not very difficult to show that ϕ and ϕ̂ are both injective (see [Os16]).
Then A. Gabrielov remarked that there exists a formal but not convergent power
series ĝ(x) whose image h(y) by ϕ̂ is convergent (see [Ga71]). This shows that
Corollary 3.10 is not satisfied for convergent power series rings. Thus the properties
of Theorem 3.9 are not satisfied in the case of convergent power series rings.

4. Proof of Theorem 3.9

We will prove the following implications:

(i) =⇒ (ii) =⇒ (iii) =⇒ (i)

The main difficulty is the first implication.

4.1. Proof of (i) =⇒ (ii). We assume that F has the strong elimination property
and we fix a system of linear equations as (S). We call an admissible nested solution
(resp. formal nested solution) of such a system (S) a solution in

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉

(resp. kJx1, . . . , xσ(1)K × · · · × kJx1, . . . , xσ(m)K).

We will show that the set of admissible nested solutions is dense, for the m-adic
topology, in the set of formal nested solutions.

Remark 4.1. If σ(m) < n the coefficients of the powers of xn in the equations (S)
yield a new set of linear equations with coefficients in x1,. . . , xn−1. By Noetheri-
anity this set of equations is finitely generated. Thus by induction we may assume
that

(4.1) σ(m) = n.

• First we claim that we can assume that b = 0, i.e. the system (S) of linear
equations is homogeneous. Indeed let us assume that the set of admissible nested
solutions of any linear homogeneous system is dense in the set of formal nested
solutions and let us fix a linear (non-homogenous) system as (S). Let y(x) ∈ kJxKm

be a formal nested solution of the system (S): Ty = b.
Let us write ai,j the entries of the p×m matrix T and denote by T ′ the matrix

T ′ =
[
−b |T

]

and set y′ = (y0, y1, . . . , ym).
Let us extend the previous function σ to {0, . . . ,m} by σ(0) = σ(1). Since y(x) is
a formal nested solution of (S), y′(x) = (1, y(x)) is a formal nested solution of the
following linear homogeneous system:

(S’) T ′y′ = 0

By assumption, for any given integer c ≥ 1, there exists an admissible nested
solution y′c(x) = (y0,c(x), y1,c(x), . . . , ym,c(x)) of (S’) such that

y0,c(x) − 1 ∈ (x)c and yj,c(x) − yj(x) ∈ (x)c ∀j ≥ 1.
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In particular y0,c(0) = 1 6= 0 and y0,c(x) is a unit. Thus

(y0,c(x)
−1y1,c(x), . . . , y0,c(x)

−1ym,c(x))

is an admissible nested solution of (S). Moreover, for all j ≥ 1, we have:

y0,c(x)
−1yj,c(x)− yj(x) = (y0,c(x)

−1 − 1)yj,c(x) + (yj,c(x) − yj(x)) ∈ (x)c.

Thus the set of admissible nested solutions of (S) is dense in the set of formal nested
solutions of (S) and the claim is proven.

• Let us consider a homogeneous linear system (S) where b = 0. The set of
(non-nested) admissible solutions of such a system is a sub-k〈〈x〉〉-module of k〈〈x〉〉

m

denoted by M . By Noetherianity this module is finitely generated. The set of

(non-nested) formal solutions is the completion of M denoted by M̂ (by flatness
of k〈〈x〉〉 −→ kJxK since k〈〈x〉〉 is a Noetherian local ring). Thus we are reduced to
prove the following lemma:

Lemma 4.2. Let M be a finite sub-module of k〈〈x〉〉
m
. Then

M ∩
(
k〈〈x1, . . . , xσ(1)〉〉 × . . .× k〈〈x1, . . . , xσ(m)〉〉

)

is dense in

M̂ ∩
(
kJx1, . . . , xσ(1)K × . . .× kJx1, . . . , xσ(m)K

)
.

In order to prove Lemma 4.2 we may assume that σ(m) = n by (4.1). We will
prove Lemma 4.2 by induction on n.

Proof of Lemma 4.2. We take a module M as in Lemma 4.2 and we assume that
σ(m) = n. Let us assume that Lemma 4.2 is proven for any submodule of the free

module k〈〈x1, . . . , xn′〉〉
m′

for any integers n′ < n and m′ ≥ 1.

Let e1, . . . , em be the canonical basis of k〈〈x〉〉
m
. Let r ≤ m− 1 be the integer such

that for j ∈ {1, . . . ,m}

σ(j) < n ∀j ≤ r, σ(j) = n ∀j > r.

We assume that M is generated by some vectors ω1, . . . , ωs in k〈〈x〉〉
m
.

So Lemma 4.2 is equivalent to say that for any formal nested solution
(
v1(x), . . . , vs(x), y1(x1, . . . , xσ(1)), . . . , ym(x1, . . . , xσ(m))

)

of

(4.2)

s∑

k=1

vk(x)ωk =

m∑

j=1

yj(x1, . . . , xσ(j))ej

and any integer c there exists a formal nested solution of (4.2)
(
v1,c(x), . . . , vs,c(x), y1,c(x1, . . . , xσ(1)), . . . , ym,c(x1, . . . , xσ(m))

)

such that

• yj,c(x1, . . . , xσ(j)) ∈ k〈〈x1, . . . , xσ(j)〉〉 for j = 1, . . . ,m

•

s∑

k=1

vk,c(x)ωk ∈ M
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• The series vk,c(x) − vk(x), yj,c(x1, . . . , xσ(j)) − yj(x1, . . . , xσ(j)) belong to
the ideal (x)c for all k and j.

The morphism k〈〈x〉〉 −→ kJxK being faithfully flat we may even assume that
vk,c(x) ∈ k〈〈x〉〉 for all k. Thus Lemma 4.2 is equivalent to say that the set of
admissible nested solutions of (4.2) is dense in the set of formal nested solutions of
(4.2).

Since (4.2) is equivalent to

(4.3)

s∑

k=1

vk(x)ωk −

m∑

j=r+1

yj(x)ej =

r∑

j=1

yi(x1, . . . , xσ(j))ej

Lemma 4.2 is equivalent to the following statement (if we replace M by the k〈〈x〉〉-
module generated by M and er+1, . . . , em):

Claim:

M ∩
(
k〈〈x1, . . . , xσ(1)〉〉 · e1 + · · ·+ k〈〈x1, . . . , xσ(r)〉〉 · er

)

is dense in

M̂ ∩
(
kJx1, . . . , xσ(1)K · e1 + · · ·+ kJx1, . . . , xσ(r)K · er

)
.

Let us prove this claim. We assume that M is generated by the ωk, 1 ≤ k ≤ s,
where

ωk = (ωk,1, . . . , ωk,m) ∈ k〈〈x〉〉
m
.

Let S be the ring whose elements are the couples (a, ω) ∈ k〈〈x〉〉 × k〈〈x〉〉
m

with
addition and multiplication defined as follows:

(a, ω) + (a′, ω′) = (a+ a′, ω + ω′),

(a, ω)(a′, ω′) = (aa′, aω′ + a′ω).

Then the ring S is isomorphic to

k〈〈x, y1, . . . , ym〉〉

(y)2

by the isomorphism defined by

(a, (a1, . . . , am)) 7−→ a+ a1y1 + · · ·+ amym.

This is the idealization principle of Nagata.
Let I be the ideal {0} ×M , i.e. the ideal of S generated by the elements

ωk,1y1 + · · ·+ ωk,mym for k = 1, . . . , s.

Let us define the ring (we set x′ := (x1, . . . , xσ(r)) and y′ := (y1, . . . , yr))

R =
k〈〈x′, y′〉〉

(y′)2
.

Thus the previous claim is equivalent to the following assertion:

(I ∩R) ∩
(
k〈〈x1, . . . xσ(1)〉〉 · y1 + · · ·+ k〈〈x1, . . . , xσ(r)〉〉 · yr

)
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is dense in

(Î ∩ R̂) ∩
(
kJx1, . . . xσ(1)K · y1 + · · ·+ kJx1, . . . , xσ(r)K · yr

)
.

We can replace I by I + (y)2, R by k〈〈x′, y′〉〉 and S by k〈〈x, y〉〉. Then the previous
statement is equivalent to:

(I∩k〈〈x′, y′〉〉)∩
(
k〈〈x1, . . . xσ(1)〉〉 · y1 + · · ·+ k〈〈x1, . . . , xσ(r)〉〉 · yr + k〈〈x′, y′〉〉 · (y′)2

)

is dense in

(Î ∩ kJx′, y′K) ∩
(
kJx1, . . . xσ(1)K · y1 + · · ·+ kJx1, . . . , xσ(r)K · yr + kJx′, y′K · (y′)2

)
.

Let J denote the ideal I ∩ k〈〈x′, y′〉〉. By the strong elimination property that we
have assumed to be satisfied we have

Ĵ = Î ∩ kJx′, y′K.

Thus the previous density statement is equivalent to the following one:

J ∩
(
k〈〈x1, . . . xσ(1)〉〉 · y1 + · · ·+ k〈〈x1, . . . , xσ(r)〉〉 · yr + k〈〈x′, y′〉〉 · (y′)2

)

is dense in

Ĵ ∩
(
kJx1, . . . xσ(1)K · y1 + · · ·+ kJx1, . . . , xσ(r)K · yr + kJx′, y′K · (y′)2

)
.

Let

N ⊂ k〈〈x′〉〉 · y1 + · · ·+ k〈〈x′〉〉 · yr

be the k〈〈x′〉〉-module generated by the linear combinations of y1, . . . , yr which are
in J + (y′)2. Then we see that Lemma 4.2 for the module M is equivalent to the
following statement:

N ∩
(
k〈〈x1, . . . xσ(1)〉〉 · y1 + · · ·+ k〈〈x1, . . . , xσ(r)〉〉 · yr

)

is dense in

N̂ ∩
(
kJx1, . . . xσ(1)K · y1 + · · ·+ kJx1, . . . , xσ(r)K · yr

)
.

But this statement is exactly Lemma 4.2 where n is replaced by σ(r) < n. Thus by
the induction hypothesis the claim is proven. Hence Lemma 4.2 is true (since it is
obviously true when σ(m) = n = 0). �

4.2. Proof of (ii) =⇒ (iii). Let

ϕ :
k〈〈x〉〉

I
−→

k〈〈y〉〉

J

be an injective morphism and let f̂ ∈ Ker(ϕ̂). The morphism ϕ is defined by
admissible power series ϕ1(y), . . . , ϕn(y) such that

g(ϕ1(y), . . . , ϕn(y)) ∈ J ∀g ∈ I

and, for any power series g, the image of g modulo I is equal to

g(ϕ1(y), . . . , ϕn(y)) modulo J.

We still denote by f̂ a lifting of f̂ in kJxK. Thus

f̂(ϕ1(y), . . . , ϕn(y)) ∈ Ĵ ,



LINEAR NESTED ARTIN APPROXIMATION 11

i.e. there exist formal power series ĥ1(y), . . . , ĥs(y) such that

f̂(ϕ1(y), . . . , ϕn(y)) =
s∑

k=1

qk(y)ĥk(y)

where the qk(y) are generators of the ideal J . By Taylor’s formula there exist formal

power series k̂i(x, y) such that

(4.4) f̂(x)−

s∑

k=1

qk(y)ĥk(y) =

n∑

i=1

(xi − ϕi(y))k̂i(x, y).

By the linear nested approximation property, for any integer c, there exists a vector
of admissible power series

(fc(x), h1,c(x, y), . . . , hs,c(x, y), k1,c(x, y), . . . , kn,c(x, y))

such that

fc(x) −

s∑

k=1

qk(y)hk,c(x, y) =

n∑

i=1

(xi − ϕi(y))ki,c(x, y)

and

fc(x) − f̂(x) ∈ (x)c, hk,c(x, y)− ĥk(y) ∈ (x, y)c, ki,c(x, y)− k̂i(x, y) ∈ (x, y)c

for all k and i. By replacing xi by ϕi(y) for i = 1, . . . , n, we see that ϕ(fc(x)) = 0,

thus fc(x) = 0 since ϕ is injective. Thus f̂(x) ∈ (x)c for all c ≥ 0 thus f̂(x) = 0 by
Nakayama’s Lemma. This shows that ϕ is strongly injective.

4.3. Proof of (iii) =⇒ (i). Let I be an ideal of k〈〈x, y〉〉. Let ϕ be the following
injective morphism induced by the inclusion k〈〈x〉〉 −→ k〈〈x, y〉〉:

k〈〈x〉〉

I ∩ k〈〈x〉〉
−→

k〈〈x, y〉〉

I
.

Then (I ∩ k〈〈x〉〉)kJxK = Î ∩ kJxK if and only if ϕ is strongly injective since

Ker(ϕ̂) =
Î ∩ kJxK

(I ∩ k〈〈x〉〉)kJxK
.

5. Proof of Theorem 3.11

We will prove that the family of algebraic power series rings satisfies the strong
elimination property. We set x = (x1, . . . , xn) and y = (y1, . . . , ym) and let I be an
ideal of k〈x, y〉. Let f1(x, y), . . . , fr(x, y) ∈ k〈x, y〉 be a set of generators of I. We
need to prove that

(I ∩ k〈x〉)kJxK = Î ∩ kJxK.

By Remark 3.5 this is equivalent to say that any element û(x) of Î ∩ kJxK may be
approximated by elements of I ∩ k〈x〉. Such an element û(x) has the form

(5.1) û(x) =

r∑

j=1

fj(x, y)v̂j(x, y)

for some formal power series v̂j(x, y). By Proposition 5.1 given below, for any
integer c there exist algebraic power series u(x), v1(x, y), . . . , vr(x, y) such that

u(x) =

r∑

j=1

fj(x, y)vj(x, y)
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and

u(x)− û(x) ∈ (x)c, vj(x, y)− v̂j(x, y) ∈ (x, y)c ∀j.

This proves Theorem 3.11.

Proposition 5.1. We write variables x = (x1, . . . , xn), y = (y1, . . . , ym), u =
(u1, . . . , uq) and v = (v1, . . . , vr). For any p × (q + r) matrix T with entries in
k〈x, y〉 and any vector b ∈ k〈x, y〉p, every formal nested solution

(û(x), v̂(x, y)) ∈ kJxKq × kJx, yKr

of the linear system

T

(
u
v

)
= b

may be approximated by algebraic nested solutions in k〈x〉q × k〈x, y〉r.

Proof. Let

(û(x), v̂(x, y))

be a given nested formal solution of the linear system in the statement. Then v̂(x, y)
is a formal solution of the system

(5.2) T ′v = b′

where

T ′ =




a1,q+1 . . . a1,q+r

a2,q+1 . . . a2,q+r

...
. . .

...
ap,q+1 . . . ap,q+r


 ,

ai,j := ai,j(x, y) ∈ k〈x, y〉 are the entries of T and

b′i(x, y) := bi(x, y)−

q∑

κ=1

ai,κ(x, y)ûκ(x) ∈ kJx, yK for i = 1, . . . , p.

The morphism kJxK〈y〉 −→ kJx, yK being faithfully flat, for any integer c there exists
a solution ṽ(x, y) ∈ kJxK〈y〉r of (5.2) such that

ṽ(x, y)− v̂(x, y) ∈ (x, y)ckJx, yKr .

Thus from now on we may assume that v̂(x, y) ∈ kJxK〈y〉r . Moreover by doing the
following linear change of coordinates

uκ 7−→ uκ + ûκ(0),

we may assume that ûκ(x) ∈ (x)kJxK for κ = 1, . . . , q.
By Lemma 5.2 given below there exist a new set of variables z = (z1, . . . , zs),
algebraic power series gℓ(y, z) ∈ k〈y, z〉 for 1 ≤ ℓ ≤ r and formal power series
ẑ1(x), . . . , ẑs(x) ∈ (x)kJxK such that

v̂ℓ(x, y) = gℓ(y, ẑ1(x), . . . , ẑs(x)).

Thus, by replacing vℓ by gℓ(y, z) for ℓ = 1, . . . , r in the system of equations

T

(
u
v

)
= b, we obtain a new system of (non linear) equations

f(x, y, û(x), ẑ(x)) = 0

where f(x, y, u, z) is a vector of algebraic power series.
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Let I denote the ideal of k〈x, u, z〉 generated by all the coefficients of the monomials
in y in the expansion of the components of f as power series in (y1, . . . , ym). Let
h1, . . . , ht be a system of generators of I. By assumption (û(x), ẑ(x)) is a formal
power series solution of the system

(5.3) h1(x, u, z) = · · · = ht(x, u, z) = 0.

Thus by Artin Approximation Theorem for algebraic power series [Ar69], for any
integer c ≥ 0 there exists (ũ(x), z̃(x)) ∈ k〈x〉q+r solution of the system (5.3) with

ũκ(x)− ûκ(x) ∈ (x)c, z̃k(x) − ẑk(x) ∈ (x)c ∀κ, k.

Thus, by Taylor’s formula,

ṽℓ(x, y)− v̂ℓ(x, y) ∈ (x, y)c for 1 ≤ ℓ ≤ r

where

ṽℓ(x, y) = gℓ(y, z̃1(x), . . . , z̃k(x)) ∀ℓ.

Lemma 5.2. ([Ro15, Lemma 9.2]) We have

kJxK〈y〉 = {f̂(x, y) ∈ kJx, yK | ∃s ∈ N, ∃g(y, z) ∈ k〈y, z1, . . . , zs〉,

∃ẑk(x) ∈ (x)kJxK for k = 1, . . . , s such that f̂(x, y) = g(y, ẑ1(x), . . . , ẑs(x))}.

�
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Departamento de Álgebra, Universidad de Sevilla, Spain

E-mail address: castro@us.es
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