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Abstract

We consider a unifying framework for stochastic control problem including the following

features: partial observation, path-dependence (both with respect to the state and the control),

and without any non-degeneracy condition on the stochastic differential equation (SDE) for the

controlled state process, driven by a Wiener process. In this context, we develop a general

methodology, refereed to as the randomization method, studied in [23] for classical Markovian

control under full observation, and consisting basically in replacing the control by an exogenous

process independent of the driving noise of the SDE. Our first main result is to prove the

equivalence between the primal control problem and the randomized control problem where

optimization is performed over change of equivalent probability measures affecting the cha-

racteristics of the exogenous process. The randomized problem turns out to be associated by

duality and separation argument to a backward SDE, which leads to the so-called randomized

dynamic programming principle and randomized equation in terms of the path-dependent filter,

and then characterizes the value function of the primal problem. In particular, classical optimal

control problems with partial observation affected by non-degenerate Gaussian noise fall within

the scope of our framework, and are treated by means of an associated backward SDE.
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1 Introduction

Let us start with the classical stochastic optimal control problem with full observation, characterized

by the gain functional and value function

v(t, x) = sup
α
J(t, x, α), J(t, x, α) = E

[
∫ T

t
f(s,Xt,x,α

s , αs) ds+ g(Xt,x,α
T )

]

, (1.1)

where the supremum is taken over the set of progressive processes α valued in a Borel space A, and

Xt,x,α evolves according to the controlled stochastic differential equation (SDE)

dXt,x,α
s = b(s,Xt,x,α

s , αs) ds + σ(s,Xt,x,α
s , αs) dWs, t ≤ s ≤ T, (1.2)

with Xt,x,α
t = x ∈ Rn. Here W = (Wt)t≥0 is a d-dimensional Brownian motion on a probability

space (Ω,F ,P) with a filtration F = (Ft)t≥0 and the coefficients b : [0, T ]×Rn×A→ Rn, σ : [0, T ]×

Rn×A→ Rn×d, f : [0, T ]×Rn×A→ R, g : Rn → R satisfy standard assumptions to be precised later

on. The dynamic programming method then consists in proving the dynamic programming principle,

which allows to relate the value function v to the Hamilton-Jacobi-Bellman (HJB) equation (or

dynamic programming equation):










∂v

∂t
(t, x) + sup

a∈A

{

Lav(t, x) + f(t, x, a)
}

= 0, (t, x) ∈ [0, T )× Rn,

v(T, x) = g(x), x ∈ Rn,

(1.3)

where (we denote by · the scalar product between two vectors in Rn and by ⊺ the transpose operator)

Lav(t, x) = b(t, x, a) ·Dxv(t, x) +
1

2
tr
[

σσ⊺(t, x, a)D2
xv(t, x)

]

.

In general, v turns out to be the unique viscosity solution to the HJB equation (1.3), see e.g. [12] or

[28]. One key feature of the dynamic programming method is that the knowledge of v allows, at least

in principle, to find an optimal control for problem (1.1), although in practice this can be done only

in some special cases. Alternatively, the Pontryagin maximum principle provides a set of necessary,

and sometimes sufficient, conditions in terms of a system of adjoint backward stochastic differential

equations for an optimal control, see [31]. These very powerful and well-known methodologies break

down (in the sense that at least one of them can not be directly implemented as sketched above)

when we face control problems which present the following additional features:

• partial observation: α is required to be adapted to a smaller filtration than F, typically the

one generated by an observation process;

• path-dependence in the state: the coefficients b, σ, f , g depend (in a non-anticipative way) on

the entire trajectory of Xt,x,α, not only on its present value;

• path-dependence in the control : the coefficients b, σ, f depend on the past values of the control

process α, not only on its present value.

We refer to the last two features also as memory effects, and in this case (1.2) becomes a path-

dependent (or hereditary) stochastic differential equation.

The reason for studying the above generalizations comes from the applications (e.g. to mathe-

matical economics and finance or control engineering), which demand increasingly realistic models.
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From a theoretical point of view, they represent very challenging problems with still many open

questions. In the literature, an effective approach consists in reformulating the control problem

in a new setting, where the dynamic programming method or maximum principle can then be

implemented. For example, stochastic control problems with partial observation are shown to be

equivalent, via a separation principle (see e.g. [11], [7], [17] or [3]) relying on results from nonlinear

filtering, to full observation problems formulated on a different filtered probability space, with the

filtration generated by the observation process; the conditional distribution of the state process,

solution to a filtering equation, becomes a new state variable. On the other hand, stochastic con-

trol problems with delay in the state (a particular case of path-dependence) are embedded in an

artificial infinite-dimensional space hosting the new state variable, comprising the present value

of the state process and its past trajectory (moving window); the recovered Markovianity allows

then to implement the dynamic programming method. Control problems with delay in the control

are dealt with in a similar way, usually with additional difficulties. We refer for instance to [14],

[15]. However, these reformulations of the original problem are strongly dependent on the specific

features of the control problem at hand and often involve delicate and somewhat arbitrary choices,

such as the function spaces that become the state space for the reformulated problem. More-

over, they generally require additional and sometimes artificial assumptions on the coefficients.

Finally all these reformulations share the common feature that eventually the state variable has an

infinite-dimensional component. This makes more difficult the rigorous derivation of a “dynamic

programming equation” satisfied by the value function, or even providing a well-defined notion of

solution to this equation, a difficult task that can in general be accomplished only under specific

set of assumptions: we refer for example to [26], [25], [3], [16] for the optimal control of Zakai

equation and the related dynamic programming equation and Pontryagin maximum principle in

infinite dimensions, and to the book [10] for a recent overview of stochastic control problem with

delay in state and control.

The aim of this paper is to develop a general methodology in a unifying framework for the

study of stochastic optimal control problems as those mentioned above, which we refer to as the

randomization method, introduced in [23] for the classical Markovian model (1.1), but earlier con-

sidered in [22] in connection with impulse control and in [5], [8], [9] on optimal switching problems.

In the present paper we consider a quite general control problem where all the features introduced

above, i.e. partial observation and path-dependence on the state and the control, are considered

simultaneously, namely

dXt = bt(X,α) dt + σt(X,α) dBt, X0 = x0, (1.4)

for t ∈ [0, T ], with gain functional and value defined by

J(α) = E

[

∫ T

0
ft(X,α) dt + g(X)

]

, υ0 = sup
α
J(α) (1.5)

where the coefficients b, σ, f, g depend on the whole trajectories of X and α in an non-anticipative

way. The partial observation character is modeled as follows: in the Wiener process B we distinguish

two components (possibly multidimensional) and write it in the form B = (V,W ). We suppose

that the controller chooses the control actions at any time on the bases of the past observations

of the component W alone. Thus, the control process α is required to be adapted to the filtration

generated by W and the supremum in (1.5) is taken over such controls. This formulation of a
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partial observation problem is general enough to include large classes of optimization models with

latent factors of interest in mathematical finance: see section 2.3.1 below. Moreover, the classical

optimal control problem with partial observation, as presented for instance in the book [3], also

falls under the scope of our results after a standard reformulation based on the so-called reference

probability method, in which the observation processW is turned into a Wiener process by a change

of measure: see subsection 2.3.2 where a typical observation process, perturbed by a non-degenerate

Gaussian noise, is introduced.

In order to present the randomization method applied to the problem (1.4)-(1.5), we assume

for simplicity that A is a subset of a Euclidean space and we take a finite measure λ on A with full

support. Then, enlarging the original probability space if needed, we introduce a Poisson random

measure µ on R+ × A with intensity λ(da) and independent of the Brownian motion B. Then

we consider the stepwise process I associated with µ and replace the control process α by I, thus

arriving at the following dynamics:











dXt = bt(X, I) dt + σt(X, I) dBt,

It = a0 +

∫ t

0

∫

A
(a− Is−)µ(ds da).

Next we consider an auxiliary optimization problem, called randomized or dual problem (in contrast

to the starting optimal control problem with partial observation which we refer to also as primal

problem), which consists in optimizing among equivalent changes of probability measures which only

affect the intensity measure of µ but not the law of W . In the randomized problem, an admissible

control is a bounded positive map ν defined on Ω × R+ × A, which is predictable with respect to

the filtration FW,µ generated by W and µ. Given ν, by means of an absolutely continuous change

of measure of Girsanov type we construct a probability measure Pν such that the compensator of

µ is given by νt(a)λ(da)dt and W remains a Brownian motion under Pν. Then we introduce the

gain and the value as

JR(ν) = Eν

[
∫ T

0
ft(X, I) dt + g(X)

]

, υ
R
0 = sup

ν
JR(ν),

where Eν denotes the expectation under Pν .

One of our main results states that the two control problems presented above are equivalent, in

the sense that they share the same value:

υ0 = υ
R
0 . (1.6)

See Theorem 3.1, where some additional comments can be found.

Such equivalence result has important implications that will be addressed in Section 5. Indeed,

it will be shown that the randomized control problem is associated by duality to the following back-

ward stochastic differential equation (BSDE), with nonpositive jumps, which then also characterizes

the value function of the initial control problem (1.5). For any bounded measurable functional ϕ

on the space of continuous paths define

ρt(ϕ) = E
[

ϕ(X·∧t) | F
W,µ
t

]

,
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and consider the BSDE











Yt = ρT (g) +

∫ T

t
ρs(fs(·, I))ds +KT −Kt −

∫ T

t
Zs dWs −

∫ T

t

∫

A
Us(a)µ(ds da),

Ut(a) ≤ 0,

(1.7)

In Theorem 5.1, which is another of our main results, we prove that there exists a unique minimal

solution (Y,Z,U,K) to (1.7) (i.e. among all solutions we take the minimal one in terms of the Y -

component) in a suitable space of stochastic processes adapted to the filtration FW,µ, and moreover

Y0 = υ
R
0 , and more generally Yt = ess sup

ν
Eν
[

∫ T

t
ρs(fs(·, I)) ds + ρT (g)

∣

∣FW,µ
t

]

. (1.8)

The BSDE (1.7) is called the randomized equation, and corresponds to the HJB equation (1.3)

of the classical Markovian framework. Note that the introduction of the measure-valued process

ρ and its occurrence in the generator and the terminal condition of the BSDE is reminiscent of

the so-called separation principle in classical optimal control with partial observation. We shall

study in a companion paper [2] how one can also derive such kind of HJB equation in the context

of partial observation Markovian control problems. An important feature of our randomization

approach is that it does not rely on dynamic programming principle, thus circumventing delicate

issues of measurable selection arguments, especially when dealing with path-dependence in state

and control. Moreover, our BSDE representation opens perspective to build a new probabilistic

numerical scheme for solving optimal control of partially observed SDE. Finally, we would like

to point out that Theorems 3.1 and 5.1 are stated in quite a general framework, since no non-

degeneracy condition is required on the diffusion coefficient σ. In particular when σ = 0, this

includes the case of deterministic control problem with a path-dependent state dynamics and delay

on control. When the diffusion coefficient of the Brownian motion V is zero, meaning that the

dynamics of X is driven only by W , we are reduced to the case of full observation control problem.

Therefore, we have provided a general equivalence and representation result in a unifying framework

embedding classical cases in stochastic control theory.

In Section 5 we also prove a verification theorem (Theorem 5.2) in the context of the ran-

domization method. Namely we formulate, in terms of the randomized equation (1.7), a sufficient

condition for the existence of an optimal feedback control for our primal problem. In the classical

Markovian framework (1.1) this result reduces to the standard verification theorem (see subsection

5.3 for more details).

The equality Y0 = υ0, which follows from (1.6) and (1.8), provides a BSDE representation of the

value function of a stochastic optimization problem, which includes as a special case the classical

optimal control problem with partial observation. As far as we know, this is the first time that

BSDE techniques allow such a probabilistic representation in a general framework. The reason

is that, even for the simplest case when only the drift of the state equation is controlled, after

the usual reformulation as a full observation control problem for a filtering equation (for instance,

for a controlled Zakai equation) the corresponding semilinear HJB equation (see [3] or [16]) does

not fall into the class of semilinear equations addressed by the standard theory of BSDEs (see

e.g. [27]) where the generator has a particular structure condition, namely the dependence on the

gradient has to have a particular form which involves the diffusion coefficient. The randomization

method allows us to represent the solution to semilinear HJB equation with quadratic growth on
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the gradient (see [6]) and to fully non-linear equations without any structure condition and without

any non degeneracy condition on the diffusion coefficient, using a BSDE, in our present case the

equation (1.7).

We conclude with a comparison of two related papers and one final comment.

An equivalence result similar to (1.6) and a corresponding BSDE representation can also be

found in [23]. However, in that paper the equality (1.6) was proved only in the Markovian case

with full observation and by a completely different method, namely by viscosity solution techniques

applied to the HJB equation. Indeed the interest in [23] was focused on providing a nonlinear

Feynman-Kac formula for the HJB equation (which was much more general and included also

nonlocal terms) in order to design probabilistic numerical methods, that were later developed in

[20] and [21]. It is our hope that similar numerical schemes may be adapted to the study of partially

observable control problems, and this will be the focus of future works.

We also mention the article [13] where an equivalence result like (1.6) was proved, by purely

probabilistic arguments, for an optimal control problem in the presence of path-dependence in the

state variable. In [13] only the case of full observation was addressed and there was no memory

effect with respect to the control. However, the main difference with respect to our setting is that

in [13] the primal problem was formulated in a weak form, i.e. taking the supremum of the gain

functional (1.5) also over all possible choices of the probability space (Ω,F ,P). This simplifies many

arguments, and in particular makes the inequality υ0 ≥ υ
R
0 trivial. We have chosen in the present

paper a strong formulation, i.e. with a fixed probability space, of our control problem, at the expense

of additional technical difficulties. This is probably a more natural setting, especially in connection

with modeling applications. Moreover, it is the customary setting for the Pontryagin maximum

principle and for other classes of optimization problems like optimal stopping and switching.

The rest of the paper is organized as follows. In Section 2 we formulate the general optimal

control problem (1.4)-(1.5) (the primal problem) with partial observation and path-dependence in

the state and the control. We then present two motivating particular cases: in subsection 2.3.1 a

general optimization model with latent factors and uncontrolled observation process, which finds

usual applications in mathematical finance; in subsection 2.3.2 a classical optimal control problem

with partial observation (but including also path-dependence). Then, in Section 3 we implement

the randomization method in order to derive the randomized stochastic optimal control problem

(or simply randomized problem) associated with the primal problem. We state in Theorem 3.1 the

fundamental equivalence result between the primal and randomized problem. Section 4 is entirely

devoted to the proof of Theorem 3.1, which requires for both inequalities sharp approximation

results and suitable constructions with marked point processes. In Section 5 we show a separation

principle for the randomized control problem using nonlinear filtering arguments, and then relate

by duality the separated randomized problem to a constrained BSDE, which may be viewed conse-

quently as the randomized equation for the primal control problem. We finally present a verification

theorem for our primal problem using the randomized equation, which gives sufficient conditions

for the existence of an optimal feedback control for the partial observation problem.
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2 General formulation and applications

2.1 Basic notation and assumptions

In the following we will consider controlled stochastic equations of the form

dXα
t = bt(X

α, α) dt + σt(X
α, α) dBt, (2.1)

for t ∈ [0, T ], where T > 0 is a fixed deterministic and finite terminal time, and gain functionals

J(α) = E

[

∫ T

0
ft(X

α, α) dt + g(Xα)
]

.

The initial condition in (2.1) is Xα
0 = x0, a given random variable with law denoted ρ0. Before

formulating precise assumptions let us explain informally the meaning of several terms occurring

in these expressions. The controlled process Xα takes values in Rn while B is a Wiener process in

Rm+d. We write B = (V,W ) when we need to distinguish the first m components of B from the

other d components. The control process, denoted by α, takes values in a set A of control actions.

The partial observation available to the controller will be described by imposing that the control

process should be adapted to the filtration generated by the process W alone. Our formulation

includes path-dependent (or hereditary) systems, i.e. it allows for the presence of memory effects

both on the state and the control. Indeed, the coefficients b, σ, f, g depend on the whole trajectory

of Xα and α. The dependence will be non-anticipative, in the sense that their values at time t

depend on the values Xα
s and αs for s ∈ [0, t]: this is expressed below in a standard way by requiring

that they should be progressive with respect to some canonical filtration on spaces of paths.

Now let us come to precise assumptions and notations. Let us denote by Cn the space of

continuous paths from [0, T ] to Rn, equipped with the usual supremum norm ‖x‖∞ = x∗T , where

we set x∗t := sups∈[0,t] |x(s)|, for t ∈ [0, T ] and x ∈ Cn. We define the filtration (Cn
t )t∈[0,T ], where

Cn
t is the σ-algebra generated by the canonical coordinate maps Cn → Rn, x(·) 7→ x(s) up to time

t, namely

Cn
t := σ{x(·) 7→ x(s) : s ∈ [0, t]},

and we denote Prog(Cn) the progressive σ-algebra on [0, T ] ×Cn with respect to (Cn
t ).

We will require that the space of control actions A is a Borel space. We recall that a Borel

space A is a topological space homeomorphic to a Borel subset of a Polish space (some authors use

the terminology Lusin space). When needed, A will be endowed with its Borel σ-algebra B(A).

We denote by MA the space of Borel measurable paths a : [0, T ] → A, we introduce the filtration

(MA
t )t∈[0,T ], where MA

t is the σ-algebra

MA
t := σ{a(·) 7→ a(s) : s ∈ [0, t]}

and we denote Prog(Cn×MA) the progressive σ-algebra on [0, T ]×Cn with respect to the filtration

(Cn
t ⊗MA

t )t∈[0,T ].

(A1)

(i) A is a Borel space.
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(ii) The functions b, σ, f are defined on [0, T ] × Cn × MA with values in Rn, Rn×(m+d) and R

respectively, are assumed to be Prog(Cn ×MA)-measurable (see also Remark 2.1 below).

(iii) The function g is continuous on Cn, with respect to the supremum norm. The functions

b, σ and f are assumed to satisfy the following sequential continuity condition: whenever

xk, x ∈ Cn, αk, α ∈ MA, ‖xk − x‖∞ → 0, αk(t) → α(t) for dt-a.e. t ∈ [0, T ] as k → ∞ we

have

bt(xk, ak) → bt(x, a), σt(xk, ak) → σt(x
′, a), ft(xk, ak) → ft(x, a) for dt-a.e. t ∈ [0, T ].

(iv) There exist nonnegative constants L and r such that

|bt(x, a)− bt(x
′, a)| + |σt(x, a)− σt(x

′, a)| ≤ L(x− x′)∗t , (2.2)

|bt(0, a)| + |σt(0, a)| ≤ L, (2.3)

|ft(x, a)|+ |g(x)| ≤ L
(

1 + ‖x‖r
∞

)

, (2.4)

for all (t, x, x′, a) ∈ [0, T ] ×Cn ×Cn ×MA.

(v) ρ0 is a probability measure on the Borel subsets of Rn.

Remark 2.1 The measurability condition (A1)-(ii) is assumed because it guarantees the following

property, which is easily deduced:

(ii)’ Whenever (Ω,F ,P) is a probability space with a filtration F, and α and Xα are F-progressive

processes with values in A and Rn respectively, then the process (bt(X
α, α), σt(X

α, α),

ft(X
α, α))t∈[0,T ] is also F-progressive.

All the results in this paper still hold, with the same proofs, if property (ii)’ is assumed to hold

instead of (ii). There are cases when (ii)’ is easy to be checked directly.

We finally note that the function g, being continuous, is also Cn
T -measurable. 2

Remark 2.2 Assumption (A1) allows us to model various memory effects of the control on the

state process, including important and usual cases of delay in the control. For instance suppose

that A is a bounded Borel subset of a Banach space and b̄ : A→ Rn is Lipschitz continuous. Then

we may consider a weighted combination of pure delays:

bt(x, a) = b̄

(

q
∑

i=1

πi(t)a(t− δi)

)

,

where 0 < δ1 < . . . < δq < T , πi are bounded measurable real-valued functions and we use the

convention that αt = ᾱ (a fixed element of A) if t < 0. We may also allow the delays δi to depend

on t in an appropriate way. Alternatively, we may have

bt(x, α) = b̄

(
∫ t

0
π(t, s) a(s) ds

)

,

with π bounded measurable and real-valued. Note that in the latter case the measurability condition

(A1)-(i) fails in general, since the σ-algebras MA
t are determined by a countable number of times,

but the property (i)’ in the previous remark is easy to verify.

Clearly, we may address more complicated situations which are combinations of the two previous

cases and may also include a dependence on the path x. 2
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Remark 2.3 We mention that no non-degeneracy assumption on the diffusion coefficient σ is im-

posed, and in particular, some lines or columns of σ may be equal to zero. We can then consider

a priori more general model than (2.1) by adding dependence of the coefficients b, σ on another

diffusion process M , for example an unobserved and uncontrolled factor (see Application in sub-

section 2.3.1). This generality is only apparent since it can be embedded in a standard way in our

framework by considering the enlarged state process (X,M). 2

2.2 Formulation of the partially observed control problem

We assume that A, b, σ, f, g, ρ0 are given and satisfy the assumptions (A1). We formulate a control

problem fixing a setting (Ω,F ,P,F, V,W, x0), where (Ω,F ,P) is a complete probability space with

a right-continuous and P-complete filtration F = (Ft)t≥0, V and W are processes with values in

Rm and Rd respectively, such that B = (V,W ) is an Rm+d-valued standard Wiener process with

respect to F and P, and x0 is an Rn-valued random variable, with law ρ0 under P, which is assumed

to be F0-measurable and to satisfy E|x0|
p <∞ for some p ∈ [1,∞), p ≥ 2r with r as in (2.4). Note

that V and W are also standard Wiener processes and that V , W , x0 are all independent.

Let us denote FW = (FW
t )t≥0 the right-continuous and P-complete filtration generated by

W . An admissible control process is any FW -progressive process α with values in A. The set of

admissible control processes is denoted by AW . The controlled equation has the form

dXα
t = bt(X

α, α) dt + σt(X
α, α) dBt (2.5)

on the interval [0, T ] with initial condition Xα
0 = x0, and the gain functional is

J(α) = E

[
∫ T

0
ft(X

α, α) dt + g(Xα)

]

. (2.6)

Since we assume that (A1) holds, by standard results (see e.g. [29] Thm V. 11.2, or [19]

Theorem 14.23), there exists a unique F-adapted strong solution Xα = (Xα
t )0≤t≤T to (2.5) with

continuous trajectories and such that (with the same p for which E|x0|
p <∞)

E

[

sup
t∈[0,T ]

|Xα
t |

p
]

<∞.

The stochastic optimal control problem under partial observation consists in maximizing J(α) over

all α ∈ AW :

υ0 = inf
α∈AW

J(α). (2.7)

Remark 2.4 Let FB = (FB
t )t≥0 be the right-continuous and P-complete filtration generated by

B. Then B is clearly an FB-Brownian motion, the processes α and Xα are FB-progressive and

the filtration F does not play any role in determining J(α) and υ0. So we might assume from the

beginning that F = FB and even that F = FB
∞ whenever convenient, but in the sequel we keep the

previous framework unless explicitly mentioned. 2

2.3 Two basic applications

In this paragraph, we address two classical optimal control problems with partial observation, and

we show that they can be recast in the form outlined in the previous subsection.
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2.3.1 Model with latent factors and uncontrolled observation process

Let (Ω,F , P̄) be a complete probability space with a right-continuous and P̄-complete filtration

F = (Ft)t≥0. Let V, W̄ be independent standard Wiener processes with respect to F, with values

in Rm and Rd respectively. We assume that a controller, for instance a financial agent, wants to

optimize her/his position, described by an n̄-dimensional stochastic process X̄α solution on the

interval [0, T ] to an equation of the form

dX̄α
t = b̄t(X̄

α,M,O, α) dt + σ̄1t (X̄
α,M,O, α) dVt + σ̄2t (X̄

α,M,O, α) dW̄t (2.8)

with coefficients b̄, σ̄1, σ̄2 defined on [0, T ]×Cn̄+m̄+d×MA valued in Rn̄, Rn̄×m, Rn̄×d respectively,

and Prog(Cn̄+m̄+d×MA)-measurable. Here, the processM valued in Rm̄ represents a latent factor

that can influence the dynamics of X̄α, and is governed by a dynamics in the form:

dMt = β̄t(M)dt+ γ1t (M)dVt + γ2t (M)dW̄t, (2.9)

for some coefficients β̄, γ1, γ2 defined on [0, T ] × Cm̄ valued in Rm̄, Rm̄×m, Rm̄×d respectively,

and Prog(Cm̄)-measurable. The process M is not directly observed, and actually the agent takes

her/his decisions based on a noisy observation represented by a process O in Rd solution to an

equation of the form

dOt = ht(M,O) dt + kt(O) dW̄t, t ∈ [0, T ], (2.10)

for some coefficients h and k defined on [0, T ] × Cm̄+d and [0, T ] × Cd, Prog(Cm̄+d)-measurable

and Prog(Cd)-measurable, valued in Rd and Rd×d respectively. For instance, Ot may be related to

the market price of financial risky assets at time t. We denote FO = (FO
t )t≥0 the right-continuous

and P̄-complete filtration generated by O. An admissible control process, representing for instance

the agent’s investment strategy, is any FO-progressive process α with values in the Borel space A.

The agent wishes to maximize, among all admissible control processes, a gain functional of the

form

J(α) = Ē

[

∫ T

0
f̄t(X̄

α,M,O, α) dt + ḡ(X̄α,M,O)
]

,

where Ē denotes expectation with respect to P̄, for real-valued coefficients f̄ , ḡ defined on [0, T ] ×

Cn̄+m̄+d × MA and Cn̄+m̄+d, Prog(Cn̄+m̄+d × MA)-measurable and Cn̄+m̄+d
T -measurable, respec-

tively.

In order to put this problem in the form addressed in the previous subsection we make a

change of probability measure and pass from the “physical” probability P̄ to a “reference” prob-

ability P. Assuming that kt(y) is invertible for all t ∈ [0, T ] and y ∈ Cd, and that the process

{k−1
t (O)ht(M,O), 0 ≤ t ≤ T} is bounded, we define a process Z setting

Z−1
t = exp

(

−

∫ t

0
ks(O)−1hs(M,O) dW̄s −

1

2

∫ t

0
|ks(O)−1hs(M,O)|2 ds

)

, t ∈ [0, T ].

The process Z−1 is a martingale under P̄, and by the Girsanov theorem, under the probability

P(dω) = ZT (ω)
−1P̄(dω) the pair (V,W ) is a standard Wiener process in Rd+m with respect to F,

where Wt = W̄t +
∫ t
0 ks(O)−1 hs(M,O) ds, t ∈ [0, T ]. We denote by FW = (FW

t )t∈[0,T ] the right-

continuous and P-complete filtration generated by W , and see that the observation process O is a

solution under P to the equation:

dOt = kt(O) dWt. (2.11)

10



Assuming a Lipschitz condition on k, i.e. there exists a constant K such that

|kt(y)− kt(y
1)| ≤ K(y − y1)∗t ,

for all (t, y, y1) ∈ [0, T ] × Cd × Cd, we deduce that O must be FW -adapted and therefore that

FO
t ⊂ FW

t for t ∈ [0, T ]. On the other hand, since Wt =
∫ t
0 ks(O)−1 dOs, the opposite inclusion

also holds and we conclude that FO = FW . Moreover, it is easily checked that Z is a P-martingale

satisfying the equation

dZt = Ztkt(O)−1ht(M,O) dWt, (2.12)

and that the equation (2.8)-(2.9) for (X̄α,M) can be re-written under P as

dX̄α
t =

[

b̄t(X̄
α,M,O, α) − σ̄2t (X̄

α,M,O, α)kt(O)−1ht(M,O)
]

dt

+ σ̄1t (X̄
α,M,O, α) dVt + σ̄2t (X̄

α,M,O, α) dWt, (2.13)

dMt =
[

β̄t(M)− γ2t (M)kt(O)−1ht(M,O)
]

dt+ γ1t (M)dVt + γ2t (M)dWt, (2.14)

while the gain functional is re-written as an expectation under P from the Bayes formula:

J(α) = E

[

∫ T

0
Ztf̄t(X̄

α,M,O, α) dt + ZT ḡ(X̄
α,M,O)

]

. (2.15)

Now let us define the four-component process Xα = (X̄α,M,O,Z) and note that the equations

(2.11)-(2.12)-(2.13)-(2.14) specify a controlled stochastic equation for Xα of the form (2.5) (with

the obvious choice of b and σ in that equation). Similarly, the gain functional (2.15) can be put in

the form (2.6) (with the obvious choice of f and g). Moreover, one easily checks that requirements

in (A1) are satisfied for suitable assumptions on b̄, σ̄1, σ̄2, k, h, β̄, γ1, γ2, f̄ and ḡ.

Example 2.1 As an example of financial application, let us mention the case of a risky asset whose

price St satisfies

dSt = St(ρ(Mt) dt+ σt(S) dW̄t)

for a scalar Brownian motion W̄ , a volatility which is a functional of the past values of S, and an

unobserved return process M governed by (2.9). We assume that ρ, σt(.) and σ
−1
t (.) are bounded

functions. The wealth X̄α
t of an investor that invests a fraction αt of her/his wealth in this asset

(and the rest in a risk-free asset with interest rate r) evolves according to the self-financing equation:

dX̄α
t = αt X̄

α
t

dSt
St

+ (1− αt) X̄
α
t r dt (2.16)

= X̄α
t [r + αt(ρ(Mt)− r)]dt+ X̄α

t αtσt(S)dW̄t

The investor typically observes the risky price process or equivalently the log-price process Ot :=

log St that solves the equation

dOt =
(

ρ(Mt) −
σt(S)

2

2

)

dt+ σt(S) dW̄t,

which can be put in the form (2.10) setting kt(y) = σt(exp(y)) and ht(z, y) = ρ(z) − kt(y)
2/2.

Notice that the wealth process is FO-adapted, since it is solution to equation (2.16). Therefore,

when choosing the investment strategy α the investor gains no additional information by observing

the wealth process, and so it is reasonable to impose the condition that α should be adapted to the

filtration FO alone, rather than to the one generated by O and X̄α. 2
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2.3.2 A classical partially observed control problem

In the previous example the observed process O was not affected by the choice of the control.

We next remove this restriction, adopting a classical approach which consists in starting with the

“reference” probability P and introducing the “physical” probability later, as presented e.g. in the

book [3].

Let (Ω,F ,P) be a complete probability space with a right-continuous and P-complete filtration

F = (Ft)t≥0. Let V,W be independent standard Wiener processes with respect to F, with values

in Rm and Rd respectively, and consider the observation process solution to the equation in Rd

dOt = kt(O) dWt, (2.17)

where kt(y) is defined on [0, T ] × Cd, Prog(Cd)-measurable, Lipschitz in y, and invertible with

bounded inverse. Similarly as in the previous paragraph, we see that FW = FO, and an admissible

control process is any FW -progressive process α with values in a Borel space A.

We are given coefficients b̄, h, σ̄1, σ̄2 defined on [0, T ]×Cn̄+d×MA, valued in in Rn̄, Rd, Rn̄×m,

Rn̄×d respectively, and Prog(Cn̄+d×MA)-measurable. Then, for any admissible control process α,

let the process X̄α be defined as the solution to the equation in Rn̄:

dX̄α
t = [b̄t(X̄

α, O, α)− σ̄2t (X̄
α, O, α)kt(O)−1ht(X̄

α, O, α)] dt (2.18)

+ σ̄1t (X̄
α, O, α) dVt + σ̄2t (X̄

α, O, α) dWt.

We introduce the gain functional J(α) associated to a control α by means of a change of

probability in the following way. Assuming that the function k−1h is bounded, let us define for any

admissible control process α, the P-martingale:

Zα
t = exp

(

∫ t

0
ks(O)−1hs(X̄

α, O, α) dWs −
1

2

∫ t

0
|ks(O)−1hs(X̄

α, O, α)|2 ds
)

,

solution to the equation

dZα
t = Zα

t kt(O)−1ht(X̄
α, O, α) dWt, (2.19)

and introduce the “physical” probability Pα setting Pα(dω) = Zα
T (ω)P(dω). Given real-valued

coefficients f̄ , ḡ defined on [0, T ] × Cn̄+d × MA and Cn̄+d, Prog(Cn̄+d × MA)-measurable and

Cn̄+d
T -measurable, respectively, the gain functional is then defined as

J(α) = Eα
[

∫ T

0
f̄t(X̄

α, O, α) dt + ḡ(X̄α, O)
]

.

The interpretation of this formulation is the following. By defining the process Wα as

Wα
t = Wt −

∫ s

0
ks(O)−1 hs(X̄

α, O, α) ds, t ∈ [0, T ],

for any admissible control process α, we see, by the Girsanov theorem, that the pair (V,Wα) is a

standard Wiener process in Rm+d under the probability Pα and with respect to F. Moreover, the

dynamics of (X̄α, O) is written under Pα as:

dX̄α
t = b̄t(X̄

α, O, α) dt + σ̄1t (X̄
α, O, α) dVt + σ̄2t (X̄

α, O, α) dWα
t ,
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dOt = ht(X̄
α, O, α) dt + kt(O) dWα

t .

We then obtain a classical controlled state equation, and an observation process perturbed by noise

and also affected by the choice of the control.

Finally, we notice that this problem is recast in the framework of subsection 2.2 by rewriting

from Bayes formula and the P-martingale property of Zα, the gain functional as an expectation

under P:

J(α) = E

[

∫ T

0
Zα
t f̄t(X̄

α, O, α) dt + Zα
T ḡ(X̄

α, O)
]

. (2.20)

Thus, by defining the three-component process Xα = (X̄α, Zα, O), we see that the equations

(2.17)-(2.18)-(2.19) specify a controlled stochastic equation for Xα of the form (2.5), and the gain

functional (2.20) can be put in the form (2.6).

3 The randomized stochastic optimal control problem

We still assume that A, b, σ, f, g, ρ0 are given and satisfy the assumptions (A1). We implement the

randomization method and formulate the randomized stochastic optimal control problem associated

with the control problem of subsection 2.2. To this end we assume we are also given λ, a0 satisfying

the following conditions, which are assumed to hold from now on:

(A2)

(i) λ is a finite positive measure on (A,B(A)) with full topological support.

(ii) a0 is a fixed, deterministic point in A.

We anticipate that λ will play the role of an intensity measure and a0 will be the starting point

of some auxiliary process introduced later. Notice that the initial problem (2.7) does not depend

on λ, a0, which only appear in order to give a randomized representation of the partially observed

control problem. In this sense, (A2) is not a restriction imposed on the original problem and we

have the choice to fix a0 ∈ A and an intensity measure λ satisfying this condition.

3.1 Formulation of the randomized control problem

The randomized control problem is formulated fixing a setting (Ω̂, F̂ , P̂, V̂ , Ŵ , µ̂, x̂0), where (Ω̂, F̂ , P̂)

is an arbitrary complete probability space with independent random elements V̂ , Ŵ , µ̂, x̂0. The

random variable x̂0 is Rn-valued, with law ρ0 under P̂, and it is assumed to satisfy Ê|x̂0|
p <∞ for

some p ∈ [1,∞), p ≥ 2r with r as in (2.4). The process B̂ := (V̂ , Ŵ ) is a standard Wiener process

in Rm+d under P̂. µ̂ is a Poisson random measure on A with intensity λ(da) under P̂; thus, µ̂ is

a sum of Dirac measures of the form µ̂ =
∑

n≥1 δ(Ŝn,η̂n)
, where (η̂n)n≥1 is a sequence of A-valued

random variables and (Ŝn)n≥1 is a strictly increasing sequence of random variables with values in

(0,∞), and for any C ∈ B(A) the process µ̂((0, t] × C)− tλ(C), t ≥ 0, is a P̂-martingale. We also

define the A-valued process

Ît =
∑

n≥0

η̂n 1[Ŝn,Ŝn+1)
(t), t ≥ 0, (3.1)
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where we use the convention that Ŝ0 = 0 and Î0 = a0, the point in assumption (A2)-(ii). Notice

that the sum in (3.1) is formal and that, when A is a subset of a linear space, formula (3.1) can be

written as

Ît = a0 +

∫ t

0

∫

A
(a− Îs−) µ̂(ds da), t ≥ 0.

Let X̂ be the solution to the equation

dX̂t = bt(X̂, Î) dt+ σt(X̂, Î) dBt, (3.2)

for t ∈ [0, T ], starting from X̂0 = x̂0. We define two filtrations FŴ ,µ̂ = (FŴ ,µ̂
t )t≥0 and Fx̂0,B̂,µ̂ =

(F x̂0,B̂,µ̂
t )t≥0 setting

FŴ ,µ̂
t = σ(Ŵs, µ̂((0, s]× C) : s ∈ [0, t], C ∈ B(A)) ∨ N ,

F x̂0,B̂,µ̂
t = σ(x̂0, B̂s, µ̂((0, s]× C) : s ∈ [0, t], C ∈ B(A)) ∨ N , (3.3)

where N denotes the family of P̂-null sets of F̂ . We denote P(FŴ ,µ̂), P(Fx̂0,B̂,µ̂) the corresponding

predictable σ-algebras.

Under (A1) it is well-known (see e.g. Theorem 14.23 in [19]) that there exists a unique Fx̂0,B̂,µ̂-

adapted strong solution X̂ = (X̂t)0≤t≤T to (3.2), satisfying X̂0 = x̂0, with continuous trajectories

and such that (with the same p for which Ê|x̂0|
p <∞)

Ê

[

sup
t∈[0,T ]

|X̂t|
p
]

< ∞. (3.4)

We can now define the randomized optimal control problem as follows: the set V̂ of admissible

controls consists of all ν̂ = ν̂t(ω̂, a) : Ω̂×R+ ×A→ (0,∞), which are P(FŴ ,µ̂)⊗B(A)-measurable

and bounded. Then the Doléans exponential process

κν̂t = Et

(
∫ ·

0

∫

A
(ν̂s(a)− 1) (µ(ds da) − λ(da) ds)

)

= exp

(
∫ t

0

∫

A
(1− ν̂s(a))λ(da) ds

)

∏

Ŝn≤t

νŜn
(η̂n), t ≥ 0, (3.5)

is a martingale with respect to P̂ and FŴ ,µ̂, and we can define a new probability setting P̂ν̂(dω̂) =

κν̂T (ω̂) P̂(dω̂). From the Girsanov theorem for multivariate point processes ([18]) it follows that

under P̂ν̂ the FŴ ,µ̂-compensator of µ̂ on the set [0, T ] × A is the random measure ν̂t(a)λ(da)dt.

Notice that B̂ remains a Brownian motion under P̂ν̂ , and using (2.2)-(2.3) we can generalize estimate

(3.4) as follows

sup
ν̂∈V

Êν̂
[

sup
t∈[0,T ]

|X̂t|
p
]

< ∞, (3.6)

where Êν̂ denotes the expectation with respect to P̂ν̂ . We finally introduce the gain functional of

the randomized control problem

JR(ν̂) = Êν̂

[
∫ T

0
ft(X̂, Î) dt+ g(X̂)

]

. (3.7)

The randomized stochastic optimal control problem consists in maximizing JR(ν̂) over all ν̂ ∈ V̂.

Its value is defined as

υ
R
0 = sup

ν̂∈V̂

JR(ν̂). (3.8)
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Remark 3.1 Let us define V̂inf > 0 = {ν̂ ∈ V̂ : infΩ̂×[0,T ]×A ν̂ > 0}. Then

υ
R
0 = sup

ν̂∈V̂inf > 0

JR(ν̂). (3.9)

Indeed, given ν̂ ∈ V̂ and ǫ > 0, define ν̂ǫ = ν̂ ∨ ǫ ∈ V̂inf > 0 and write the gain (3.7) in the form

JR(ν̂ǫ) = Ê

[

κν̂
ǫ

T

(
∫ T

0
ft(X̂, Î) dt+ g(X̂)

)]

.

It is easy to see that JR(ν̂ǫ) → JR(ν̂) as ǫ → 0, which implies υR
0 = supν̂∈V̂ J

R(ν̂) ≤ supν̂∈V̂inf > 0
JR(ν̂).

The other inequality being obvious, we obtain (3.9). 2

Remark 3.2 We end this section noting that a randomized control problem can be constructed

starting from the initial control problem with partial observation. Indeed, let (Ω,F ,P,F, V,W, x0)

be the setting for the stochastic optimal control problem formulated in subsection 2.2. Suppose

that (Ω′,F ′,P′) is another probability space where a Poisson random measure µ with intensity λ

is defined. Then we define Ω̄ = Ω× Ω′, we denote by F̄ the completion of F ⊗ F ′ with respect to

P⊗ P′ and by P̄ the extension of P⊗ P′ to F̄ . The random elements V,W, x0 in Ω and the random

measure µ in Ω′ have obvious extensions to Ω̄, that will be denoted by the same symbols. Clearly,

(Ω̄, F̄ , P̄, V,W, µ, x0) is a setting for a randomized control problem as formulated before, that we

call product extension of the setting (Ω,F ,P, V,W, x0) for the initial control problem (2.7).

We note that the initial formulation of a randomized setting (Ω̂, F̂ , P̂, V̂ , Ŵ , µ̂, x̂0) was more

general, since it was not required that Ω̂ should be a product space Ω × Ω′ and, even if it were

the case, it was not required that the process B̂ = (V̂ , Ŵ ) should depend only on ω ∈ Ω while the

random measure µ̂ should depend only on ω′ ∈ Ω′. 2

3.2 The value of the randomized control problem

In this section it is our purpose to show that the value υR
0 of the randomized control problem

defined in (3.8) does not depend on the specific setting (Ω̂, F̂ , P̂, V̂ , Ŵ , µ̂, x̂0), so that it is just a

functional of the (deterministic) elements A, b, σ, f, g, ρ0, λ, a0. Later on, in Theorem 3.1, we will

prove that in fact υR
0 does not depend on the choice of λ and a0 either.

So let now (Ω̃, F̃ , P̃, Ṽ , W̃ , µ̃, x̃0) be another setting for the randomized control problem, as in

Section 3.1, and let FW̃ ,µ̃, Fx̃0,B̃,µ̃, X̃ , Ĩ, Ṽ be defined in analogy with what was done before. So,

for any admissible control ν̃ ∈ Ṽ, we also define κν̃ and the probability dP̃ν̃ = κν̃T dP̃ as well as the

gain and the value

J̃R(ν̃) = Ẽν̃

[
∫ T

0
ft(X̃, Ĩ) dt+ g(X̃)

]

, υ̃
R
0 = sup

ν̃∈Ṽ

J̃R(ν̃).

We recall that the gain functional and value for the setting (Ω̂, F̂ , P̂, V̂ , Ŵ , µ̂, x̂0) was defined in

(3.7) and (3.8) and denoted by JR and υR
0 rather than ĴR and υ̂

R
0 , to simplify the notation in the

following sections.

Proposition 3.1 With the previous notation, we have υR
0 = υ̃

R
0 . In other words, υR

0 only depends

on the objects A, b, σ, f, g, ρ0, λ, a0 appearing in the assumptions (A1) and (A2).
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Proof. It is enough to prove that υR
0 ≤ υ̃

R
0 , since the opposite inequality is established by the

same arguments. Writing the gain JR(ν̂) defined in (3.7) in the form

JR(ν̂) = Ê

[

κν̂T

(
∫ T

0
ft(X̂, Î) dt+ g(X̂)

)]

,

recalling the definition (3.5) of the process κν̂ and noting that the process Î is completely determined

by µ̂, we see that JR(ν̂) only depends on the (joint) law of (X̂, µ̂, ν̂) under P̂. Since, however, X̂

is the solution to equation (3.2) with initial condition X̂0 = x̂0, it is easy to check that under

our assumptions the law of (X̂, µ̂, ν̂) only depends on the law of (x̂0, V̂ , Ŵ , µ̂, ν̂). Since x̂0, V̂ and

(Ŵ , µ̂, ν̂) are all independent, and the laws of x̂0 and V̂ are fixed (since V̂ is a standard Wiener

process and x̂0 has law ρ0) we conclude that JR(ν̂) only depends on the law of (Ŵ , µ̂, ν̂) under P̂.

Similarly, J̃R(ν̃) only depends on the law of (W̃ , µ̃, ν̃) under P̃.

Next we claim that, given ν̂ ∈ V̂ there exists ν̃ ∈ Ṽ such that the law of (Ŵ , µ̂, ν̂) under P̂ is

the same as the law of (W̃ , µ̃, ν̃) under P̃. Assuming the claim for a moment, it follows from the

previous discussion that for this choice of ν̃ we have

JR(ν̂) = J̃R(ν̃) ≤ υ̃
R
0 ,

and taking the supremum over ν̂ ∈ V̂ we deduce that υR
0 ≤ υ̃

R
0 , which proves the result.

It only remains to prove the claim. By a monotone class argument we may suppose that

ν̂t(a) = k(a)φt ψt, where k is a B(A)-measurable, φ is FŴ -predictable and ψ is Fµ̂-predictable

(where these filtrations are the ones generated by Ŵ and µ̂ respectively). We may further suppose

that

φt = 1(t0,t1](t)φ0(Ŵs1 , . . . , Ŵsh)

for an integer h and deterministic times 0 ≤ s1 ≤ . . . sh ≤ t0 < t1 and a Borel function φ0 on Rh,

since this class of processes generates the predictable σ-algebra of FŴ , and that

ψt = 1(Ŝn,Ŝn+1]
(t)ψ0(Ŝ1, . . . , Ŝn, η̂1, . . . , η̂n, t)

for an integer n ≥ 1 and a Borel function ψ0 on R2n+1, since this class of processes generates the

predictable σ-algebra of Fµ̂ (see [18], Lemma (3.3)). It is immediate to verify that the required

process ν̃ can be defined setting

ν̃t(a) = k(a) 1(t0 ,t1](t)φ0(W̃s1 , . . . , W̃sh) 1(S̃n,S̃n+1]
(t)ψ0(S̃1, . . . , S̃n, η̃1, . . . , η̃n, t),

where (S̃n, η̃n)n≥1 are associated to the measure µ̃, i.e. µ̃ =
∑

n≥1 δ(S̃n,η̃n)
.

3.3 Equivalence of the partially observed and the randomized control problem

We can now state one of the main results of the paper.

Theorem 3.1 Assume that (A1) and (A2) are satisfied. Then the values of the partially observed

control problem and of the randomized control problem are equal:

υ0 = υ
R
0 , (3.10)

where υ0 and υR
0 are defined by (2.7) and (3.8) respectively. This common value only depends on

the objects A, b, σ, f, g, ρ0 appearing in assumption (A1).
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The last sentence follows immediately from Proposition 3.1, from the equality υ0 = υ
R
0 and

from the obvious fact that υ0 cannot depend on λ, a0 introduced in assumption (A2). The proof

of the equality is contained in the next section.

Before giving the proof of Theorem 3.1, let us discuss the significance of this equivalence result.

The randomized control problem involves an uncontrolled state process (X, I) solution to (3.1)-(3.2),

and the optimization is done over a set of equivalent probability measures whose effect is to change

the characteristics (the intensity) of the auxiliary randomized process I without impacting on the

Brownian motion B driving X. Therefore, the equivalence result (3.10) means that by achieving

such optimization in the randomized problem, we perform the same value as in the original control

problem where controls affect directly the drift and diffusion of the state process. As explained

in the Introduction, such equivalence result has important implications that will be addressed

in Section 5 where it is shown that the randomized control problem is associated by duality to a

backward stochastic differential equation (with nonpositive jumps), called the randomized equation,

which then characterizes the value function of the initial control problem (2.7).

4 Proof of Theorem 3.1

The proof is split into two parts, corresponding to the inequalities υR
0 ≤ υ0 and υ0 ≤ υ

R
0 . In the

sequel, (A1) and (A2) are always assumed to hold.

Before starting with the rigorous proof, let us have a look at the main points.

• υ
R
0 ≤ υ0. First, we prove that the value of the primal problem υ0 does not change if

we reformulate it on the enlarged probability space where the randomized problem lives,

taking the supremum over AW,µ′
, which is the set of controls ᾱ progressively measurable

with respect to the filtration generated by W and the Poisson random measure µ′ (Lemma

4.1; actually, we take ᾱ progressively measurable with respect to an even larger filtration,

denoted FW,µ′
∞). Second, we prove that for every ν ∈ Vinf>0 there exists ᾱν ∈ AW,µ′

such

that LPν (x0, B, I) = LP̄(x0, B, ᾱ
ν) (Proposition 4.1). This result is a direct consequence of

the key Lemma 4.3. From LPν (x0, B, I) = LP̄(x0, B, ᾱ
ν) we obtain that JR(ν) = J̄(ᾱν),

namely

υ
R
0 := sup

ν∈Vinf>0

JR(ν) = sup
ᾱν

ν∈Vinf>0

J̄(ᾱν).

Since υ0 = supᾱ∈AW,µ′ J̄(ᾱ) by Lemma 4.1, and every ᾱν belongs to AW,µ′
, we easily obtain

the inequality υR
0 ≤ υ0.

• υ0 ≤ υ
R
0 . The proof of this inequality is based on a “density” result (which corresponds to

the key Proposition A.1) in the spirit of Lemma 3.2.6 in [24]. Roughly speaking, we prove

that the class {ᾱν : ν ∈ Vinf>0} is dense in AW,µ′
, with respect to the metric ρ̃ defined in

(4.17) (the same metric used in Lemma 3.2.6 in [24]). Then, the inequality υ0 ≤ υ
R
0 follows

from the stability Lemma 4.4, which states that, under Assumption (A1), the gain functional

is continuous with respect to the metric ρ̃.

4.1 Proof of the inequality υ
R
0 ≤ υ0

We note at the outset that the requirement that λ has full support will not be used in the proof of

the inequality υR
0 ≤ υ0.
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Let (Ω,F ,P,F, V,W, x0) be a setting for the stochastic optimal control problem with partial

observation formulated in subsection 2.2. We construct a setting for a randomized control problem

in the form of a product extension as described at the end of Section 3.1.

Let λ be a Borel measure on A satisfying (A2). As a first step, we need to construct a suitable

surjective measurable map π : R → A and to introduce a properly chosen measure λ′ on the Borel

subsets of the real line such that in particular λ = λ′ ◦π−1. We also recall that the space of control

actions A is assumed to be a Borel space and it is known that any such space is either finite or

countable (with the discrete topology) or isomorphic, as a measurable space, to the real line (or

equivalently to the half line (0,∞)): see e.g. [4], Corollary 7.16.1.

Let us denote by Ac the subset of A consisting of all points a ∈ A such that λ({a}) > 0, and let

Anc = A\Ac. Since λ is finite, the set Ac is either empty or countable, and it follows in particular

that both Ac and Anc are also Borel spaces.

In the construction of λ′ we distinguish the following three cases.

1. Ac = ∅, so that A = Anc is uncountable. Then, as recalled above, there exists a bijection

π : R → A such that π and its inverse are both Borel measurable. We define a measure λ′ on

(R,B(R)) setting λ′(B) = λ(π(B)) for B ∈ B(R). Even if we cannot guarantee that λ′ has

full support, it clearly holds that λ′({r}) = 0 for every r ∈ R. Basically, in this case we are

identifying A with R and λ with its image measure λ′.

2. Anc = ∅, so that A = Ac is countable, with the discrete topology. For every j ∈ A choose a

(nontrivial) interval Ij ⊂ R in such a way that {Ij , j ∈ A} is a partition of R. Choose an

arbitrary nonatomic finite measure on (R,B(R)) with full support (say, the standard Gaussian

measure, denoted by γ) and denote by λ′ the unique positive measure on (R,B(R)) such that

λ′(B) = λ({j})γ(B)/γ(Ij ), for every B ⊂ Ij, B ∈ B(R), j ∈ A.

Notice that λ′ is a finite measure (λ′(R) = λ(A)), satisfying λ′(Ij) = λ({j}) for every j ∈ A

and λ′({r}) = 0 for every r ∈ R. We also define the projection π : R → A given by

π(r) = j, if r ∈ Ij for some j ∈ A. (4.1)

Clearly, λ = λ′ ◦ π−1.

3. Ac 6= ∅ and Anc 6= ∅. For every j ∈ Ac choose a (nontrivial) interval Ij ⊂ (−∞, 0] in

such a way that {Ij, j ∈ Ac} is a partition of (−∞, 0]. Moreover, there exists a bijection

π1 : (0,∞) → Anc such that π1 and its inverse are both Borel measurable. Denote by λ′ the

unique positive measure on (R,B(R)) such that

λ′(B) = λ({j})γ(B)/γ(Ij), for every B ⊂ Ij, B ∈ B(R), j ∈ Ac,

λ′(B) = λ(π1(B)) for every B ⊂ (0,∞), B ∈ B(R).

Again, λ′ is a finite measure satisfying λ′(Ij) = λ({j}) for every j ∈ Ac and λ′({r}) = 0 for

every r ∈ R. We also define the projection π : R → A given by

π(r) =

{

j, if r ∈ Ij for some j ∈ Ac,

π1(r), if r ∈ (0,∞),
(4.2)

so that in particular λ = λ′ ◦ π−1.
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Now let (Ω′,F ′,P′) denote the canonical probability space of a non-explosive Poisson point

process on R+ ×R with intensity λ′. Thus, Ω′ is the set of sequences ω′ = (tn, rn)n≥1 ⊂ (0,∞)×R

with tn < tn+1 ր ∞, (Tn, Rn)n≥1 is the canonical marked point process (i.e. Tn(ω
′) = tn, Rn(ω

′) =

rn), and µ
′ =

∑

n≥1 δ(Tn,Rn) is the corresponding random measure. Let F ′ denote the smallest σ-

algebra such that all the maps Tn, Rn are measurable, and P′ the unique probability on F ′ such

that µ′ is a Poisson random measure with intensity λ′ (since λ′ is a finite measure, this probability

actually exists). We will also use the completion of the space (Ω′,F ′,P′), still denoted by the same

symbol by abuse of notation. In all the cases considered above, setting

An = π(Rn), µ =
∑

n≥1

δ(Tn,An),

it is easy to verify that µ is a Poisson random measure on (0,∞) × A with intensity λ, defined in

(Ω′,F ′,P′). Then, following (3.1), we associate to this Poisson random measure on (0,∞)×A, the

A-valued process

It =
∑

n≥0

An 1[Tn,Tn+1)(t), t ≥ 0,

where we use the convention that T0 = 0 and I0 = a0 the point in assumption (A2)-(ii). In (Ω′,F ′)

we define the natural filtrations Fµ = (Fµ
t )t≥0, F

µ′
= (Fµ′

t )t≥0 given by

Fµ
t = σ

(

µ((0, s]× C) : s ∈ [0, t], C ∈ B(A)
)

∨ N ′,

Fµ′

t = σ
(

µ′((0, s] ×B) : s ∈ [0, t], B ∈ B(R)
)

∨ N ′,

where N ′ denotes the family of P′-null sets of F ′. We denote by P(Fµ), P(Fµ′
)the corresponding

predictable σ-algebras. Note that Fµ
t ⊂ Fµ′

t and Fµ′

∞ = F ′.

Then we define Ω̄ = Ω × Ω′, we denote by F̄ the completion of F ⊗ F ′ with respect to P ⊗ P′

and by P̄ the extension of P ⊗ P′ to F̄ . The random elements V,W, x0 in Ω and the random

measures µ, µ′ in Ω′ have obvious extensions to Ω̄, that will be denoted by the same symbols. Then

(Ω̄, F̄ , P̄, V,W, µ, x0) is a setting for a randomized control problem as formulated in section 3.1.

Recall that FW denotes the P-completed filtration in (Ω,F) generated by the Wiener process W .

All filtrations FW , Fµ, Fµ′
can also be lifted to filtrations in (Ω̄, F̄), and P̄-completed. In the sequel

it should be clear from the context whether they are considered as filtrations in (Ω̄, F̄) or in their

original spaces. As in Section 3.1 we define the filtration FW,µ = (FW,µ
t )t≥0 in (Ω̄, F̄) by

FW,µ
t = FW

t ∨ Fµ
t ∨ N ,

(N denotes the family of P̄-null sets of F̄), we introduce the classes V,Vinf > 0 and, for any admissible

control ν ∈ V, the corresponding martingale κν , the probability Pν(dω dω′) = κνT (ω, ω
′) P̄(dω dω′)

and the gain JR(ν). For technical purposes, we need to introduce the set V ′ of elements ν ′ =

ν ′t(ω
′, a) : Ω′×R+×A→ (0,∞), which are P(Fµ)⊗B(A)-measurable and bounded. We also define

another filtration FW,µ′
∞ = (F

W,µ′
∞

t )t≥0 in (Ω̄, F̄) setting

F
W,µ′

∞
t = FW

t ∨ F ′ ∨ N

(here F ′ denotes a σ-algebra in (Ω̄, F̄), namely {Ω×B : B ∈ F ′}).

In order to prove the inequality υR
0 ≤ υ0, we first prove two technical lemmata. In particular,

in Lemma 4.1 we show that the primal problem is equivalent to a new primal problem with FW,µ̄∞-

progressive controls on the enlarged space (Ω̄, F̄).
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Lemma 4.1 We have υ0 = supᾱ∈AW,µ′ J̄(ᾱ), where

J̄(ᾱ) = Ē

[
∫ T

0
ft(X

ᾱ, ᾱ) dt+ g(Xᾱ)

]

,

and AW,µ′
is the set of all FW,µ′

∞-progressive processes ᾱ with values in A. Moreover, Xᾱ =

(Xᾱ
t )0≤t≤T is the strong solution to (2.5) (with ᾱ in place of α) satisfying Xᾱ

0 = x0, which is

unique in the class of continuous processes adapted to the filtration (FB
t ∨ σ(x0) ∨ F ′ ∨ N )t≥0.

Proof. The inequality υ0 ≤ supᾱ∈AW,µ′ J̄(ᾱ) is immediate, since every control α ∈ AW also

lies in AW,µ′
and J(α) = J̄(α), whence J(α) ≤ supᾱ∈AW,µ′ J̄(ᾱ) and so υ0 = supα∈AW J(α) ≤

supᾱ∈AW,µ′ J̄(ᾱ).

Let us prove the opposite inequality. Fix α̃ ∈ AW,µ′
and consider the (uncompleted) filtration

F′′ := (FW
t ∨ F ′)t≥0. Then we can find an A-valued F′′-progressive process ᾱ such that ᾱ = α̃

P̄(dω̄)dt-almost surely, so that in particular J̄(ᾱ) = J̄(α̃). It is easy to verify that, for every

ω′ ∈ Ω′, the process αω′
, defined by αω′

t (ω) := ᾱt(ω, ω
′), is FW -progressive. Consider now the

controlled equation on [0, T ]

Xt = x0 +

∫ t

0
bs(X,α

ω′

) ds+

∫ t

0
σs(X,α

ω′

) dBs (4.3)

= x0 +

∫ t

0
bs(X, ᾱ(·, ω

′)) ds +

∫ t

0
σs(X, ᾱ(·, ω

′)) dBs.

From the first line of (4.3) we see that, under Assumption (A1), for every ω′ there exists a

unique (up to indistinguishability) continuous process Xαω′

= (Xαω′

t )0≤t≤T strong solution to

(4.3), adapted to the filtration (FB
t ∨ σ(x0) ∨ N )t≥0. On the other hand, from the second line of

(4.3), it follows that the process Xᾱ(·, ω′) = (Xᾱ
t (·, ω

′))0≤t≤T solves the above equation. From the

pathwise uniqueness of strong solutions to equation (4.3), it follows that Xαω′

t (ω) = Xᾱ
t (ω, ω

′), for

all t ∈ [0, T ], P(dω)-a.s. By the Fubini theorem

J̄(α̃) = J̄(ᾱ) =

∫

Ω′

E

[
∫ T

0
ft(X

αω′

, αω′

) dt+ g(Xαω′

)

]

P′(dω′).

Since the inner expectation equals the gain J(αω′
), it cannot exceed V and it follows that J̄(α̃) ≤ υ0.

The claim follows from the arbitrariness of α̃. 2

The next result provides a decomposition of any element ν ∈ V, i.e. P(FW,µ)⊗B(A)-measurable

and bounded.

Lemma 4.2 (i) Let ν ∈ V, then there exists a P̄-null set N̄ ∈ N such that ν admits the following

representation

νt(ω, ω
′, a) = ν

(0)
t

(

ω, a
)

1{0<t≤T1(ω′)}

+

∞
∑

n=1

ν
(n)
t

(

ω, (T1(ω
′), A1(ω

′)), . . . , (Tn(ω
′), An(ω

′)), a
)

1{Tn(ω′)<t≤Tn+1(ω′)},

for all (ω, ω′, t, A) ∈ Ω̄×R+×A, (ω, ω
′) /∈ N̄ , for some maps ν(n) : Ω×R+×(R+×A)

n×A→ (0,∞),

n ≥ 1, (resp. ν(0) : Ω × R+ × A → (0,∞)), which are P(FW ) ⊗ B((R+ × A)n) ⊗ B(A)-measurable
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(resp. P(FW )⊗B(A)-measurable) and uniformly bounded with respect to n. Moreover, if ν ∈ Vinf > 0

then infΩ̄×[0,T ]×A ν
(n) > 0 as well, for every n ≥ 0.

(ii) Let ν ∈ V, then there exists Ñ ∈ F , with P(Ñ) = 0, such that the map νω = νωt (ω
′, a) :

Ω′ × R+ ×A→ (0,∞), defined by

νωt (ω
′, a) := νt(ω, ω

′, a), (ω′, t, a) ∈ Ω′ × R+ ×A,

belongs to V ′ whenever ω /∈ Ñ . Moreover, for every ω /∈ Ñ there exists Nω ∈ N ′ such that

νωt (ω
′, a) = ν

(0)
t

(

ω, a
)

1{0<t≤T1(ω′)} (4.4)

+

∞
∑

n=1

ν
(n)
t

(

ω, (T1(ω
′), A1(ω

′)), . . . , (Tn(ω
′), An(ω

′)), a
)

1{Tn(ω′)<t≤Tn+1(ω′)},

for all (ω′, t, A) ∈ Ω′ × R+ × A, ω′ /∈ N ′
ω, where, clearly, ν

(n)
· (ω, ·) (resp. ν

(0)
· (ω, ·)) is B(R+) ⊗

B((R+ ×A)n)⊗ B(A)-measurable (resp. B(R+)⊗ B(A)-measurable).

Proof. The proof is an extension of the results in [18] Lemma 3.3, it is based on monotone class

arguments and is left to the reader. 2

By Lemma 4.2-(ii), given ν ∈ V, consider the process νω ∈ V ′, with corresponding P-null set

Ñ ∈ F . Define the Doléans exponential process κν
ω
by formula (3.5) with νω in place of ν. Notice

that by Lemma 4.2-(ii) we have κν
ω

t (ω′) = κνt (ω, ω
′), for all (ω′, t) ∈ Ω′ × R+, whenever ω /∈ Ñ .

Moreover, for ω /∈ Ñ , (κν
ω

t )t≥0 is a martingale with respect to P′ and Fµ. We claim that there

exists a unique probability measure Pνω on (Ω′,Fµ
∞) such that Pνω(dω′) = κν

ω

t (ω′)P′(dω′) on each

σ-algebra Fµ
t and, by the Girsanov theorem, the Fµ-compensator of µ under Pνω is given by the

right-hand side of (4.4).

The verification of the claim is a standard argument: using the boundedness of ν one first

verifies that

κν
ω

t∧Tn
(ω′) ≤ an e

b Tn(ω′)

for some constants an, b, which implies that (κνt∧Tn
)t≥0 is a uniformly integrable martingale with

respect to P′ and Fµ. Then the probabilities Pνω
n defined on Fµ

Tn
setting Pνω

n (dω′) = κν
ω

Tn
(ω′)P′(dω′)

satisfy the compatibility condition: Pνω
n+1 = Pνω

n on Fµ
Tn

for every n. Arguing as in Theorem 3.6 in

[18], by the Kolmogorov extension theorem there exists a unique probability Pνω on (Ω′,Fµ
∞) such

that Pνω = Pνω
n on each Fµ

Tn
, and Pνω has the required properties.

We can now state the following key result (Lemma 4.3) from which the required conclusion of

this subsection follows readily (see Proposition 4.1). Recall that (Ω′,F ′,P′) denotes the canonical

probability space constructed above.

Lemma 4.3 Given ν ∈ Vinf > 0, there exist a sequence (T ν
n , A

ν
n)n≥1 on (Ω̄, F̄ , P̄) and a P-null set

N ∈ F , with Ñ ⊂ N (Ñ is the set appearing in Lemma 4.2-(ii)), such that:

(i) for every n ≥ 1, (T ν
n , A

ν
n) takes values in (0,∞) ×A and T ν

n < T ν
n+1;

(ii) for every n ≥ 1, T ν
n is an FW,µ′

∞-stopping time and Aν
n is F

W,µ′
∞

T ν
n

-measurable;

(iii) limn→∞ T ν
n = ∞;
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(iv) for every ω /∈ N , we have

LP′

(

(T ν
n (ω, ·), A

ν
n(ω, ·))n≥1

)

= LPνω

(

(Tn, An)n≥1

)

.

Finally, let ᾱν
t = a01[0,T ν

1 ) +
∑∞

n=1A
ν
n1[T ν

n ,T ν
n+1)

(t) be the step process associated with (T ν
n , A

ν
n)n≥1.

Then, ᾱν ∈ AW,µ′
and LP′(ᾱν(ω, ·)) = LPνω (I), ω /∈ N .

Proof. Suppose that we have already constructed a multivariate point process (T ν
n , A

ν
n)n≥1 sat-

isfying points (i)-(ii)-(iii)-(iv) of the Theorem. Then, by (ii) it follows that ᾱν is càdlàg and

FW,µ′
∞-adapted, hence progressive. Moreover, by (iii), for every (ω̄, t) ∈ Ω̄ × [0, T ] the series

∑∞
n=1A

ν
n(ω̄)1[T ν

n (ω̄),T ν
n+1)

(t) is a finite sum, and thus ᾱν ∈ AW,µ′
. Furthermore, by (iv) we see

that LP′(ᾱν(ω, ·)) = LPνω (I), ω /∈ N .

Let us now construct (T ν
n , A

ν
n)n≥1 satisfying points (i)-(ii)-(iii)-(iv). Fix ν ∈ Vinf > 0 and let

Ñ ∈ F be as in Lemma 4.2. In particular, recall that formula (4.4) holds for some maps ν(n),

n ≥ 0, satisfying 0 < inf ν(n) ≤ sup ν(n) ≤Mν , for some constant Mν > 0, independent of n. Next

recall the construction of the map π : R → A and the measure λ′ . Accordingly, we split the rest

of the proof into two cases.

Case I: Ac = ∅, so that A = Anc is uncountable. In this case π : R → A is a Borel isomorphism,

se to shorten notation we identify A with R and use the notations A, λ, An, µ, F
W,µ∞ = (FW,µ∞

t )t≥0

instead of R, λ′, Rn, µ̄, F
W,µ′

∞ = (F
W,µ′

∞
t )t≥0. Since we are treating the case Ac = ∅, we have

λ({a}) = 0 for every a ∈ A. We construct by induction on n ≥ 1 a sequence (T ν
n , A

ν
n)n≥1 and

a P-null set N ∈ F , with Ñ ⊂ N , such that (T ν
n , A

ν
n)n≥1 satisfies properties (i) and (ii) of the

Theorem, and also the following properties:

(iii)’ for every n ≥ 1, we have T ν
n ≥ Tn/M

ν ;

(iv)’ for every n ≥ 1 and ω /∈ N , we have

LP′(T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·)) = LPνω (T1, A1, . . . , Tn, An). (4.5)

Notice that (iv)’ is equivalent to (iv). Moreover, since limn→∞ Tn = ∞, we see that (iii)’ implies

property (iii).

Step 1: the case n = 1. Define

θ
(1)
t (ω) :=

1

λ(A)

∫ t

0

∫

A
ν(0)s (ω, a)λ(da) ds. (4.6)

Since 0 < inf ν(0) ≤ sup ν(0) ≤Mν , we see that, for every ω ∈ Ω, the map t 7→ θ
(1)
t (ω) is continuous,

strictly increasing, θ
(1)
0 (ω) = 0, θ

(1)
t (ω) ≤ Mνt, and θ

(1)
t (ω) ր ∞ as t goes to infinity. Then there

exists a unique T ν
1 : Ω̄ → R+ such that

θ
(1)
T ν
1 (ω̄)(ω) = T1(ω

′).

Notice that T ν
1 ≥ T1/M

ν
1 . Moreover, since T1 > 0, we also have T ν

1 > 0. Let ĒT1 := {(ω̄, t) ∈

Ω̄ × R+ : θ
(1)
t (ω) = T1(ω

′)}. Since the process (ω̄, t) 7→ (θ
(1)
t (ω), T1(ω

′)) is FW,µ∞-adapted and

continuous, ĒT1 is an FW,µ∞-optional set (in fact, predictable). Since T ν
1 (ω̄) = inf{t ∈ R+ : (ω̄, t) ∈

ĒT1} is the début of ĒT1 , from Theorem 1.14 of [19] it follows that T ν
1 is an FW,µ∞-stopping time.
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In particular, T ν
1 is F̄ -measurable, therefore there exists a P-null set NT ν

1
∈ F such that T ν

1 (ω, ·) is

F ′-measurable, whenever ω /∈ NT ν
1
.

Now define

Fb := P′(A1 ≤ b) =
λ((−∞, b])

λ(A)
, F

(1)
b (ω̄) :=

∫ b
−∞ ν

(0)
T ν
1 (ω̄)(ω, a)λ(da)

∫ +∞
−∞ ν

(0)
T ν
1 (ω̄)(ω, a)λ(da)

.

Since inf ν(0) > 0 and λ({a}) = 0 for any a ∈ A, we see that, for every ω̄ ∈ Ω̄, the map b 7→ F
(1)
b (ω̄)

is continuous, strictly increasing, valued in (0, 1), and limb→−∞ F
(1)
b (ω̄) = 0, limb→+∞ F

(1)
b (ω̄) = 1.

Then, there exists a unique Aν
1 : Ω̄ → R such that

F
(1)
Aν

1 (ω̄)
(ω̄) = FA1(ω′).

We note that the process

(ω̄, t) 7→

∫ b
−∞ ν

(0)
t (ω, a)λ(da)

∫ +∞
−∞ ν

(0)
t (ω, a)λ(da)

is predictable with respect to FW , hence it is also FW,µ∞-progressive. Substituting t with T ν
1 (ω̄) we

conclude that F
(1)
b is (FW,µ∞

T ν
1

)-measurable. Since A1 is clearly F ′-measurable and F ′ ⊂ FW,µ∞

0 ⊂

FW,µ∞

T ν
1

, A1 is also (FW,µ∞

T ν
1

)-measurable. Recalling the continuity of b 7→ F
(1)
b (ω̄) it is easy to

conclude that Aν
1 is (FW,µ∞

T ν
1

)-measurable. This implies that Aν
1∨a is also FW,µ∞

T ν
1

-measurable. From

the arbitrariness of a, we deduce that Aν
1 is FW,µ∞

T ν
1

-measurable. In particular, Aν
1 is F̄ -measurable,

therefore there exists a P-null set NAν
1
∈ F such that Aν

1(ω, ·) is F
′-measurable, whenever ω /∈ NAν

1
.

In order to conclude the proof of the case n = 1, let us prove that (4.5) holds for n = 1, whenever

ω /∈ N1 := Ñ ∪ NT ν
1
∪ NAν

1
. We begin recalling that, for every ω /∈ Ñ , the Fµ-compensator of µ

under Pνω is given by the right-hand side of (4.4), so that in particular we have

Pνω(T1 > t) = exp

(

−

∫ t

0

∫

A
ν(0)s (ω, a)λ(da) ds

)

= exp
(

− λ(A)θ
(1)
t (ω)

)

.

Notice that

P′
(

T ν
1 (ω, ·) > t

)

= P′
(

θ
(1)
T ν
1 (ω,·)(ω) > θ

(1)
t (ω)

)

= P′
(

T1 > θ
(1)
t (ω)

)

= exp
(

− λ(A)θ
(1)
t (ω)

)

,

for every ω /∈ NT ν
1
, where for the last equality we used the formula P′(T1 > t) = exp(−λ(A)t).

Therefore LP′(T ν
1 (ω, ·)) = LPνω (T1), for every ω /∈ Ñ ∪NT ν

1
. Now, recall that, for every ω /∈ Ñ , we

have, P′-a.s.,

Pνω
(

A1 ≤ b
∣

∣ σ(T1)
)

=

∫ b
−∞ ν

(0)
T1

(ω, a)λ(da)
∫ +∞
−∞ ν

(0)
T1

(ω, a)λ(da)
.

On the other hand, for every ω /∈ NT ν
1
∪NAν

1
, P′-a.s.,

P′
(

Aν
1(ω, ·) ≤ b

∣

∣ σ(T ν
1 (ω, ·))

)

= P′
(

F
(1)
Aν

1 (ω,·)
(ω, ·) ≤ F

(1)
b (ω, ·)

∣

∣ σ(T ν
1 (ω, ·))

)

= P′
(

FA1 ≤ F
(1)
b (ω, ·)

∣

∣ σ(T ν
1 (ω, ·))

)

.
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Since A1 is independent of T1 under P′ and T ν
1 (ω, ·) is σ(T1)-measurable, it follows that A1 is also

independent of T ν
1 (ω, ·). Moreover, by definition we see that F

(1)
b (ω, ·) is σ(T ν

1 (ω, ·))-measurable.

Therefore, for every ω /∈ NT ν
1
∪NAν

1
, we have, P′-a.s.,

P′
(

FA1 ≤ F
(1)
b (ω, ·)

∣

∣ σ(T ν
1 (ω, ·))

)

= P′
(

FA1 ≤ a
)∣

∣

a=F
(1)
b

(ω,·)
= F

(1)
b (ω, ·),

where we used the fact that FA1 is uniformly distributed in (0, 1) under P′. As a consequence, recall-

ing that LP′(T ν
1 (ω, ·)) = LPνω (T1), for every ω /∈ Ñ ∪NT ν

1
, we deduce that LP′(T ν

1 (ω, ·), A
ν
1(ω, ·)) =

LPνω (T1, A1), whenever ω /∈ N1. This concludes the proof of the base case n = 1.

Step 2: the inductive step. Fix n ≥ 1 and suppose we are given (T ν
1 , A

ν
1), . . . , (T

ν
n , A

ν
n) satisfying

points (i) and (ii) of the Theorem. Suppose also that (4.5) holds for the fixed n, whenever ω /∈ Nn,

for some P-null set Nn ∈ F in place of N , with Ñ ⊂ Nn.

Given θ(1) as in (4.6), we define recursively, for i = 1, . . . , n,

θ
(i+1)
t (ω̄) := θ

(i)
T ν
i (ω̄)∧t(ω̄) (4.7)

+
1

λ(A)

∫ T ν
i (ω̄)∨t

T ν
i (ω̄)

∫

A
ν(i)s

(

ω, (T ν
1 (ω̄), A

ν
1(ω̄)), . . . , (T

ν
i (ω̄), A

ν
i (ω̄)), a

)

λ(da) ds.

Since 0 < inf ν(i) ≤ sup ν(i) ≤ Mν , we see that, for every ω̄ ∈ Ω̄ and i = 1, . . . , n, the map

t 7→ θ
(i+1)
t (ω̄) is continuous, strictly increasing, θ

(i+1)
0 (ω̄) = 0, θ

(i+1)
t (ω) ≤Mνt, and θ

(i+1)
t (ω̄) ր ∞

as t goes to infinity. Then, there exists a unique T ν
n+1 : Ω̄ → R+ such that

θ
(n+1)
T ν
n+1(ω̄)

(ω̄) = Tn+1(ω
′).

Notice that T ν
n+1 ≥ Tn+1/M

ν . Moreover, since Tn+1 > Tn, we also have T ν
n+1 > T ν

n . Indeed,

arguing by contradiction, suppose that T ν
n+1(ω̄) ≤ T ν

n (ω̄) for some ω̄ ∈ Ω̄. Then

θ
(n)
T ν
n (ω̄)(ω̄) = Tn(ω

′) < Tn+1(ω
′) = θ

(n+1)
T ν
n+1(ω̄)

(ω̄) = θ
(n)
T ν
n+1(ω̄)

(ω̄),

where the last equality follows from (4.7). From the monotonicity of θ(n), we get T ν
n (ω̄) < T ν

n+1(ω̄),

which yields a contradiction.

Reasoning in the same way as for T ν
1 , since T ν

n+1 is the début of ĒTn+1 := {(ω̄, t) ∈ Ω̄ ×

R+ : θ
(n+1)
t (ω̄) = Tn+1(ω

′)}, it is an FW,µ∞-stopping time. In particular, T ν
n+1 is F̄ -measurable, so

that there exists a P-null set NT ν
n+1

∈ F such that T ν
n+1(ω, ·) is F

′-measurable, whenever ω /∈ NT ν
n+1

.

Now define Fb = P′(A1 ≤ b) = λ((−∞, b])/λ(A) as before and

F
(n+1)
b (ω̄) :=

∫ b
−∞ ν

(n)
T ν
n+1(ω̄)

(

ω, (T ν
1 (ω̄), A

ν
1(ω̄)), . . . , (T

ν
n (ω̄), A

ν
n(ω̄)), a

)

λ(da)
∫ +∞
−∞ ν

(n)
T ν
n+1(ω̄)

(

ω, (T ν
1 (ω̄), A1(ω̄)), . . . , (T ν

n (ω̄), A
ν
n(ω̄)), a

)

λ(da)
.

Since inf ν(n) > 0 and λ({a}) = 0 for any a ∈ A, we see that, for every ω̄ ∈ Ω̄, the map

b 7→ F
(n+1)
b (ω̄) is continuous, strictly increasing, valued in (0, 1), and limb→−∞ F

(n+1)
b (ω̄) = 0,

limb→+∞ F
(n+1)
b (ω̄) = 1. Then, proceeding along the same lines as for the construction of Aν

1 , we

see that there exists a unique FW,µ∞

T ν
n+1

-measurable map Aν
n+1 : Ω̄ → R such that

F
(n+1)
Aν

n+1(ω̄)
(ω̄) = FAn+1(ω′).
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In particular, Aν
n+1 is F̄ -measurable, therefore there exists a P-null set NAν

n+1
∈ F such that

Aν
n+1(ω, ·) is F

′-measurable, whenever ω /∈ NAν
n+1

.

In order to conclude the proof of the inductive step, let us prove that (4.5) holds for n + 1,

whenever ω /∈ Nn+1 := Nn∪NT ν
n+1

∪NAν
n+1

. Set Sn+1 = Tn+1−Tn and recall that, for every ω /∈ Ñ ,

the Fµ-compensator of µ under Pνω is given by the right-hand side of (4.4), so that in particular

we have, P′-a.s.,

Pνω
(

Sn+1 > t
∣

∣σ(T1, A1, . . . , Tn, An)
)

= exp

(

−

∫ Tn+t

Tn

∫

A
ν(n)s

(

ω, (T1, A1), . . . , (Tn, An), a
)

λ(da) ds

)

. (4.8)

Define Sν
n+1 := T ν

n+1 − T ν
n and observe that, whenever ω 6∈ Nn ∪NT ν

n+1
, P′-a.s.,

P′
(

Sν
n+1(ω, ·) > t

∣

∣ σ(T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·))

)

= P′
(

θ
(n+1)
T ν
n+1(ω,·)

(ω, ·) > θ
(n+1)
T ν
n (ω,·)+t(ω, ·)

∣

∣ σ(T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·))

)

= P′

(

Tn+1 >
1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫

A
ν(n)s

(

ω, T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·), a

)

λ(da) ds

+ θ
(n)
T ν
n (ω,·)(ω, ·)

∣

∣

∣

∣

σ(T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·))

)

= P′

(

Sn+1 >
1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫

A
ν(n)s

(

ω, . . . , a
)

λ(da) ds

∣

∣

∣

∣

σ(T ν
1 (ω, ·), . . . , A

ν
n(ω, ·))

)

.

Recall now that Sn+1 is independent of (T1, A1, . . . , Tn, An) under P
′, and note that, by construction,

(T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·)) is σ(T1, A1, . . . , Tn, An)-measurable. Therefore, Sn+1 is

also independent of (T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·)). As a consequence, for every ω 6∈

Nn ∪NT ν
n+1

, P′-a.s.,

P′

(

Sn+1 >
1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫

A
ν(n)s

(

ω, . . . , a
)

λ(da) ds

∣

∣

∣

∣

σ(T ν
1 (ω, ·), . . . , A

ν
n(ω, ·))

)

= P′(Sn+1 > r)
∣

∣

r= 1
λ(A)

∫ Tν
n (ω,·)+t

Tν
n (ω,·)

∫
A
ν
(n)
s (ω,...,a)λ(da) ds

= exp

(

−

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫

A
ν(n)s

(

ω, (T ν
1 (ω, ·), A

ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·)), a

)

λ(da) ds

)

,

where for the last equality we used the formula P′(Sn+1 > r) = exp(−λ(A)r). Comparing with

(4.8), we see that the conditional distribution of Sν
n+1 given T ν

1 (ω, ·), A
ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·)

under P′ is the same as the conditional distribution of Sn+1 given T1, A1, . . . , Tn, An under Pνω .

Together with the inductive assumption (4.5) this proves that

LP′(T ν
1 (ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·), T

ν
n+1(ω, ·)) = LPνω (T1, . . . , Tn, An, Tn+1), (4.9)

for every ω /∈ Nn ∪NT ν
n+1

. Now, recall that, for every ω /∈ Ñ , P′-a.s.,

Pνω
(

An+1 ≤ b
∣

∣ σ(T1, . . . , An, Tn+1)
)

=

∫ b
−∞ ν

(n)
Tn+1

(

ω, (T1, A1), . . . , (Tn, An), a
)

λ(da)
∫ +∞
−∞ ν

(n)
Tn+1

(

ω, (T1, A1), . . . , (Tn, An), a
)

λ(da)
. (4.10)
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On the other hand, for every ω 6∈ Nn+1, we have, P′-a.s.,

P′
(

Aν
n+1(ω, ·) ≤ b

∣

∣σ(T ν
1 (ω, ·), . . . , A

ν
n(ω, ·), T

ν
n+1(ω, ·))

)

= P′
(

F
(n+1)
Aν

n+1(ω,·)
(ω, ·) ≤ F

(n+1)
b (ω, ·)

∣

∣ σ(T ν
1 (ω, ·), . . . , A

ν
n(ω, ·), T

ν
n+1(ω, ·))

)

= P′
(

FAn+1 ≤ F
(n+1)
b (ω, ·)

∣

∣ σ(T ν
1 (ω, ·), . . . , A

ν
n(ω, ·), T

ν
n+1(ω, ·))

)

.

Since An+1 is independent of (T1, . . . , An, Tn+1) under P
′ and (T ν

1 (ω, ·), . . . , A
ν
n(ω, ·), T

ν
n+1(ω, ·)) is

σ(T1, . . . , An, Tn+1)-measurable, it follows that An+1 is also independent of (T ν
1 (ω, ·), . . . , A

ν
n(ω, ·),

T ν
n+1(ω, ·)). Moreover, by definition we see that F

(n+1)
b (ω, ·) is σ(T ν

1 (ω, ·), . . . , A
ν
n(ω, ·), T

ν
n+1(ω, ·))-

measurable. Therefore, for every ω /∈ Nn+1, we have, P′-a.s.,

P′
(

FAn+1 ≤ F
(n+1)
b (ω, ·)

∣

∣ σ(T ν
1 (ω, ·), . . . , A

ν
n(ω, ·), T

ν
n+1(ω, ·))

)

= P′
(

FAn+1 ≤ a
)∣

∣

a=F
(n+1)
b

(ω,·)
= F

(n+1)
b (ω, ·),

where we used the fact that FAn+1 is uniformly distributed in (0, 1) under P′. Comparing with (4.10),

we see that the conditional distribution of Aν
n+1 given T ν

1 (ω, ·), A
ν
1(ω, ·), . . . , T

ν
n (ω, ·), A

ν
n(ω, ·),

T ν
n+1(ω, ·) under P′ is the same as the conditional distribution of An+1 given T1, A1, . . . , Tn, An,

Tn+1 under Pνω . Therefore, by (4.9) we deduce that (4.5) holds for n + 1, whenever ω /∈ Nn+1,

which concludes the proof of the inductive step and also the proof of Case I.

Case II: Ac 6= ∅. Let π : R → A be the canonical projection (4.1) or (4.2) according whether

Anc = ∅ or Anc 6= ∅. The idea of the proof is to construct a random sequence with values in

(0,∞)×R using the Case I previously addressed, and obtain the required sequence (T ν
n , A

ν
n)n≥1 by

projecting the second component onto A. The detailed construction and proof is presented below

in the case Anc = ∅, the other one being simpler and entirely analogous.

Given ν ∈ Vinf > 0, define ν̄ = ν̄t(ω, ω
′, r) : Ω̄× R+ × R → (0,∞) by

ν̄t(ω, ω
′, r) := νt(ω, ω

′, π(r)).

By a monotone class argument we see that ν̄ is P(FW,µ′
)⊗B(R)-measurable. Then we can perform

the construction presented in step I, with R, λ′, ν̄, Rn, µ
′, FW,µ′

∞ = (F
W,µ′

∞
t )t≥0 instead of A, λ, ν,

An, µ, F
W,µ∞ = (FW,µ∞

t )t≥0, respectively. This way we obtain a P-null set N ∈ F and a sequence

(T̄ ν̄
n , R̄

ν̄
n)n≥1 with values in (0,∞) × R such that T̄ ν̄

n < T̄ ν̄
n+1 ր ∞, T̄ ν̄

n is an FW,µ̄∞-stopping time

and R̄ν̄
n is FW,µ̄∞

T̄ ν̄
n

-measurable, and

LP′

(

(T̄ ν̄
n (ω, ·), R̄

ν̄
n(ω, ·))n≥1

)

= LPν̄ω

(

(Tn, Rn)n≥1

)

(4.11)

for every ω /∈ N . We define the required sequence (T ν
n , A

ν
n)n≥1 setting

T ν
n := T̄ ν̄

n , Aν
n := π(R̄ν̄

n).

Clearly, conditions (i)-(ii)-(iii) of the Theorem hold true and, recalling the notation An = π(Rn),

from (4.11) it follows that

LP′

(

(T ν
n (ω, ·), A

ν
n(ω, ·))n≥1

)

= LPν̄ω

(

(Tn, An)n≥1

)

. (4.12)

Next note that, by the definition of ν̄,
∫

R

(1− ν̄t(r))λ
′(dr) =

∫

(0,∞)
(1− ν̄t(r))λ

′(dr) +
∑

j∈Ac

∫

Ij

(1− ν̄t(r))λ
′(dr)
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=

∫

Anc

(1− νt(s))λ(da) +
∑

j∈Ac

(1− νt(j))λ({j})

=

∫

A
(1− νs(a))λ(da)

and ν̄Tn(Rn) = νTn(π(Rn)) = νTn(An), so that

κν̄t = exp

(
∫ t

0

∫

R

(1− ν̄s(r))λ
′(dr) ds

)

∏

Tn≤t

ν̄Tn(Rn)

= exp

(
∫ t

0

∫

A
(1− νs(a))λ(da) ds

)

∏

Tn≤t

νTn(An)

= κνt .

Therefore we have, for ω /∈ N , on every σ-algebra Fµ
t ,

Pν̄ω(dω′) = κν̄t (ω, ω
′)P′(dω′) = κνt (ω, ω

′)P′(dω′) = Pνω(dω′)

and property (iv) of the Theorem follows from (4.12). The proof is finished. 2

We can now prove the main result of this subsection and conclude the proof of the inequality

υ
R
0 ≤ υ0.

Proposition 4.1 For every ν ∈ Vinf > 0 there exists ᾱν ∈ AW,µ′
such that

LPν (x0, B, I) = LP̄(x0, B, ᾱ
ν). (4.13)

In particular, V and W are standard Wiener processes, V,W, x0 are all independent under Pν, and

we have

LPν (X, I) = LP̄(X
ᾱν

, ᾱν), JR(ν) = J̄(ᾱν). (4.14)

Finally, υR
0 := supν∈V J

R(ν) ≤ supᾱ∈AW,µ′ J̄(ᾱ) = supα∈AW J(α) =: υ0.

Proof. Suppose that (4.13) holds. Then, from equation (2.5) and Assumption (A1) it is well-

known that the first equality in (4.14) holds as well, and this implies the second equality. From

the arbitrariness of ν ∈ Vinf > 0, we deduce that supν∈Vinf > 0
JR(ν) ≤ supᾱ∈AW,µ′ J̄(ᾱ). Since

supν∈Vinf > 0
JR(ν) = supν∈V J

R(ν) by (3.9), we conclude that supν∈V J
R(ν) ≤ supᾱ∈AW,µ′ J̄(ᾱ) =

supα∈AW J(α), where the last equality follows from Lemma 4.1.

Let us now prove (4.13). Fix ν ∈ Vinf > 0 and consider the process ᾱν given by Lemma 4.3. In

order to prove (4.13), we have to show that

Ē[κνTχ(x0)ψ(B)φ(I)] = Ē[χ(x0)ψ(B)φ(ᾱν)], (4.15)

for any χ ∈ Bb(R
n) (the space of bounded Borel measurable real functions on Rn), for any ψ ∈

Bb(Cm+d) (the space of bounded Borel measurable real functions on Cm+d, which denotes the space

of continuous paths from [0, T ] to Rm+d endowed with the supremum norm) and any φ ∈ Bb(DA)

(the space of bounded Borel measurable real functions on DA, which denotes the space of càdlàg

paths from [0, T ] to A endowed with the supremum norm). By the Fubini theorem, (4.15) can be

rewritten as
∫

Ω
χ(x0(ω))ψ(B(ω))

(
∫

Ω′

κνT (ω, ω
′)φ(I(ω′))P′(dω′)

)

P(dω)
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=

∫

Ω
χ(x0(ω))ψ(B(ω))

(
∫

Ω′

φ(ᾱν(ω, ω′))P′(dω′)

)

P(dω).

Let Ñ ∈ F be as in Lemma 4.2. Then we have to prove that E′[κνT (ω, ·)φ(I)] = E′[φ(ᾱν(ω, ·))],

whenever ω /∈ Ñ , or, equivalently by definition of Pνω :

Eνω [φ(I)] = E′[φ(ᾱν(ω, ·))], whenever ω /∈ Ñ .

This is a direct consequence of the last statement of Lemma 4.3. 2

4.2 Proof of the inequality υ0 ≤ υ
R
0

In this proof we borrow some constructions from [13] Proposition 4.1, but we need to obtain

improved results and we simplify considerably some arguments.

Suppose we are given a setting (Ω,F ,P,F, V,W, x0) for the optimal control problem with partial

observation, satisfying the conditions in Section 2.2, and consider the controlled equation (2.5) and

the gain (2.6). We fix an FW -progressive process α with values in A. We will show how to construct

a sequence of settings (Ω̂, F̂ , P̂k, V̂ , Ŵ , µ̂k, x̂0)k for the randomized control problem of Section 3.1,

and a sequence (ν̂k)k of corresponding admissible controls (both sequences depending on α), such

that for the corresponding gains, defined by (3.7), we have:

JR(ν̂k) → J(α), as k → ∞. (4.16)

Admitting for a moment that this has been done, the proof is easily concluded by the following

arguments. By (4.16), we can find, for any ε > 0, some k such that JR(ν̂k) > J(α) − ε. Since

JR(ν̂k) is a gain of a randomized control problem, it can not exceed the value υR
0 defined in (3.8)

which, by Proposition 3.1, does not depend on ǫ nor on α. It follows that

υ
R
0 > J(α) − ǫ

and by the arbitrariness of ǫ and α, we obtain the required inequality υR
0 ≥ υ0.

In order to construct the sequences (Ω̂, F̂ , P̂k, V̂ , Ŵ , µ̂k, x̂0)k and (ν̂k)k satisfying (4.16), we

apply Proposition A.1, in the Appendix below, to the probability space (Ω,F ,P) of the partially

observed control problem and to the filtration G := FW . In that Proposition a suitable probability

space (Ω′,F ′,P′) is introduced and the product space (Ω̂, F̂ ,Q) is constructed:

Ω̂ = Ω×Ω′, F̂ = F ⊗ F ′, Q = P⊗ P′.

Then the random variable x0 and the processes α and B = (V,W ) are extended to Ω̂ in a natural

way. We denote x̂0 and α̂ the extensions of x0 and α. The extension of B, denoted B̂ = (V̂ , Ŵ ),

remains a Wiener process underQ. The filtration FW can also be canonically extended to a filtration

in (Ω̂, F̂), which coincides with the filtration FŴ generated by Ŵ .

Following [24], for any pair α1, α2 : Ω̂ × [0, T ] → A of measurable processes in (Ω̂, F̂ ,Q) we

define a distance ρ̃(α1, α2) setting

ρ̃(α1, α2) = EQ
[

∫ T

0
ρ(α1

t , α
2
t )dt

]

, (4.17)

where EQ denotes the expectation under Q, and ρ is a metric in A satisfying ρ < 1. By Proposition

A.1, for any integer k ≥ 1 there exists a marked point process (Ŝk
n, η̂

k
n)n≥1 defined in (Ω̂, F̂ ,Q)

satisfying the following conditions.
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1. Setting Ŝk
0 = 0, η̂k0 = a0, Î

k
t =

∑

n≥0 η̂
k
n1[Ŝk

n,Ŝ
k
n+1)

(t), we have ρ̃(Îk, α̂) < 1/k.

2. Denote µ̂k =
∑

n≥1 δ(Ŝk
n,η̂

k
n)

the random measure associated to (Ŝk
n, η̂

k
n)n≥1 and Fµ̂k = (F µ̂k

t )t≥0

the natural filtration of µ̂k; then the compensator of µ̂k under Q with respect to the filtration

(FŴ
t ∨F µ̂k

t )t≥0 is absolutely continuous with respect to λ(da) dt and it can be written in the

form

ν̂kt (ω̂, a)λ(da) dt

for some nonnegative P(FŴ ,µ̂)⊗ B(A)-measurable function ν̂k satisfying infΩ̂×[0,T ]×A ν̂
k > 0

and supΩ̂×[0,T ]×A ν̂
k <∞.

We note that µ̂k (and so also Îk and ν̂k) depend on α as well, but we do not make it explicit in the

notation. We also observe that ν̂k can be taken identically equal to 1 on Ω̂× (T,∞)×A, without

loss of generality. Let us now consider the completion of the probability space (Ω̂, F̂ ,Q), that will

be denoted by the same symbol for simplicity of notation, and let N denote the family of Q-null sets

of the completion. Then the filtration (FŴ
t ∨ F µ̂k

t ∨ N )t≥0 coincides with the filtration previously

denoted by FŴ ,µ̂k = (FŴ ,µ̂k
t )t≥0 (compare with formula (3.3) in section 3.1). It is easy to see that

ν̂kt (ω̂, a)λ(da) dt is the compensator of µ̂k with respect to FŴ ,µ̂k and the extended probability Q as

well.

Using the Girsanov theorem for point processes (see e.g. [18]) we next construct an equivalent

probability under which µ̂k becomes a Poisson random measure with intensity λ. Since ν̂k is

a strictly positive P(FŴ ,µ̂k) ⊗ B(A)-measurable random field with bounded inverse, the Doléans

exponential process

Mk
t := exp

(

∫ t

0

∫

A
(1− ν̂ks (a)

−1) ν̂kt (a)λ(da) ds
)

∏

Ŝk
n≤t

ν̂k
Ŝk
n
(η̂kn)

−1, t ∈ [0, T ], (4.18)

is a strictly positive martingale (with respect to FŴ ,µ̂k and Q), and we can define an equivalent

probability P̂k on the space (Ω̂, F̂) setting P̂k(dω̂) = Mk
T (ω̂)Q(dω̂). The expectation under P̂k

will be denoted Êk. By the Girsanov theorem, the restriction of µ̂k to (0, T ] × A has (P̂k,F
Ŵ ,µ̂k)-

compensator λ(da) dt, so that in particular it is a Poisson random measure. It can also be proved

by standard arguments (see e.g. [13], page 2155, for detailed verifications in a similar framework)

that B̂ is a (P̂k,F
Ŵ ,µ̂k)-Wiener process and that B̂ and µ̂k are independent under P̂k. We have thus

constructed a setting (Ω̂, F̂ , P̂k, V̂ , Ŵ , µ̂k, x̂0) for a randomized control problem as in Section 3.1.

Since ν̂k is a bounded, strictly positive and P(FW,µ̂) ⊗ B(A)-measurable random field it belongs

to the class V̂k of admissible controls for the randomized control problem and we now proceed to

evaluating its gain JR(ν̂k) and to comparing it with J(α). Our aim is to show that, as a consequence

of the fact that ρ̃(Îk, α̂) < 1/k, we have JR(ν̂k) → J(α) as k → ∞.

We introduce the Doléans exponential process κν̂
k
corresponding to ν̂k (compare formula (3.5)):

κν̂
k

t = exp

(
∫ t

0

∫

A
(1− ν̂ks (a))λ(da) ds

)

∏

Ŝk
n≤t

νk
Ŝk
n
(η̂kn), t ∈ [0, T ], (4.19)

we define the probability dP̂ν̂k

k = κν̂
k

T dP̂k and we obtain the gain

JR(ν̂) = Êν̂k
[
∫ T

0
ft(X̂

k, Îk) dt+ g(X̂k)

]

,
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where X̂k is the solution to the equation

dX̂k
t = bt(X̂

k, Îk) dt+ σt(X̂
k, Îk) dB̂t, X̂k

0 = x̂0. (4.20)

However comparing (4.18) and (4.19) shows that κν̂
k

T Mk
T ≡ 1, so that the Girsanov transformation

P̂k 7→ P̂ν̂k

k is the inverse to the transformation Q 7→ P̂k made above, and changes back the probability

P̂k into Q considered above. Therefore we have P̂ν̂k

k = Q and also

JR(ν̂k) = EQ

[
∫ T

0
ft(X̂

k, Îk) dt+ g(X̂k)

]

. (4.21)

On the other hand, the gain J(α) of the initial control problem with partial observation was defined

in (2.6) in terms of the solution Xα to the controlled equation (2.5). Denoting X̂α the extension

of Xα to Ω̂, it is easy to verify that it is the solution to

dX̂α
t = bt(X̂

α, α̂) dt+ σt(X̂
α, α̂) dB̂t, X̂α

0 = x̂0, (4.22)

and that

J(α) = EQ

[
∫ T

0
ft(X̂

α, α̂) dt+ g(X̂α)

]

. (4.23)

Equations (4.22) and (4.20) are considered in the same probability space (Ω̂, F̂ ,Q). In (4.20) we

find a solution adapted to the filtration Gk := Fx̂0,B̂,µ̂k (defined as in (3.3)) and in (4.22) we find a

solution adapted to the filtration G0 := Fx̂0,B̂ generated by x̂0 and B̂ (since α was FW -progressive

and so α̂ is progressive with respect to FŴ ⊂ Fx̂0,B̂).

In order to conclude, we need the following stability lemma, where the continuity condition

(A1)-(iii) plays a role.

Lemma 4.4 Given a probability space (Ω̂, F̂ ,Q) with filtrations Gk = (Gk
t )t≥0 (k ≥ 0) consider the

equations

dY k
t = bt(Y

k, γk) dt+ σt(Y
k, γk) dβt, Ŷ k

0 = y0,

where β is a Wiener process with respect to each Gk, EQ|y0|
p < ∞, y0 is Gk

t -measurable and γk is

Gk-progressive for every k. If ρ̃(γk, γ0) → 0 as k → ∞, then

EQ sup
t∈[0,T ]

|Y k
t − Y 0

t |
p → 0, EQ

[

∫ T

0
ft(Y

k, γk) dt+ g(Y k)
]

→ EQ
[

∫ T

0
ft(Y

0, γ0) dt+ g(Y 0)
]

.

Proof. This stability result for control problems was first proved in [24] in the standard diffusion

case. The extension to the non-Markovian case presented in [13], Lemma 4.1 and Remark 4.1, also

holds in our case with the same proof, using the continuity assumption (A1)-(iii) and the Lipschitz

and growth conditions (2.2)-(2.4). 2

Applying the Lemma to β = B̂, Y k = X̂k, γk = Îk (for k ≥ 1) and Y 0 = X̂α, γ0 = α̂, and

recalling that ρ̃(Îk, α̂) < 1/k → 0 we conclude by (4.21), (4.23) that JR(ν̂k) → J(α) as k → ∞.

Therefore relation (4.16) is satisfied for this choice of the sequence (ν̂k)k and for the corresponding

settings (Ω̂, F̂ , P̂k, V̂ , Ŵ , µ̂k, x̂0)k. This ends the proof of the inequality υ0 ≤ υ
R
0 .
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5 The randomized equation

In this section, we show how the randomized formulation of the control problem leads to a random-

ized equation in terms of a backward SDE. We choose a setting for the randomized control problem

(3.8) as in Remark 3.2, i.e. a product extension (Ω̄, F̄ , P̄, V,W, µ, x0) of the setting (Ω,F ,P, V,W, x0)

for the initial control problem (2.7). In view of Proposition 3.1, entirely analogous results hold true

in any setting (Ω̂, F̂ , P̂, V̂ , Ŵ , µ̂, x̂0) for the randomized control problem as described in section 3.1.

5.1 The separated randomized control problem

We first consider the (path-dependent) filtering of the randomized process X solution to (3.2),

which consists in the process of conditional distributions ρt of X·∧t given FW,µ
t . More precisely, let

P(Cn) be the space of probability measures on Cn and let Bb(Cn) denote the space of bounded

Borel measurable real functions on Cn. We define ρ = (ρt)0≤t≤T as an FW,µ-optional process valued

in P(Cn) satisfying, for every ϕ ∈ Bb(Cn), (we use the notation ρt(ϕ) =
∫

Cn
ϕ(x) ρt(dx))

ρt(ϕ) = Ē
[

ϕ(X·∧t) | F
W,µ
t

]

, t ∈ [0, T ], P̄-a.s. (5.1)

The process t 7→ Ē[ϕ(X·∧t) | F
W,µ
t ] is understood as an optional projection. The existence of such

a process ρ follows for example from Theorem 2.24 in [1]. While (5.1) is defined for bounded ϕ,

since ρt is constructed as a P(Cn)-valued process, relation (5.1) holds for unbounded ϕ once the

conditional expectation is well-defined, i.e. ρt(|ϕ|) < ∞ for all t ∈ [0, T ], P̄-a.s. (see e.g. Remark

2.27 in [1]).

We can now express the randomized gain functional in terms of the FW,µ-optional processes ρ

and I.

Lemma 5.1 For any ν ∈ V, we have

JR(ν) = Eν
[

∫ T

0
ρt(ft(·, I)) dt + ρT (g)

]

and, more generally,

Eν
[

∫ T

t
fs(X, I) ds + g(X)

∣

∣FW,µ
t

]

= Eν
[

∫ T

t
ρs(fs(·, I)) ds + ρT (g)

∣

∣FW,µ
t

]

, (5.2)

for all 0 ≤ t ≤ T .

Proof. The result follows from the Bayes formula and the (P̄,FW,µ)-martingale property of the

density process κν . 2

The above Lemma 5.1 together with Theorem 3.1 proves that the randomized control problem,

and thus the primal control problem under partial observation, can be written in a separated form

involving FW,µ-optional state processes:

υ0 = sup
ν∈V

Eν
[

∫ T

0
ρt(ft(·, I))dt + ρT (g)

]

. (5.3)
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5.2 BSDE representation

The purpose of this paragraph is to show that the separated randomized control problem, described

by the right-hand side of (5.3), admits a dual representation in terms of a constrained backward

SDE, which then characterizes both the primal control problem and the randomized control problem

(as well as the separated randomized control problem). We shall refer to it as the randomized

equation.

On the space (Ω̄, F̄ , P̄) equipped with the filtration FW,µ, let us consider the following con-

strained BSDE on the time interval [0, T ]:











Yt = ρT (g) +

∫ T

t
ρs(fs(·, I))ds +KT −Kt −

∫ T

t
Zs dWs −

∫ T

t

∫

A
Us(a)µ(ds da),

Ut(a) ≤ 0.

(5.4)

We look for a (minimal) solution to (5.4) in the sense of the following definition.

Definition 5.1 A quadruple (Yt, Zt, Ut(a),Kt) (t ∈ [0, T ], a ∈ A) is called a solution to the BSDE

(5.4) if

1. Y ∈ S2(FW,µ), the set of real-valued càdlàg FW,µ-adapted processes satisfying ‖Y ‖2S2 :=

Ē[sup0≤t≤T |Yt|
2] < ∞;

2. Z ∈ L2
W (FW,µ), the set of FW,µ-predictable processes with values in Rd satisfying ‖Z‖2

L2
W

:=

Ē
[ ∫ T

0 |Zt|
2dt
]

<∞;

3. U ∈ L2
µ̃(F

W,µ), the set of real-valued P(FW,µ)⊗ B(A)-measurable processes satisfying ‖U‖2
L2
µ̃

:= Ē
[ ∫ T

0

∫

A |Ut(a)|
2λ(da)dt

]

< ∞;

4. K ∈ K2(FW,µ), the subset of S2(FW,µ) consisting of FW,µ-predictable nondecreasing process

with K0 = 0;

5. P̄-a.s. the equality in (5.4) holds for every t ∈ [0, T ] and the constraint Ut(a) ≤ 0 is understood

to hold P̄(dω̄)λ(da)dt-almost everywhere.

A minimal solution (Y,Z,U,K) is a solution to (5.4) such that for any other solution (Y ′, Z ′,

U ′,K ′), we have P̄-a.s., Yt ≤ Y ′
t for all t ∈ [0, T ].

We now state the main result of this section.

Theorem 5.1 There exists a unique minimal solution (Y,Z,U,K) ∈ S2(FW,µ) × L2
W (FW,µ) ×

L2
µ̃(F

W,µ) × K2(FW,µ) to the randomized equation (5.4). Moreover, we have Y0 = supν∈V J
R(ν),

and, more generally,

Yt = ess sup
ν∈V

Eν
[

∫ T

t
ρs(fs(·, I)) ds + ρT (g)

∣

∣FW,µ
t

]

. (5.5)

Remark 5.1 Combining Theorems 3.1 and 5.1 we deduce the BSDE representation for the primal

problem

Y0 = sup
α∈AW

J(α).
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We refer sometimes to Y0 = supν∈V J
R(ν) as duality relation, since Y0 coincides with the infimum

inf{Y ′
0 : (Y

′, Z ′, U ′,K ′) ∈ S2(FW,µ)× L2
W (FW,µ)× Lµ̃(F

W,µ)×K2(FW,µ) solution to (5.4)}. 2

Proof (of Theorem 5.1) Let us introduce for every n ∈ N the following penalized BSDE on [0, T ]:

Y n
t = ρT (g) +

∫ T

t
ρs(fs(·, I)) ds +Kn

T −Kn
t −

∫ T

t
Zn
s dWs −

∫ T

t

∫

A
Un
s (a)µ(ds da), (5.6)

where

Kn
t = n

∫ t

0

∫

A

(

Un
s (a)

)+
λ(da) ds.

Set ξ := ρT (g) and Ft := ρt(ft(·, I)). By (2.4) and (3.4) (recall that p in (3.4) is greater than or

equal to 2 r in (2.4)), we see that

Ē|ξ|2 < ∞, Ē

[
∫ T

0
|Ft|

2 dt

]

< ∞.

Then, from Lemma 2.4 in [30] it follows that, for every n ∈ N, there exists a unique solution

(Y n, Zn, Un) ∈ S2(FW,µ)× L2
W (FW,µ)× L2

µ̃(F
W,µ) to the above penalized BSDE.

Now, proceeding along the same lines as in the proof of Lemma 4.8 in [13], we obtain the formula

Y n
t = ess sup

ν∈Vn

Eν

[
∫ T

t
ρs(fs(·, I)) ds + ρT (g)

∣

∣

∣

∣

FW,µ
t

]

, (5.7)

where Vn = {ν ∈ V : ν takes values in (0, n]}. By (5.2), together with estimates (2.4) and (3.6), we

deduce that

sup
n
Y n
t < ∞, for all 0 ≤ t ≤ T. (5.8)

Notice that equation (5.4) can be written as follows:



































Yt = ρT (g) +

∫ T

t

(

ρs(fs(·, I)) −

∫

A
Us(a)λ(da)

)

ds+KT −Kt

−

∫ T

t
Zs dWs −

∫ T

t

∫

A
Us(a) µ̃(ds da),

Ut(a) ≤ 0.

(5.9)

Then, we see that the above equation is a particular case of a backward stochastic differential equa-

tion studied in a general non-Markovian framework in [23]. In particular, existence and uniqueness

of the minimal solution (Y,Z,U,K) to equation (5.9) (or, equivalently, to equation (5.4)) follow

from Theorem 2.1 in [23]. Indeed, Assumption (H0) in [23] is clearly satisfied. Concerning As-

sumption (H1), this is only used in Lemma 2.2 of [23] to prove that the sequence (Y n)n satisfies

(5.8), a property that in our setting follows directly from (2.4) and (3.6).

Finally, from Theorem 2.1 in [23] we also have that Y n
t (ω̄) converges increasingly to Yt(ω̄) as

n→ ∞, P̄(dω̄)-a.s. Since V = ∪nVn, letting n→ ∞ in (5.7) we obtain (5.5).

Remark 5.2 Notice that the following generalization of formula (5.5) holds:

Yt = ess sup
ν∈V

Eν

[
∫ s

t
ρr(fr(·, I)) dr + Ys

∣

∣

∣

∣

FW,µ
t

]

, (5.10)
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for all 0 ≤ t ≤ s ≤ T . Indeed, for every n, considering the penalized BSDE (5.6) on [0, s] with

terminal condition Y n
s , and proceeding as in the proof of formula (5.7), we obtain

Y n
t = ess sup

ν∈Vn

Eν

[
∫ s

t
ρr(fr(·, I)) dr + Y n

s

∣

∣

∣

∣

FW,µ
t

]

. (5.11)

Recalling that Vn ⊂ V and Y n ≤ Y , we get Y n
t ≤ ess sup

ν∈V
Eν [
∫ s
t ρr(fr(·, I)) dr + Ys | F

W,µ
t ]. Since

Y n converges increasingly to Y , we end up with

Yt ≤ ess sup
ν∈V

Eν

[
∫ s

t
ρr(fr(·, I)) dr + Ys

∣

∣

∣

∣

FW,µ
t

]

. (5.12)

To prove the reverse inequality, fix m ∈ N and notice that from (5.11) we have, for every n ≥ m,

Yt ≥ ess sup
ν∈Vn

Eν

[
∫ s

t
ρr(fr(·, I)) dr + Y n

s

∣

∣

∣

∣

FW,µ
t

]

≥ ess sup
ν∈Vn

Eν

[
∫ s

t
ρr(fr(·, I)) dr + Y m

s

∣

∣

∣

∣

FW,µ
t

]

,

using that Yt ≥ Y n
t and Y n

s ≥ Y m
s for every n ≥ m. Letting n → ∞ in the above right-hand side,

we obtain Yt ≥ ess sup
ν∈V

Eν [
∫ s
t ρr(fr(·, I)) dr + Y m

s | FW,µ
t ], for all m ∈ N. In particular

Yt ≥ Eν

[
∫ s

t
ρr(fr(·, I)) dr + Y m

s

∣

∣

∣

∣

FW,µ
t

]

, for all ν ∈ V, m ∈ N.

Letting m → ∞, and taking the essential supremum over V, we obtain the reverse inequality of

(5.12), from which formula (5.10) follows. Equation (5.10) relates the value function of the random-

ized control problem between two arbitrary dates, and is called randomized dynamic programming

principle. 2

5.3 Verification theorem

In this paragraph we present a verification theorem in the context of the randomization method,

expressed in terms of the randomized equation (5.4). Firstly, let us fix some notations. We denote

by D
P(Cn)

the set of càdlàg paths from [0, T ] to P(Cn) (the space of probability measures on Cn

endowed with the topology of weak convergence). We define the filtration (D
P(Cn)

t )t∈[0,T ], where

D
P(Cn)

t is the σ-algebra generated by the canonical coordinate mapsD
P(Cn)

→ P(Cn), ρ(·) 7→ ρ(s)

up to time t, namely

D
P(Cn)

t := σ{ρ(·) 7→ ρ(s) : s ∈ [0, t]},

and we denote Prog(D
P(Cn)

) the progressive σ-algebra on [0, T ]×D
P(Cn)

with respect to (D
P(Cn)

t ).

In this subsection, we suppose that ρ = (ρt)0≤t≤T stands for the càdlàg version of the (path-

dependent) filter of X·∧t given FW,µ
t , whose existence is guaranteed by Corollary 2.26 in [1] (notice

that (X·∧t)0≤t≤T is a Cn-valued process with continuous trajectories). We recall from Corollary

2.26 in [1] that in this case there exists a countable set Q ⊂ [0, T ) such that

ρt(ϕ) = Ē
[

ϕ(X·∧t) | F
W,µ
t

]

,

for all t ∈ [0, T ] \Q and ϕ ∈ Bb(Cn).
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Theorem 5.2 Let (Y,Z,U,K) be the minimal solution to the randomized equation (5.4).

(1) Suppose that Ut(a) = 0, P̄(dω̄)λ(da)dt-a.e., and Kt =
∫ t
0 ρs(ks(·, I)) ds, for some k : [0, T ] ×

Cn ×MA → [0,∞) satisfying:

(i) k is Prog(Cn ×MA)-measurable.

(ii) k satisfies the following sequential continuity condition analogous to (A1)-(iii): whenever

xk, x ∈ Cn, αk, α ∈ MA, ‖xk − x‖∞ → 0, αk(t) → α(t) for dt-a.e. t ∈ [0, T ] as k → ∞ we

have

kt(xk, ak) → kt(x, a), for dt-a.e. t ∈ [0, T ].

(iii) There exist nonnegative constants K and r such that

|kt(x, a)| ≤ K
(

1 + ‖x‖r
∞

)

,

for all (t, x, a) ∈ [0, T ] ×Cn ×MA. To simplify the presentation we assume, without loss of

generality, that K and r are the same constants appearing in (2.4).

(2) Suppose further that there exists a Prog(D
P(Cn)

)-measurable map α̂t(ρ), (t, ρ) ∈ [0, T ]×D
P(Cn)

,

valued in A such that:

(i) ρt(kt(·, α̂(ρ))) :=
∫

Cn
kt(x, α̂(ρ)) ρt(dx) = 0 for all (t, ρ) ∈ [0, T ]×D

P(Cn)
.

(ii) The stochastic differential equation

dXt = bt(X, α̂(ρ)) dt + σt(X, α̂(ρ)) dBt, X0 = x0,

with ρ satisfying (5.1), admits a unique continuous F-adapted strong solution X̂ = (X̂t)0≤t≤T .

We denote by ρ̂ = (ρ̂t)0≤t≤T the càdlàg version of the corresponding (path-dependent) filter.

(iii) (α̂t(ρ̂))0≤t≤T lies in AW .

Then α̂ is an optimal feedback control. If kt(x, a) = k(t, x(t), a) is not path-dependent, then α̂ =

α̂(t, ρt) is an optimal Markovian control.

Remark 5.3 We conjecture that the equality Ut(a) = 0, P̄(dω̄)λ(da)dt-a.e., holds. More pre-

cisely, we conjecture that Y does not jump at a jump time Ŝn of µ̂ (recall that (Ŝn, η̂n)n≥1 is

the marked point process associated to µ̂). Indeed, if this latter property holds, then, noting

that ∆YŜn
1{Ŝn≤T} = UŜn

(η̂n)1{Ŝn≤T} for every n ≥ 1, we obtain 0 = Ê[
∑

n≥1∆YŜn
1{Ŝn≤T}] =

Ê[
∫ T
0

∫

A Ut(a)µ(dt da)] = Ê[
∫ T
0

∫

A Ut(a)λ(da) dt]. Since U is nonpositive, we conclude that Ut(a) =

0, P̄(dω̄)λ(da)dt-a.e., holds.

The conjecture that Y does not jump at a jump time Ŝn of µ̂ is motivated by control-theoretic

reasons, and, more precisely, by the property that the value of the randomized problem υ
R
0 does not

depend on a0, the initial value of Î (see Theorem 3.1). It is worth mentioning that this conjecture

holds true for the class of backward stochastic differential equations introduced in [23], section 3,

where the classical Markovian model in (1.1) is studied by means of the randomization method.

In [23] the authors formulate the primal problem for every (t, x) ∈ [0, T ] × Rn and define the

corresponding primal value v(t, x). Similarly, they define the value vR(t, x, a) of the randomized

control problem for every (t, x, a) ∈ [0, T ] × Rn × A. Then, the authors identify Y with the value
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function vR of the randomized problem: Yt = vR(t,Xt, It). As a consequence, they deduce the

identification for the component U : Ut(a) = vR(t,Xt, a) − vR(t,Xt, It−) (see the beginning of

section 3.3 in [23]). Since vR coincides with the value function of the primal problem, namely

vR(t, x, a) = v(t, x), then vR does not depend on the variable a, so that Ut(a) = 0. 2

Proof (of Theorem 5.2). Set f̃t(x, a) = ft(x, a) + kt(x, a) and

J̃(α) = Ē

[
∫ T

0
f̃t(X

α, α) dt+ g(Xα)

]

, J̃R(ν) = Eν

[
∫ T

0
f̃t(X, I) dt + g(X)

]

.

Notice that f̃ satisfies the same assumptions of f as stated in (A1)(ii)-(iii)-(iv). Then, proceeding

as in (4.16) for the proof of Theorem 3.1, we see that, for every ε > 0, there exists νε ∈ V such that

J̃R(νε) ≤ J̃(α̂(ρ̂)) + ε = J(α̂(ρ̂)) + ε, (5.13)

where the last equality follows from condition (2)-(i). Now, as Ut(a) = 0, P̄(dω̄)λ(da)dt-a.e.,

equation (5.4) becomes

Yt = ρT (g) +

∫ T

t
ρs(f̃s(·, I)) ds −

∫ T

t
Zs dWs, 0 ≤ t ≤ T.

In particular, when t = 0, taking the expectation Eνε , and proceeding as in the proof of Lemma

5.1, we obtain Y0 = J̃R(νε). Therefore, by Theorems 3.1 and 5.1, together with inequality (5.13),

we find

sup
α∈AW

J(α) = sup
ν∈V

JR(ν) = Y0 = J̃R(νε) ≤ J(α̂(X̂)) + ε.

The claim follows from the arbitrariness of ε.

As the statement of Theorem 5.2 is quite involved, especially due to the partial observation

feature, it is worth presenting the verification theorem for the full observation problem, where we

also suppose that there is no delay in the control.

Theorem 5.3 Let (Y,Z,U,K) be the minimal solution to the randomized equation (5.4).

(1) Consider a full observation problem (W coincides with B and m = 0) with no delay in the

control (i.e. bt(x, a) = bt(x, a(t)) with bt continuous on Cn × A for every t, and similarly for the

coefficients σ and f). Also suppose Ut(a) = 0, P̄(dω̄)λ(da)dt-a.e., and Kt =
∫ t
0 ks(X, Is) ds, for

some k : [0, T ] ×Cn ×A→ [0,∞) satisfying:

(i) k is Prog(Cn)⊗ B(A)-measurable.

(ii) For all t ∈ [0, T ] the function kt(x, a) is continuous in (x, a) ∈ Cn ×A.

(iii) There exist nonnegative constants K and r such that

|kt(x, a)| ≤ K
(

1 + ‖x‖r
∞

)

,

for all (t, x, a) ∈ [0, T ] × Cn × A. To simplify the presentation we assume, without loss of

generality, that K and r are the same constants appearing in (2.4).

(2) Suppose further that there exists a Prog(Cn)-measurable map α̂t(x), (t, x) ∈ [0, T ]×Cn, valued

in A such that:
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(i) infa∈A kt(x, a) = kt(x, α̂t(x)) = 0 for all (t, x) ∈ [0, T ]×Cn.

(ii) The stochastic differential equation

dXt = bt(X, α̂t(X)) dt + σt(X, α̂t(X)) dWt, X0 = x0,

admits a unique continuous FW -adapted strong solution X̂ = (X̂t)0≤t≤T .

(iii) (α̂t(X̂))0≤t≤T lies in AW .

Then α̂ is an optimal feedback control. If kt(x, a) = k(t, x(t), a) is not path-dependent, then α̂ =

α̂(t, x(t)) is an optimal Markovian control.

Proof. The proof can be done proceeding along the same lines as in Theorem 5.2.

Remark 5.4 As a particular case of the verification Theorem 5.3, consider the problem without

path-dependence, i.e. bt(x, a) = b(t, x(t), a) and similarly for the other coefficients σ, f , g. Suppose

that Yt = w(t,Xt) for some function w ∈ C1,2([0, T )×Rn)∩C0([0, T ]×Rn), satisfying a polynomial

growth condition in its second argument x, uniformly with respect to t ∈ [0, T ], with w(T, x) = g(x)

for all x ∈ Rn. Then Theorem 5.3 reduces to the classical verification theorem, for which we refer

e.g. to Theorem 3.5.2 in [28]. Indeed, applying Itô’s formula to w(t,Xt), we see that in this case

the function k can be computed explicitly and takes the following form:

k(t, x, a) = −

{

∂w

∂t
(t, x) + b(t, x, a) ·Dxw(t, x) +

1

2
tr
[

σσ⊺(t, x, a)D2
xw(t, x)

]

+ f(t, x, a)

}

1[0,T )(t),

for all (t, x, a) ∈ [0, T ] ×Rn ×A. Then, condition (2)-(i) in Theorem 5.3 becomes

−
∂w

∂t
(t, x)− sup

a∈A

{

Law(t, x) + f(t, x, a)
}

= −
∂w

∂t
(t, x)− Lα̂(t,x)w(t, x)− f(t, x, α̂(t, x)) = 0,

for all (t, x) ∈ [0, T ) × Rn, which is the classical sufficient condition for an optimal control by

dynamic programming method. In general, verification theorem is difficult to use in practice, and

a nice feature of the randomization method is that it leads to some probabilistic numerical scheme

which provides an approximation not only of the value function but also of the optimal control.

This is studied in [20] for Markovian control problem under full observation, and will be the focus

of future investigation in the case of partial observation control problem. 2

A Appendix: proof of Proposition A.1

This section is devoted to the proof of Proposition A.1 below, which was used in the proof of

Theorem 3.1. We assume that A, b, σ, f, g,∆, ρ0, λ, a0 are given and satisfy the assumptions (A1)-

(A2). Our starting point is also a probability space (Ω,F ,P), with a filtration G = (Gt)t≥0.

Following [24], for any pair α1, α2 : Ω × [0, T ] → A of G-progressive processes we define a

distance ρ̃(α1, α2) setting

ρ̃(α1, α2) = E

[

∫ T

0
ρ(α1

t , α
2
t ) dt

]

.

where ρ is an arbitrary metric in A satisfying ρ < 1.

37



Below we will use an auxiliary probability space denoted (Ω′,F ′,P′). This can be taken as an

arbitrary probability space where appropriate random objects are defined. For integers m,n, k ≥ 1,

we assume that real random variables Um
n , V m

n and random measures πk are defined on (Ω′,F ′,P′)

and satisfy the following conditions:

1. every Um
n is uniformly distributed on (0, 1);

2. each V m
n has exponential distribution with parameter λnm and

∑∞
n=1 λ

−1
nm = 1/m for every

m ≥ 1;

3. every πk is a Poisson random measure on (0,∞) × A, admitting compensator k−1λ(da) dt

with respect to its natural filtration;

4. the random elements Um
n , V

h
j , π

k are all independent.

The role of these random elements will become clear in the constructions that follow. Notice

that for the construction of the space (Ω′,F ′,P′) only the knowledge of the measure λ is required.

Next we define

Ω̂ = Ω× Ω′, F̂ = F ⊗ F ′, Q = P⊗ P′

and note that the filtration G can be canonically extended to a filtration Ĝ = (Ĝt)t≥0 in (Ω̂, F̂)

setting Ĝt = {A × Ω′ : A ∈ Gt}. Similarly, any process α in (Ω,F) admits an extension α̂ to

(Ω̂, F̂) given by α̂t(ω̂) = αt(ω), where ω̂ = (ω, ω′). The metric ρ̃ can also be extended to any pair

β1, β2 : Ω̂× [0, T ] → A of Ĝ-progressive processes setting

ρ̃(β1, β2) = EQ
[

∫ T

0
ρ(β1t , β

2
t ) dt

]

.

We use the same symbol ρ̃ to denote the extended metric as well.

Our aim in this section is to prove the following result.

Proposition A.1 Let (Ω,F ,P) be any probability space with a filtration G = (Gt)t≥0 and let

(Ω̂, F̂ ,Q) be the product space defined above. Then for any G-progressive A-valued process α, and

for any δ > 0, there exists a marked point process (Ŝn, η̂n)n≥1 defined in (Ω̂, F̂ ,Q) satisfying the

following conditions:

1. setting

Ŝ0 = 0, η̂0 = a0, Ît =
∑

n≥0

η̂n1[Ŝn,Ŝn+1)
(t),

the process Î satisfies

ρ̃(Î , α̂) = EQ

[
∫ T

0
ρ(Ît, α̂t) dt

]

< δ; (A.1)

2. denoting µ̂ =
∑

n≥1 δ(Ŝn,η̂n)
the random measure associated to (Ŝn, η̂n)n≥1, F

µ̂ = (F µ̂
t )t≥0 the

natural filtration of µ̂ and Ĝ∨Fµ̂ = (Ĝt ∨F µ̂
t )t≥0, then the Ĝ∨Fµ̂-compensator of µ̂ under Q

is absolutely continuous with respect to λ(da) dt and it can be written in the form

ν̂t(ω̂, a)λ(da) dt (A.2)
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for some nonnegative P(Ĝ ∨ Fµ̂)⊗ B(A)-measurable function ν̂ satisfying

inf
Ω̂×[0,T ]×A

ν̂ > 0, sup
Ω̂×[0,T ]×A

ν̂ <∞. (A.3)

Proof. Fix α and δ as in the statement of the Proposition. It can be proved that there exists an

A-valued process ᾱ such that ρ̃(α, ᾱ) < δ and ᾱ has the form ᾱt =
∑N−1

n=0 αn1[tn,tn+1)(t), where

0 = t0 < t1 < . . . tN = T is a deterministic subdivision of [0, T ], α0, . . . , αN−1 are A-valued

random variables that take only a finite number of values, and each αn is Gtn-measurable: this is

an immediate consequence of Lemma 3.2.6 in [24], where it is proved that the set of admissible

controls ᾱ having the form specified in the lemma are dense in the set of all G-progressive A-valued

processes with respect to the metric ρ̃.

We can (and will) choose ᾱ satisfying α0 = a0 (a0 is the same as in (A2)). Indeed this additional

requirement can be fulfilled by adding, if necessary, another point t′ close to 0 to the subdivision

and modifying ᾱ setting ᾱt = a0 for t ∈ [0, t′). This modification is as close as we wish to the

original process with respect to the metric ρ̃, provided t′ is chosen sufficiently small.

Finally, we further extend ᾱ to a function defined on Ω × [0,∞) in a trivial way setting ᾱt =
∑∞

n=0 αn1[tn,tn+1)(t) where αn = αN−1 for n ≥ N and tn = t + n − N for n > N . This way ᾱ is

associated to the marked point process (tn, αn)n≥1 and ᾱ0 = a0.

Next recall the spaces (Ω′,F ′,P′) and (Ω̂, F̂ ,Q) and the filtration Ĝ introduced before the

statement of Proposition A.1. We extend the processes α and ᾱ to Ω̂× [0,∞) and denote α̂ and ˆ̄α

the corresponding extensions. We note that clearly

ρ̃(α̂, ˆ̄α) = ρ̃(α, ᾱ) < δ/3. (A.4)

The next step of the proof consists in constructing a sequence of random measures κm whose

associated piecewise trajectories, denoted α̂m
t , approximate α̂ in the sense of the metric ρ̃. The

construction will be carried out in such a way that κm admits a compensator absolutely continuous

with respect to the measure λ(da) dt.

For every m ≥ 1, let B(b, 1/m) denote the open ball of radius 1/m, with respect to the metric

ρ, centered at b ∈ A. Since λ(da) has full support, we have λ(B(b, 1/m)) > 0 and we can define a

transition kernel qm(b, da) in A setting

qm(b, da) =
1

λ(B(b, 1/m))
1B(b,1/m)(a)λ(da).

We recall that we require A to be a Borel space, and we denote by B(A) its Borel σ-algebra. There

exists a Borel measurable function qm : A × [0, 1] → A such that for every b ∈ A the measure

B 7→ qm(b,B) (B ∈ B(A)) is the image of the Lebesgue measure on [0, 1] under the mapping

u 7→ qm(b, u); equivalently,

∫

A
k(a) qm(b, da) =

∫ 1

0
k(qm(b, u)) du,

for every nonnegative measurable function k on A. Thus, if U is a random variable defined on

some probability space and having uniform law on [0, 1] then, for fixed b ∈ A, the A-valued random

variable qm(b, U) has law qm(b, da). The use of the same symbol qm should not generate confusion.

The existence of the function qm (even for a general transition kernel on A) is well known when A
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is a separable complete metric space, in particular, when A is the unit interval [0, 1], (see e.g. [32],

Theorem 3.1.1) and the general case reduces to this one, since it is known that any Borel space is

either finite or countable (with the discrete topology) or isomorphic, as a measurable space, to the

interval [0, 1]: see e.g. [4], Corollary 7.16.1.

For fixed m ≥ 1, define V m
0 = Rm

0 = Sm
0 = 0 and

Rm
n = tn + V m

1 + . . .+ V m
n , Sm

n = tn + V m
1 + . . .+ V m

n−1, βmn = qm(αn, U
m
n ), n ≥ 1.

Since we assume tn < tn+1 and since V m
n > 0 we see that (Rm

n , β
m
n )n≥1 is a marked point process

in A. Also note that Rm
n−1 < Sm

n < Rm
n for n ≥ 1. Let

κm =
∑

n≥1

δ(Rm
n ,βm

n ), α̂m
t =

∑

n≥0

βmn 1[Rm
n ,Rm

n+1)
(t),

(with the convention βm0 = a0) denote the corresponding random measure and the associated

trajectory. We claim that

ρ̃( ˆ̄α, α̂m) → 0 (A.5)

as m→ ∞. Indeed, since 0 = t0 < t1 < . . . tN = T we have

ρ̃( ˆ̄α, α̂m) =

N−1
∑

n=0

EQ

∫ tn+1

tn

ρ( ˆ̄αt, α̂
m
t ) dt. (A.6)

Note that tn < Rm
n , and whenever Rm

n ≤ t < tn+1 < Rm
n+1 we have ˆ̄αt = αn, α̂

m
t = βmn and so

ρ( ˆ̄αt, α̂
m
t ) = ρ(αn, β

m
n ) < 1/m since, for every b ∈ A , qm(b, da) is supported in B(b, 1/m). If

Rm
n < tn+1 then, recalling that ρ < 1,

∫ tn+1

tn

ρ( ˆ̄αt, α̂
m
t ) dt =

∫ Rm
n

tn

ρ( ˆ̄αt, α̂
m
t ) dt+

∫ tn+1

Rm
n

ρ( ˆ̄αt, α̂
m
t ) dt

≤ (Rm
n − tn) +

1

m
(tn+1 −Rm

n )

≤ V m
1 + . . .+ V m

n +
1

m
(tn+1 − tn).

If Rm
n ≥ tn+1 then the same inequality still holds since we even have

∫ tn+1

tn

ρ( ˆ̄αt, α̂
m
t ) dt ≤ tn+1 − tn ≤ Rm

n − tn = V m
1 + . . . + V m

n .

Substituting in (A.6) and computing the expectation of the exponential random variables V m
n we

arrive at

ρ̃( ˆ̄α, α̂m) =
N−1
∑

n=0

(

λ−1
1m + . . .+ λ−1

nm +
1

m
(tn+1 − tn)

)

≤
∞
∑

n=1

λ−1
nm +

T

m
≤

1

m
+
T

m

which proves the claim (A.5). From now on we fix a value of m so large that

ρ̃( ˆ̄α, α̂m) < δ/3. (A.7)

Let Fκm
= (Fκm

t ) denote the natural filtration of κm and set

Hm = (Hm
t )t≥0 = (Ĝt ∨ Fκm

t )t≥0.

We have the following technical result that describes the compensator κ̃m of κm with respect to

the filtration Hm.
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Lemma A.1 With the previous assumptions and notations, the compensator of the random mea-

sure κm with respect to Hm and Q is given by the formula

κ̃m(dt, da) =
∑

n≥1

1(Sm
n ,Rm

n ](t) q
m(αn, da)λnm.

Proof of Lemma A.1. To shorten notation, we drop all the sub- and superscripts m and write

κ̃, Sn, Rn, q, λn, F
κ, H = (Ht) = (Ĝt ∨ Fκ

t ) instead of κ̃m, Sm
n , Rm

n , qm, λnm, Fκm
, Hm = (Hm

t ) =

(Ĝt ∨ Fκm

t ).

Let us first check that κ̃(dt, da), defined by the formula above, is an H-predictable random mea-

sure. The variables Rn are clearly Fκ-stopping times and henceH-stopping times and therefore Sn =

Rn−1 + tn − tn−1 are also H-stopping times. Since αn are Ftn -measurable and Ftn ⊂ Htn ⊂ HSn ,

αn are also HSn-measurable. It follows that for every C ∈ B(A) the process 1(Sn,Rn](t) q(αn, C)λn
is H-predictable and finally that κ̃(dt, da) is an H-predictable random measure.

To finish the proof we need now to verify that for every positive P(H) ⊗ B(A)-measurable

random field Ht(ω, a) we have

E

[

∫ ∞

0

∫

A
Ht(a)κ(dt da)

]

= E

[

∫ ∞

0

∫

A
Ht(a) κ̃(dt da)

]

.

Since Ht = Ft ∨ Fκ
t , by a monotone class argument it is enough to consider H of the form

Ht(ω, a) = H1
t (ω)H

2
t (ω)k(a),

where H1 is a positive Ĝ-predictable random process, H2 is a positive Fκ-predictable random

process and k is a positive B(A)-measurable function. Since Fκ is the natural filtration of κ, by a

known result (see e.g. [18] Lemma (3.3)) H2 has the following form:

H2
t = b1(t)1(0,R1](t) + b2(β1, R1, t)1(R1,R2](t)

+b3(β1, β2, R1, R2, t)1(R2,R3](t) + . . .

+bn(β1, . . . , βn−1, R1, . . . , Rn−1, t)1(Rn−1 ,Rn](t) + . . . ,

where each bn is a positive measurable deterministic function of 2n− 1 real variables. Since

E

[

∫ ∞

0

∫

A
Ht(a)κ(dt da)

]

= E

[

∑

n≥1

HRn(βn)
]

to prove the thesis it is enough to check that for every n ≥ 1 we have the equality

E
[

HRn(βn)
]

= E

[

∫ ∞

0

∫

A
Ht(a) q(αn, da)λn 1Sn<t≤Rn dt

]

which can also be written

E
[

H1
Rn
bn(β1, . . . , βn−1, R1, . . . , Rn−1, Rn)k(βn)

]

=

E

[

∫ ∞

0

∫

A
H1

t bn(β1, . . . , βn−1, R1, . . . , Rn−1, t)k(a)q(αn, da)λn 1Sn<t≤Rn dt
]

.

We use the notation

Kn(t) = H1
t bn(β1, . . . , βn−1, R1, . . . , Rn−1, t)
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to reduce the last equality to

E [Kn(Rn)k(βn)] = E

[

∫ ∞

0

∫

A
Kn(t) k(a) q(αn, da)λn 1Sn<t≤Rn dt

]

. (A.8)

By the definition of Rn and βn, we have E[Kn(Rn)k(βn)] = E[Kn(Sn + Vn)k(q(αn, Un))]. As noted

above, since Un has uniform law on (0, 1), the random variable q(b, Un) has law q(b, da) on A, for any

fixed b ∈ A. We note that R1, . . . , Rn−1, Sn are measurable with respect to σ(V1, . . . , Vn−1), that

β1, . . . , βn−1 are measurable with respect to Ĝ∞ ∨ σ(U1, . . . , Un−1) and therefore that the random

elements Un, Sn and (Ĝ∞, β1, . . . , βn−1, R1, . . . , Rn−1, Sn) are all independent. Recalling that Vn is

exponentially distributed with parameter λn we obtain

E [Kn(Rn)k(βn)] = E

[

∫ ∞

0

∫

A
Kn(Sn + s) k(a) q(αn, da)λne

−λns ds
]

. (A.9)

Using again the independence of Vn and (Ĝ∞, β1, . . . , βn−1, R1, . . . , Rn−1, Sn) we also have

E

[

∫ ∞

0

∫

A
Kn(Sn + s) k(a) q(αn, da)λn 1Vn≥s ds

]

= E

[

∫ ∞

0

∫

A
Kn(Sn + s) k(a) q(αn, da)λn P(Vn ≥ s) ds

]

and since P(Vn ≥ s) = e−λns, this coincides with the right-hand side of (A.9). By a change of

variable we arrive at equality (A.8):

E [Kn(Rn)k(βn)] = E

[

∫ ∞

Sn

∫

A
Kn(t) k(a) q(αn, da)λn 1Vn≥t−Sn dt

]

= E

[

∫ ∞

0

∫

A
Kn(t) k(a) q(αn, da)λn 1Sn<t≤Rn dt

]

.

This concludes the proof of Lemma A.1.

It follows from this lemma that the Hm-compensator of κm under Q is absolutely continuous

with respect to λ(da) dt and it can be written in the form

κ̃m(dt, da) = φmt (a)λ(da) dt

for a suitable nonnegative P(Hm)⊗B(A)-measurable function φm which is bounded on Ω̂×[0, T ]×A.

Indeed, from the choice of the kernel qm(b, da) we obtain

φmt (a) =
∑

n≥1

1(Sm
n ,Rm

n ](t)
1

λ(B(αn, 1/m))
1B(αn,1/m)(a)λnm.

which is bounded on Ω̂ × [0, T ] × A since each αn takes only a finite number of values and Sm
N >

tN = T , so that the values of φmt on [0, T ] only depend on the first N − 1 summands.

In the final step of the proof we will modify the random measure κm by adding an independent

Poisson process πk with “small” intensity. This will not affect too much the ρ̃-distance between

the corresponding trajectories and will produce a random measure whose compensator remains

absolutely continuous with respect to the measure λ(da) dt and has a bounded density which, in

addition, is bounded away from zero.
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Recall that on the space (Ω′,F ′,P′) we assumed that for every integer k ≥ 1 there existed a

Poisson random measure πk on (0,∞)×A, admitting compensator k−1λ(da) dt with respect to its

natural filtration. We will consider πk as defined in (Ω̂, F̂). Each πk has the form

πk =
∑

n≥1

δ(T k
n ,ξkn)

,

for a marked point process (T k
n , ξ

k
n)n≥1 on (0,∞) × A, and we denote Fπk

= (Fπk

t ) its natural

filtration. Let us define another random measure setting

µkm = κm + πk.

Note that the jumps times (Rm
n )n≥1 are independent of the jump times (T k

n )n≥1, and the latter

have absolutely continuous laws. It follows that, except possibly on a set of Q probability zero,

their graphs are disjoint, i.e. κm and πk have no common jumps. Therefore, the random measure

µkm and its associated pure jump process (denoted Ikm) admit a representation

µkm =
∑

n≥1

δ(Skm
n ,ηkmn ), Ikmt =

∑

n≥0

ηkmn 1[Skm
n ,Skm

n+1)
(t), t ≥ 0,

where ηkm0 = a0, (S
km
n , ηkmn )n≥1 is a marked point process, each Skm

n coincides with one of the times

Rm
n or one of the times T k

n , and each ηkmn coincides with one of the random variables ξkn or one of

the random variables βmn . We claim that, for large k, Ikm is close to α̂n with respect to the metric

ρ̃, namely that

ρ̃(Ikm, α̂m) → 0 (A.10)

as k → ∞. To prove this claim it suffices to prove that Ikm → α̂m in dt⊗ dQ-measure. Recall that

the jump times of πk are denoted T k
n . Since T k

1 has exponential law with parameter λ(A)/k the

event Bk = {T k
1 > T} has probability e−λ(A)T/k, so that Q(Bk) → 1 as k → ∞. Noting that on the

set Bk, we have α̂
m
t = α0 = a0 = ηkm0 = Ikmt for all t ∈ [0, T ], the claim (A.10) follows immediately.

We will fix from now on an integer k so large that

ρ̃(α̂m, Ikm) < δ/3. (A.11)

Having fixed both m and k we now define, for n ≥ 0,

Ŝn = Skm
n , η̂n = η̂kmn , µ̂ =

∑

n≥1

δ(Ŝn,η̂n)
, Ît =

∑

n≥0

η̂n1[Ŝn,Ŝn+1)
(t),

so that the random measure µ̂ and the associated process Î coincide with µkm and Ikm respectively.

The inequalities (A.4), (A.7), (A.11) imply that ρ̃(α̂, Î) < δ, which gives (A.1).

To finish the proof it remains to prove (A.2)-(A.3). We first note that, since κm and πk are

independent, it is easy to prove that µ̂ = µkm has compensator (φmt (a)+ k−1)λ(da) dt with respect

to the filtration Hm ∨ Fπk
:= (Hm

t ∨Fπk

t )t≥0 = (Ĝt ∨Fκm

t ∨Fπk

t )t≥0. Let F
µ̂ = (F µ̂

t )t≥0 denote the

natural filtration of µ̂ and let Ĝ∨Fµ̂ be the filtration (Ĝt ∨F µ̂
t )t≥0, which is smaller than Hm∨Fπk

.

We wish to compute the compensator of µ̂ with respect to Ĝ ∨ Fµ̂ under Q. To this end, consider

the measure space ([0,∞)×Ω×A,B([0,∞))⊗F ⊗B(A), dt⊗Q(dω)⊗λ(da)). Although this is not

a probability space, one can define in a standard way the conditional expectation of any positive

measurable function, given an arbitrary sub-σ-algebra. Let us denote by ν̂t(ω̂, a) the conditional
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expectation of the random field φmt (ω̂, a)+ k−1 with respect to the σ-algebra P(Ĝ∨Fµ̂)⊗B(A). It

is then easy to verify that the compensator of µ̂ with respect to Ĝ∨Fµ̂ coincides with ν̂. Moreover,

since φmt (ω̂, a) is nonnegative and bounded on Ω̂× [0, T ]×A, we can take a version of ν̂ satisfying

k−1 ≤ inf
Ω̂×[0,T ]×A

ν̂ ≤ sup
Ω̂×[0,T ]×A

ν̂ <∞.

Now (A.2)-(A.3) are proved and the proof of Proposition A.1 is finished.
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‘
ech. Hamilton-Jacobi-Bellman equations for the optimal control of the Duncan-

Mortensen-Zakai equation. J. Funct. Anal., 172(2):466–510, 2000.

[17] O. Hijab. Partially observed control of Markov processes. I. Stochastics Stochastics Rep., 28(2):123–144,

1989.

[18] J. Jacod. Multivariate point processes: predictable projection, Radon-Nikodým derivatives, represen-

tation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31(3):235–253, 1975.
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