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Abstract

This paper is devoted to the resolution of an inverse scattering problem. Such problems are

known to be highly nonlinear and ill-posed. In our case, the reconstruction is rendered all the more

difficult by the high contrast: the physical characteristics of the scattering object greatly differ from

those of the surrounding medium. To properly counterbalance the ill-posedness of the problem,

an original shape model taking into account precise prior information about the geometry of the

scattering object is proposed. Moreover, the scatterer shape is described with a reduced number of

variables and the parametrization enables one to solve the inverse problem with a gradient-based

algorithm. This contributes to reduce the computation cost. Tests conducted on synthetic datasets

reveal good performance of the proposed algorithm, contrary to more classical approaches based on

a Tikhonov regularization scheme or the use of an edge-preserving penalization function.

Introduction

The efficient resolution of inverse scattering problems has gained much interest in the last decade. Today,
it finds applications in numerous areas such as biomedical imaging, non destructive testing or geophysical
exploration. Its goal is to extract information such as the location, shape and physical characteristics
of an object from measurements of a wavefield scattered by this object. Inverse scattering problems
are known to be highly ill-posed [1]. In general, this is mainly due to the nonlinear relation between
the measurements and the underground characteristics, the large scale of the problem and the limited
amount of measured data: sensors are usually in small number and cannot be located all around the
object under test.

The ill-posedness of the problem is also influenced by the contrast, i.e. the difference in the physical
characteristics between the scattering object and the surrounding medium. In case of very low contrast,
a linear approximation of the wavefield propagation model can be used [2, 3]. For higher contrasts,
scattering effects cannot be neglected and the nonlinearities of the model must be taken into account.
In this case, several methods can be used for the resolution of the inverse problem. Some are based on
iterative minimization of quadratic criterions such as:

• the Born iterative method and the distorted Born iterative method [4, 5]. They rely on successive
linearization of the model,

• the modified gradient method [6]. This method estimates the scattered wavefield as well as the
probed medium characteristics but involves the relaxation of constraints in the model,

• the contrast source inversion method (CSI) [7]. It is similar to the modified gradient method except
that the so-called contrast source is estimated instead of the scattered wavefield.
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STEP, 6 quai Watier, 78400 Chatou, France
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The latter methods are advantageous from a computational standpoint but they involve some approxi-
mations in the model. Other methods consist in minimizing directly a least-square criterion where the
nonlinearity of the model is explicitly taken into account [8, 9, 10].

In this article, we are interested in the determination of the shape of transmission overhead line
structure foundations with a seismic imaging technique. The wavelengths of the probing waves are known
to be of the same order of magnitude as the foundations dimensions, and the physical characteristics of
foundations greatly differ from those of the earth [11]. In this case, scattering effects must be taken into
account to achieve an accurate imaging of the subsurface [12, 13]. To avoid any approximation in the
model, the inversion is performed by minimizing a nonquadratic least-square criterion. This implies the
possible presence of local minima in the criteria. Global optimization algorithms could be considered
to guarantee the convergence towards the global minimum but such approaches cannot be applied here
because the computational effort would be prohibitive. A gradient-based iterative procedure is used,
which is better suited to nonlinear large-scale problems.

In the framework of seismic imaging, the contrast can be defined as the ratio of the velocity in the
scattering object to the velocity in the surrounding medium. In the application considered in [14], the
velocity values in the subsurface range from ∼3000 m.s-1 to ∼3500 m.s-1, which corresponds to a contrast
value of about 1.2. This enables the authors to use the Born approximation. In [15, 16], the contrasts
are higher and the nonlinearity is taken into account. In [15], the velocities range from 1500 m.s-1 to
5500 m.s-1, which corresponds to a contrast value of about 3.7, and the inversion is performed with the
CSI method. In [16], the velocities range from 700 m.s-1 to 3500 m.s-1, which corresponds to a contrast
value of about 5, and inversion is performed by minimizing a non-quadratic cost function.

A challenging aspect of the application considered here is the very high contrast value. In some
situations, it is expected to be greater than 10. In such cases, the contrast is so large that a lack of
sensitivity of the criterion appears, which results in a significant slow down of the inversion procedure.
In [17], we proposed to circumvent the problem with a logarithmic variable substitution technique.
A synthetic configuration of small size was considered and to regularize the problem, the minimized
criterion was penalized with a smooth approximation of the total variation. We showed that the change
of variables resulted in a significant acceleration of the inversion process. However, on a configuration
of realistic size, this technique is not efficient enough to produce an accurate result in terms of the
geometry of the foundation. A pitfall of the algorithm is that the regularization scheme does not include
information about the scatterer shape.

In this article, an inversion procedure based on a segmentation of the probed medium into two
complementary areas is proposed. The goal is to determine the shape of the boundary separating the
two areas as well as the spatial distributions of the physical characteristics inside each area. The proposed
inversion scheme is advantageous from several points of view. Strong prior information concerning the
shape of the scatterer is taken into account. The main assumption is that foundations are all in one
piece and horizontally convex. Moreover, the scatterer shape is described with a reduced number of
parameters and the parametrization enables one to optimize all the unknowns jointly by means of a
gradient-based algorithm. This is well suited to large-scale nonlinear problems and contributes to reduce
the computation cost.

This paper is organized as follows. In section 1, the context of the problem at hand is presented. In
particular, we show on a configuration of reduced size that in our case, two regularization techniques
commonly used in seismic imaging fail to determine the shape of the scatterer. In section 2, the proposed
inversion procedure is presented. The prior assumptions are listed and the proposed shape model is
explained. In section 3, reconstruction results from synthetic data are presented. We show that the
proposed inversion scheme is more efficient both in terms of reconstruction accuracy and computation
time. The robustness of the algorithm to uncertainty on some assumptions is also assessed and a
configuration of real size is considered.

1 Statement of the problem

1.1 Description of the measurement procedure

A seismic imaging technique is used to probe the underground medium [11]. A seismic wave is generated
using a vibrator and measurements of the scattered wavefield of particle velocity are collected on the
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Figure 1: Scheme of the seismic imaging setup

ground surface with geophones (about a hundred in practice), as illustrated on figure 1. To collect
more information, the measurement procedure is repeated for multiple locations of the source. We limit
ourselves to the two-dimensional case because the computation cost would be prohibitive for a three-
dimensional imaging. The measurement system is thus placed along a line, roughly in the plane of
symmetry of the foundation, and the medium characteristics are assumed invariant along the orthogonal
axis.

1.2 Statement of the inverse problem

The aim of the inverse problem is to determine the underground physical characteristics knowing the
acquisition procedure (i.e. the successive locations of the source, the signal emitted by the source and the
locations of the receivers) and the measurements. Let us stress that data are recorded from the surface
only, with a limited number of geophones, and only the vertical component of the particle velocity is
measured. This tends to increase the underdetermined nature of the problem.

We solve the inverse problem by minimizing a regularized least-squares cost function. In the context
of seismic imaging, this approach was initiated by Tarantola during the 1980s [18]. The inversion is
performed in the frequency domain. Let us suppose that for frequency ω and source location k, the
measured data set yω,k is related to the unknowns (gathered in θ) as follows:

yω,k = gω,k(θ) + ηω,k (1)

where gω,k is the output of the forward model and ηω,k is white Gaussian noise. The maximum a
posteriori estimate is obtained by minimizing the cost function:

J (θ) =
∑

ω

∑

k

‖yω,k − gω,k(θ)‖
2 + γφ(θ) (2)

where φ is a regularization term. Its role is to introduce prior information into the inversion process
in order to counterbalance the ill-posedness of the problem. The choice of the regularization technique
plays an essential role in the performance of the inversion procedure. The free parameter γ is a weighting
hyperparameter which remains fixed during the inversion. In our tests, its value is set heuristically by
visually comparing the estimated velocity maps and the exact solution.

In practice, we consider a small number of frequencies ω. The amount of data to be processed is thus
considerably reduced, which contributes to reduce the computation cost. This approach is commonly
adopted in seismic waveform inversion [19, 20].

1.3 Resolution of the forward problem

An efficient algorithm of resolution of the forward problem is a prerequisite for the inversion. The aim
of the forward problem is to compute a synthetic set of data at a reasonable cost. The underground
characteristics and the acquisition procedure (i.e. the successive locations of the source, the signal
emitted by the source and the locations of the receivers) are assumed known.
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A model developed by the STEP department of EDF R&D [21] is used. It is based on the linear
elastic wave equations. The forward problem is solved in the frequency domain, which allows to restrict
to selected frequencies during the inversion process. It has also an algorithmic advantage since a number
of computational operations depend on the frequency, but not on the source location. In the frequency
domain, the propagation equations are:

−iωF x
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∂
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(4)

where F x
ω,k and F y

ω,k correspond to the horizontal and vertical components of the force density. They are

directly deduced from the source location and the source signal. V x
ω,k and V y

ω,k correspond to the hori-
zontal and vertical components of the particle velocity. vp, vs and ρ are the underground characteristics.
They denote the pressure-wave velocity, the squared shear-wave velocity, and the density respectively.

These equations are discretized with a finite-difference scheme on two staggered grids using the so-
called Saenger stencil [22]. The propagation equations can then be written as a linear matrix relation:

Fω,k = AωVω,k (5)

Aω is the impedance matrix which depends linearly on three vectors v2
p, v

2
s and ρ which respectively

gather the squared pressure-wave velocity v2
p , the squared shear-wave velocity v2

s , and the density ρ, at
any point of the mesh. In order to speed up the resolution of the forward problem, Aω is computed
using sparse matrices [23]:

Aω = Hp
ωDiag

{

v2
p ⊙ ρ

}

Gp
ω +

3
∑

i=1

Hs
ω,iDiag

{

v2
s ⊙ ρ

}

Gs
ω,i + ω2Diag {Hρρ} (6)

where Gp
ω, H

p
ω, G

s
ω,i, H

s
ω,i and Hρ are sparse matrices corresponding to finite-difference operators. The

nonzeros values are equal to 1
2∆x

or 1
2∆y

, where ∆x and ∆y are the horizontal and vertical step sizes,
except on the edges where boundary conditions called Perfectly Matched Layers are introduced in order
to work on a finite spatial domain [24]. ⊙ denotes the componentwise product, and Diag {w} is a
diagonal matrix with w as the main diagonal.

To compute a synthetic data set, Vω,k is computed by solving the linear system (5) and the measure-
ments are extracted using a sampling matrix Eg:

gω,k = EgA
−1
ω Fω,k (7)

All types of waves are involved in equation (7) including reflected, refracted, scattered, converted, surface
waves and multiples. Our work thus takes place in the full-waveform inversion (FWI) framework, contrary
to many common seismic imaging techniques such as seismic reflection, seismic refraction or travel time
tomography.

1.4 Inversion tests using two common regularization techniques

Few research results have been reported in the context of elastic FWI [25, 26]. Specifically, let us
mention [13, 25, 26, 27]. More applications of FWI have been performed under the acoustic approximation
[19, 28, 29, 30, 31]. Two regularization schemes are commonly used in FWI: (1) a Tikhonov regularization
scheme, which is closely connected to the Bayesian framework pioneered by Tarantola in the geophysical
inversion context [18], and (2) an edge-preserving regularization scheme corresponding to a smooth
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Table 1: Characteristic values of the earth, concrete and air areas
Concrete Earth Air
vC
p = 4000 m.s-1 vE

p = 300 m.s-1 vA
p = 0 m.s-1

vC
s = 2200 m.s-1 vE

s = 150 m.s-1 vA
s = 0 m.s-1

ρC = 1500 kg.m-3 ρE = 1500 kg.m-3 ρA = 1.2 kg.m-3

Earth

Air

Concrete

Source locations

Geophones

Figure 2: Scheme of the synthetic medium of reduced size. The dashed line delimits the zone of interest
of size 74 cm × 58 cm.

approximation of total variation [32]. The reader can refer to [33] for a very complete development of
this second technique in the geophysical inversion context.

In this subsection, these two regularization schemes are applied on a synthetic configuration. The
scattering object considered here is of reduced size but it is close to our final application in terms of
contrast. We show that the inversion process fails in determining the shape of the scatterer with the two
considered regularization techniques. Indeed, they do not incorporate precise prior information about
the probed medium to properly counterbalance the ill-posedness of the problem.

1.4.1 Configuration description

The underground medium size is 2 meters and 0.7 meters in horizontal and vertical directions. It is
discretized with a spatial resolution ∆x = ∆y = 2 centimeters. It includes a concrete structure of about
0.5 meters in width and in height. Table 1 lists the characteristic values in each region. The seismic
source takes six successive locations. It produces a vertical force represented by a 2-D Gaussian with a
standard deviation of ∆x and ∆y along the x- and y-axis respectively. The source signal is a 200 Hz
Ricker wavelet. 10 frequencies equally distributed in the bandwidth are selected for the inversion (from
100 Hz to 500 Hz). 90 geophones are used for the measurements. Figure 2 presents a scheme of the
probed medium and the seismogram corresponding to the second position of the source on the left side
of the foundation is shown in figure 3. In order to avoid a situation of inverse crime, white Gaussian
noise is added to the simulated data (the signal to noise ratio is equal to 30 dB).

To reduce the computation cost, the underground characteristics are estimated only inside a region
of interest. It is depicted by dashed lines in figure 2. Outside the region of interest, the characteristics
are assumed known a priori. Furthermore, the contrast between earth and concrete characteristics is
known to be very high for vp and vs (the corresponding ratio is greater than 13) but not for ρ (the ratio
is less than 2). To reduce the computation cost while preserving the contrast, the density ρ is assumed
constant in the subsurface and only the distributions of vp and vs remain unknown, as in [26, 34].

1.4.2 Inversion with a Tikhonov regularization scheme

Generally speaking, a Tikhonov regularization function corresponds to a quadratic penalty term either
applied to the velocities themselves, or to differences between velocity values at neighbouring pixels.
Here, we suppose that the characteristic values of earth are known a priori and φ penalizes the squared
difference to the earth characteristics at each pixel.
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Figure 3: Seismogram corresponding to the second position of the source on the left side of the foundation.
It represents the vertical particle velocity measured by each geophone in the temporal domain.
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Figure 4: Two initializations of the algorithm are considered: either the top of the scatterer is extended
down to the foundation depth (left), or the underground characteristics are set to the exact solution
(right).

In [17], it is shown that the inversion process can be drastically accelerated with a logarithmic change
of variables. The minimized criterion is thus written as a function of χp and χs which respectively gather
the logarithm of vp and vs at any point of the mesh, and the following regularization function is adopted:

φ(χp,χs) =
∑

n

(

[χp]n − log vE
p

)2
+
(

[χs]n − log vE
s

)2
(8)

Following [35, 36], the data are introduced progressively during the inversion procedure. Starting from
the lowest frequency data, groups of frequencies of growing size are considered in the summation over ω
in (2). It is only when the current criterion is properly minimized (in the sense of a stopping criterion)
that a new frequency component is incorporated. The criterion is minimized by means of the L-BFGS
algorithm [37]. This quasi-Newton method is based only on criterion and gradient computations. It is
well suited to our large-scale nonlinear optimization problem since it requires a small amount of storage
to approximate the Hessian.

Two distinct initializations described by figure 4 have been considered. For both cases, figure 5
presents the maps of characteristics vp and vs obtained after optimization as well as the temporal evolution
of the criterion value. The presence of peaks in the temporal evolution of the criterion is due to the
progressive introduction of the data during the inversion. Each increase of the criterion corresponds
to the incorporation of a new frequency. It is followed by a decrease of the criterion, which is due to
the minimization procedure. The results show that despite the large computation time, the Tikhonov
approach completely fails to produce an accurate result in terms of the geometry of the foundation.
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Figure 5: Results obtained with the Tikhonov regularization scheme, γ = 10−10 (left: final maps of vp
and vs for each initialization, right: temporal evolution of the criterion)

1.4.3 Inversion with an edge-preserving regularization scheme

An acknowledged drawback of the Tikhonov regularization scheme is to produce oversmoothed maps. In
contrast, the second regularization scheme we tested better preserves sharp transitions between smooth
regions. The following smooth approximation of the total variation is considered:

φ(χp,χs) =
∑

(m,n)∈C

√

([χp]m − [χp]n)
2 + ([χs]m − [χs]n)

2 + δ2 (9)

where C denotes the set of neighbouring pixels either in the horizontal or the vertical directions.
The results are presented on figure 6. The velocity maps are less smooth and the convergence is

much faster than with the quadratic regularization, which may be explained by the fact that the edge-
preserving penalization is better suited. However, they are still far from an accurate estimation of the
true velocity maps. On the one hand, the regions corresponding to earth and concrete remain quite
heterogeneous. On the other hand, the concrete characteristics are underestimated: the maximal values
obtained are about vp = 1200 m.s-1 and vs = 800 m.s-1 instead of vC

p = 4000 m.s-1 and vC
s = 2200 m.s-1.

Finally, and most importantly for our application, the obtained geometry is a very rough approximation
of the true one. Other penalization functions based on an L2L0 norm [38] can also be used. Compared
to (9), they favour sharp transitions in a larger amount, since they tend towards a constant for large
difference values instead of a linear growth regime. However, such functions are highly non convex, which
makes the minimization of the resulting cost function more difficult. According to our tests, the results
become strongly dependent on the initialization, without reaching the expected inversion quality.

2 Description of the proposed inversion scheme

2.1 Segmentation of the underground medium

We now describe the proposed inversion procedure. It is based on a segmentation of the underground
medium into two complementary areas ΩC and ΩE separated by the boundary Γ. The two areas corre-
spond to the inside and the outside of the foundation respectively. A vector of binary values is associated
to each area:

[

RC(Γ)
]

n
=

{

1 if mesh point n belongs to ΩC

0 if mesh point n belongs to ΩE
(10)

[

RE(Γ)
]

n
= 1−

[

RC(Γ)
]

n
(11)

Let us suppose that the characteristics of earth and concrete are known. Taking into account the
logarithmic change of variables introduced in subsection 1.4, the unknown underground characteristics
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Figure 6: Results obtained with the edge-preserving regularization scheme, γ = 10−11 and δ = 10−2

(left: final maps of vp and vs for each initialization, right: temporal evolution of the criterion)

are related to the outline of the foundation as follows:

[χp(Γ)]n =
[

χC
p

]

n

[

RC(Γ)
]

n
+
[

χE
p

]

n

[

RE(Γ)
]

n
(12)

[χs(Γ)]n =
[

χC
s

]

n

[

RC(Γ)
]

n
+
[

χE
s

]

n

[

RE(Γ)
]

n
(13)

where χC
p and χC

s (resp. χE
p and χE

s ) gather the logarithm of the concrete (resp. earth) velocities at any
point of the mesh. The resulting penalized least-squares cost function depends on Γ according to:

J (Γ) =
∑

ω

∑

k

‖yω,k − gω,k ◦m(Γ)‖2 + φ(Γ) (14)

where m is the shape model defined by (12) and (13).

2.2 Available prior information

To constrain the boundary, strong prior information is incorporated in the inversion procedure. Let us
make the available prior information about the probed medium more explicit. It can be stated as a
list of seven assumptions, A1 to A7. The first five are linked to the general structure of foundations
while the last two refer to information that can be obtained experimentally by means of complementary
techniques:

A1 : A foundation is all in one piece.

A2 : Any horizontal cross-section of a foundation is rectangular. Given that we work in a plane of
symmetry of the foundation, it is represented by a horizontal segment (figure 7).

A3 : A foundation has a flat basis.

A4 : The width of the foundation increases with depth.

A5 : The top of a foundation is visible.

A6 : The depth of the foundation can be estimated beforehand with an impact-echo method [39].

A7 : A prior estimate of the earth characteristics is available. More precisely, the pressure-wave velocity
can be estimated by means of a seismic refraction technique and the shear-wave velocity can be
deduced from the propagation of the surface waves [11]. The characteristics of concrete can be set
to standard values.
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Figure 7: Representation of a foundation in 3-D (left). Any horizontal cross-section is rectangular. In
the plane of symmetry (right), this corresponds to a horizontal segment.

The next question is how to parametrize the scatterer outline. In the framework of inverse scattering,
two main approaches can be distinguished. On the one hand, some authors use a parametric shape
model. The advantage of this approach is to work with a reduced number of descriptive parameters.
For example, the scatterer outline can be described with polygons [40, 41], splines [42, 43], spherical
harmonics [44] or radial basis functions [45]. On the other hand, a non-parametric method can be used.
The scatterer outline is modelled as a deformable function. A typical example is the level-set approach
introduced by Osher and Sethian [46, 47]. In this framework, the scatterer shape evolves more freely
and topological changes such as merging or splitting are handled automatically. It has been applied to
the resolution of inverse scattering problems in [48, 49, 50].

None of the latter two approaches is perfectly suited to the present context. On one side, no sufficient
prior information is available to define a specific family of geometries. Indeed, a polygonal representation
could be rather well suited, but the number of vertices should be known in advance. On the other side,
the level-set would not enable to easily incorporate the geometrical assumptions listed above. In [51],
a trade-off between the two approaches is proposed. The level-set formalism is used but the optimized
shape is constructed by combining shapes of a predefined dictionary. One difficulty of this method is the
determination of a shape dictionary consistent with the scatterer structure.

Here, a new parametrization taking into account the prior information about the scatterer shape is
presented. The model we propose can be described as ”semi-parametric” since a finite but large number
of parameters is used.

2.3 Description of the scatterer shape

We first present the proposed parametrization in the continuous case.
Any horizontal cross-section is represented by a horizontal segment (A2). In other words, ΩC is

horizontally convex: for each couple of points (P1, P2) in ΩC with [P1P2] horizontal, any point of [P1P2]
belongs to ΩC. Thus, any horizontal line crossing the foundation intersect the boundary Γ at exactly
two points. At the ordinate y = d, their positions relative to any given vertical reference line x = lref
are denoted by ll(d) and lr(d).

The whole boundary is thus described by two functions ll and lr. They are defined on [0, D], where
D is an estimate of the foundation depth (A6). The fact that a foundation is all in one piece (A1) and
that it has a flat basis (A3) is thus implicitly taken into account. If the width of the foundation increases
with depth (A4), ll and lr are two non-decreasing functions. This description is illustrated in figure 8.

Two 2-D binary functions RC and RE associated to ΩC and ΩE respectively (see (10) and (11)) are
deduced from ll and lr:

RC(x, y) =

{

H(x − lref + ll(y)) (1−H(x− lref − lr(y))) if 0 ≤ y ≤ D

0 if y > D
(15)

RE(x, y) = 1−RC(x, y) (16)

where H denotes the Heaviside function: H(x) = 1 if x ≥ 0, 0 if x < 0.
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Figure 8: Description of the foundation shape. Left: scheme of the underground medium, right: corre-
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In the discrete case, the foundation shape is described by two vectors ll and lr instead of functions
ll and lr. Their number of entries is equal to the number of horizontal mesh lines partially covering the
foundation. The vectors RC and RE are deduced from ll and lr using the Heaviside function as in the
continuous case.

Using such a model, the whole prior information linked to the foundation geometry is taken into
account. A reduced number of parameters are used compared to the level-set method, for which the
number of variables used to describe the target outline is equal to the number of mesh points. Nonetheless,
there is no additional restriction on the foundation geometry besides the assumptions listed above, as it
would be the case with a parametric approach.

2.4 Inversion procedure

The exact velocity values of earth and concrete, introduced in (12) and (13), are not known in practice.
Instead, we use a preliminary estimation of the earth and concrete characteristics (A7) but these esti-
mates may not correspond to the real underground characteristics. Indeed, the preliminary estimation
procedure tends to produce smooth velocity maps and thus may not take account of some heterogeneities.
Moreover, a discrepancy between the estimated and the exact velocity values may exist. In order to be
able to retrieve the exact characteristic values, space varying perturbations are added to the model
described above. They are estimated during the inversion.

In the following, the preliminary estimations of the earth (resp. concrete) area characteristics are
denoted by χ̃E

p and χ̃E
s (resp. χ̃C

p and χ̃C
s ) and the characteristics perturbations are denoted by εp and

εs. The list of unknowns to be determined is thus: ll, lr, εp and εs. They are related to the underground
characteristics as follows:

χp(ll, lr, εp) = χ̃C
p ⊙RC(ll, lr) + χ̃E

p ⊙RE(ll, lr) + εp (17)

χs(ll, lr, εs) = χ̃C
s ⊙RC(ll, lr) + χ̃E

s ⊙RE(ll, lr) + εs (18)

Without any additional regularization tool, let us stress that the estimation problem would be un-
determined. Indeed, for any characteristics fields χp and χs and any values of the parameters ll and
lr, one can find εp and εs such that (17) and (18) are verified. Therefore, we propose to incorporate a
weighted quadratic penalty term applied to εp and εs into the minimized cost function:

J (ll, lr, εp, εs) =
∑

ω

∑

k

‖yω,k − gω,k ◦m(ll, lr, εp, εs)‖
2 + γ

(

‖εp‖
2 + ‖εs‖

2
)

(19)

where gω,k is the forward model (see subsection 1.3) andm is the shape model described by (17) and (18).
The value of the weighting hyperparameter γ is set heuristically and remains fixed during the inversion.
The tests we performed showed low sensitivity of the inversion results to the value of γ. Indeed, the
regularizing effect is mainly due to the shape model itself rather than to the penalty terms of the criterion.
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Therefore, in the framework of real data processing, we can assume that the value of γ will be fixed in
advance and will not have to be tuned by the user.

The computation cost due to the use of the proposed shape model is negligible compared to the
computation of gω,k. Moreover, the proposed regularization scheme enables one to optimize all the
unknowns in a simultaneous way with a gradient-based technique. This contributes to perform the
inversion efficiently. In contrast, in [41], a polygonal shape is optimized with a gradient-based technique
but the vertices are updated one after the other. In [42, 43], the minimization technique does not
benefit from gradient information. Our algorithm also has an advantage over the level-set method, for
which the optimization procedure must regularly be stopped to perform an update of the descriptive
variables [52, 53].

The shape model as defined by equations (15) to (18) is not differentiable: it involves the Heaviside
function H which is discontinuous at zero. In practice, we propose to adopt a smoothed approximation
of the Heaviside function Hα that is usual within the level-set framework (see figure 9):

Hα(x) =















1

2

(

1 +
x

α
+

1

π
sin

πx

α

)

if |x| ≤ α

1 if x > α

0 if x < −α

(20)

The shape derivative can thus be computed by means of the function δα :

δα(x) =







1

2α

(

1 + cos
πx

α

)

if |x| ≤ α

0 if |x| > α
(21)

The parameter α determines the length of the transition in Hα. It is set to the discretization step
∆x as suggested in [53].

2.5 Estimation of the source signal

In this subsection, we show how our model can incorporate the estimation of the source signal following
the procedure proposed in [13]. Indeed, experimental tests showed that the wave train propagating in
the underground medium does not exactly match the signal generated by the seismic source. During its
transmission to the underground medium, we observe that some frequencies are attenuated. Therefore,
the source signal cannot be assumed perfectly known a priori.

For each source location k, let s̃k and sk denote a first estimate of the source signal and the unknown
exact source signal, respectively. Let us suppose that sk is equal to the convolution output between s̃k
and a filtering signal ak, i.e.,

sk(ω) = ak(ω)s̃k(ω) (22)

in the frequency domain.
For given source location k and frequency ω, the force density field (denoted by Fω,k in subsection

1.3) depends linearly on the amplitude of the signal source by construction and also depends linearly
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on the simulated data set (see equation (7)). Let gω,k and g̃ω,k denote the simulated data sets which
correspond to the exact and the estimated source signals, respectively. We thus have:

gω,k = aω,kg̃ω,k (23)

Therefore, estimating the source signal amounts to estimating the coefficients aω,k. These additional
unknowns are incorporated in the minimized criterion as follows:

J (ll, lr, εp, εs, aω,k) =
∑

ω

∑

k ‖yω,k − aω,k g̃ω,k ◦m(ll, lr, εp, εs)‖
2

+γ
(

‖εp‖
2 + ‖εs‖

2
)

(24)

The latter criterion is quadratic with respect to aω,k when lp, ls, εp and εs are fixed. Thus, we can
deduce an analytical expression for the optimal values of aω,k:

aω,k =
(g̃ω,k ◦m(ll, lr, εp, εs))

†yω,k

‖g̃ω,k ◦m(ll, lr, εp, εs)‖2
(25)

This expression can be incorporated into (24):

J (ll, lr, εp, εs) =
∑

ω

∑

k

∥

∥

∥
yω,k −

(g̃ω,k◦m(ll,lr,εp,εs))
†yω,k

‖g̃ω,k◦m(ll,lr ,εp,εs)‖2 g̃ω,k ◦m(ll, lr, εp, εs)
∥

∥

∥

2

+γ
(

‖εp‖
2 + ‖εs‖

2
)

(26)

This way, the source signal is estimated without explicitly introducing additional unknowns.

3 Results

This section provides some numerical results that illustrate the efficiency of the proposed approach.
Firstly, we consider the configuration of reduced size introduced in subsection 1.4 and we evaluate the
improvement brought in comparison with the Tikhonov and the edge-preserving regularization schemes.
The robustness to uncertainties on the foundation depth estimation (assumption A6) and on the earth
characteristics estimation (assumption A7) is also tested. Secondly, results obtained on a configuration
of realistic size are presented.

3.1 Comparison with the Tikhonov and the edge-preserving regularization

schemes

The proposed algorithm is first applied on the configuration of reduced size presented in subsection 1.4.
We assume that the foundation width increases with depth (assumption A4). Therefore, positivity
constraints are applied on the components of ll and lr. In practice, we resorted to the L-BFGS-B
algorithm to minimize the criterion under positivity constraints [54]. L-BFGS-B is an efficient variant
of the L-BFGS algorithm that accounts for bound constraints on the unknowns. The inversion was
performed under the same conditions as previously and with the same initializations (see figure 4). The
source signal was assumed known.

The results show that the foundation geometry is much better imaged here than with Tikhonov and
the edge-preserving regularization schemes. At convergence, the foundation outline is very close to the
exact solution. In particular, the straight sides of the foundation are well reconstructed, which was not
the case with the edge-preserving regularization scheme.

Table 2 compares the computation times required by the three approaches. All tests were performed
on a computer equipped with eight quad-core 3 GHz processors and 16 GB memory. The differences are
significant: the proposed algorithm converges about two times faster than the edge-preserving regular-
ization scheme, and from five to ten times faster than the Tikhonov regularization scheme.

3.2 Robustness of the algorithm

The proposed inversion procedure is based on the prior estimation of the foundation depth (assumption
A6) and of the earth characteristics (assumption A7). These prior estimates are obtained by means of
experimental procedures, which are subject to uncertainty. In this subsection, we evaluate how errors
on these prior estimates impact the inversion results on the configuration of reduced size. Inversion is
performed under the same conditions as previously.
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Figure 10: Results obtained with the proposed inversion scheme, γ = 10−10 (left: final maps of vp and
vs for each initialization, right: temporal evolution of the criterion)

Table 2: Computation time for the each regularization scheme and each initialization.
Regularization scheme Initialization (i) Initialization (ii)
Tikhonov 509 min. 1043 min.
Edge-preserving 196 min. 182 min.
Proposed method 96 min. 88 min.

3.2.1 Prior estimation of the foundation depth

In practice, the maximum error on the prior estimation of the foundation depth D is assumed to be
of about 10%. We thus made several tests with varying depth estimations from 42 to 54 centimetres,
the actual depth being 48 centimetres. In all cases, the algorithm was initialized by extending the top
of the foundation down to the estimated depth. This corresponds to the first of the two initializations
considered in the previous tests (figure 4). For each depth estimation, the final segmentation of the
underground medium is presented in figure 11. We also provide the value of the data fidelity term of the
criterion obtained at convergence:

J0(ll, lr, εp, εs) =
∑

ω

∑

k

‖yω,k − gω,k ◦m(ll, lr, εp, εs)‖
2 (27)

The results show that the algorithm is sensitive to an inaccurate depth estimation. In particular,
an underestimated (resp., overestimated) value tends to be compensated by an overestimated (resp.,
underestimated) foundation width.

A bad estimation of the foundation depth has also an impact on the criterion: the final value of J0

increases with the estimation error. To adjust the foundation depth estimate, we suggest to perform the
inversion separately for several depth hypothesis and to use the value of J0 as an indicator of the best
depth estimate.

This corresponds to a model order estimation procedure. It has been used in the framework of
shape estimation in [55] where a two-dimensional boundary is described by the coefficients of a Fourier
series. An unconstrained least-square criterion is minimized so that an augmentation of the model order
necessarily leads to a decrease of the minimal criterion value. To regularize the problem and determine
the correct model order, the authors use the Rissanen’s Minimum Description Length criterion [56].
Here, the foundation width is constrained to increase with depth (assumption A4), which plays the role
of regularization. In the unconstrained mode, a penalization term depending of the model order could
be introduced in the criterion expression, akin to [56].

Another alternative would be to update the foundation depth alternatively or simultaneously with
the left and right boundaries. However, it cannot be implemented without reconsidering the inversion
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Figure 12: Robustness of the algorithm with respect to an underestimation of the earth characteristics
with (left) and without (right) restriction to a region of interest, γ = 10−10 in the two cases

procedure. Indeed, the foundation depth determines the number of unknowns of the problem: a deeper
foundation will be described by a larger number of components of ll and lr. It thus cannot be considered
as an unknown entering of the criterion in the same way as the other shape parameters.

3.2.2 Prior estimation of the earth characteristics

Here, we study the impact of an erroneous preliminary estimation of the earth characteristics. We suppose
that vE

p and vE
s are set to 270 m.s-1 and 135 m.s-1 instead of 300 m.s-1 and 150 m.s-1, respectively, which

corresponds to an underestimation error of 10%. As before, the algorithm was initialized by extending
the top of the foundation down to the estimated depth (first initialization in figure 4). The error on the
prior estimation of the earth characteristics is taken into account in the initialization.

The final segmentation of the medium is presented in figure 12(a). The reconstruction results are
significantly altered by the error on the earth characteristics estimation. We remark that an underesti-
mation of the earth characteristics is compensated by an overestimation of the foundation width. This is
mainly due to the restriction to a region of interest. Indeed, inside the region of interest, the discrepancy
between the estimated and the exact velocity values is compensated by the introduction of the variables
εp and εs, whereas outside the region of interest, the underground characteristics are set to the prior
estimations and the underground characteristics in this area are not part of the unknowns. Without
restriction to a region of interest (figure 12(b)), the results are much closer to the exact solution. This
example demonstrates that in practice, it is recommended to extend the region of interest to the whole
probed area, even at the price of a higher computation cost.

3.3 Application to a configuration of realistic size

Our algorithm was finally tested on a synthetic configuration of realistic size (see figure 13). The
underground medium is 9 meters and 4 meters in horizontal and vertical directions. Here, we consider
that the seismic sources are detonators located in the subsurface. Each detonation produces a force
field both in the horizontal and vertical directions. Figure 14 presents the seismogram resulting from
the shallowest detonation on the left side of the foundation. The horizontal component (resp. the
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vertical component) is represented by a 2-D Gaussian derivative along the x-axis (resp. the y-axis)
with a standard deviation of ∆x and ∆y along the x- and y-axis respectively. The detonations occur
at 18 successive locations and generate a 200 Hz Ricker wavelet. 10 frequencies from 100 Hz to 500
Hz were selected for the inversion. The measurement system consists of 44 geophones placed on the
surface. White Gaussian noise is added to the simulated data (the signal to noise ratio equals 30 dB).
The characteristic values of each region are those given in table 1 except that in concrete, the density
ρC is now set to 2200 kg/m3. To take into account the variation in density between earth and concrete,
the segmentation of the underground medium into two regions ΩC and ΩE is used:

ρ = ρ̃C ⊙RC(ll, lr) + ρ̃E ⊙RE(ll, lr) (28)

where ρ̃C and ρ̃E denote prior estimations of the concrete and earth densities, respectively.
Here, the source signal is estimated during the inversion as it would be recommended in a real

experiment. To initialize the algorithm, the top of the foundation is extended down to the foundation
depth. We considered two cases: (1) the foundation width is supposed to increase with depth and (2) this
hypothesis is not taken into account. Indeed, this assumption might not always be satisfied in practice,
particularly in case of deterioration of the foundation. The final segmentations of the probed medium
are presented in figure 15.

In the two cases, the estimated foundation geometry is very close to the expected result. The
presented example can thus be considered as a proof of concept for the imaging of foundations. Without
constraints on ll and lr, the foundation outline is more irregular. More precisely, several “notches” are
present at the basis of the estimated foundation in an erroneous way. Indeed, they appear in areas
where the data sensitivity is low, because only a small fraction of the emitted waves travels forward and
backward between the soil surface and the basis of the foundation, while the shape of the foundation is
not regularized.

The assumption that the foundation increases with depth is not necessarily true for degraded foun-
dations. To prevent the formation of an irregular foundation shape without taking into account this
constraint, a more versatile assumption could be considered. For example, one can assume that a foun-
dation is mainly composed of smooth edges separated by sharp transitions. In practice, one possibility
is to add a regularization term function of ll and lr in the minimized criterion. The approximation of
the total variation introduced in section 1.4.3 can be used:

φ(ll, lr) =
∑

m

√

([ll]m+1 − [ll]m)2 + δ2 +
√

([lr]m+1 − [lr]m)2 + δ2 (29)

Another possibility would be to introduce other constraints on the components of ll and lr such as:

[ll]m ≥ min ([ll]m−1, [ll]m+1) (30)

[lr]m ≥ min ([lr]m−1, [lr]m+1) (31)

in order to prevent the artificial notches observed on the right side of figure 15.

Conclusion

This paper tackled an inverse scattering problem for imaging a high-contrast object. The aim is to
determine the geometry of a concrete foundation by means of a seismic imaging procedure. The proposed
inversion procedure is based on an original description of the probed medium. It enables to take precise
information into account about the shape of the scattering object and the characteristics of earth and
concrete. Tests were performed on a synthetic dataset. The results revealed good performance of the
proposed algorithm, contrary to more classical approaches.

As a prerequisite to real data processing, several additional tests should be performed. Firstly, tests
on synthetic data could be performed on more realistic configurations. In particular, we worked on con-
figurations where the earth and the concrete areas were supposed perfectly homogeneous. Configurations
including for example a stratified underground medium could be considered. The next step would be to
apply our algorithm to experimental data. In particular, it could be applied to measurements collected
on a scale model, which geometrical and physical characteristics are perfectly controlled. Finally, the
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efficiency of the proposed inversion procedure could be tested by imaging real foundations of known
shapes [11].

Along with these tests, the inversion algorithm could be improved with the aim of reducing the
computation time. This aspect has already been taken into account in the choice of a minimization
algorithm specifically suited to large-scale nonlinear problems. However, many iterations are required,
so a large number of linear systems must be solved to compute the criterion and the gradient. For this,
an LU factorization is currently used. Instead of an exact factorization, an incomplete LU factorization
could be performed. Provided that the theoretical convergence properties can be maintained, this would
allow to strongly reduce the computational requirement, both in time and memory.
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