
HAL Id: hal-01235178
https://hal.science/hal-01235178v1

Preprint submitted on 28 Nov 2015 (v1), last revised 26 Aug 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Pseudofinite Mc-groups
Frank Olaf Wagner

To cite this version:

Frank Olaf Wagner. Pseudofinite Mc-groups. 2015. �hal-01235178v1�

https://hal.science/hal-01235178v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


PSEUDOFINITE M̃c-GROUPS

FRANK O. WAGNER

Abstract. A pseudofinite group satisfying the uniform chain condition on cen-
tralizers up to finite index has a big finite-by-abelian subgroup.

Introduction

We generalize the results of Elwes, Jaligot, MacPherson and Ryten [1, 2] about
pseudofinite superstable groups of small rank to the pseudofinite context, possibly
of infinite rankl

1. Rank

Definition 1. A dimension on a theory T is a function dim from the collection of
all interpretable subsets of a monster model to R

≥0 ∪ {∞} satisfying

• Invariance: If a ≡ a′ then dim(ϕ(x, a)) = dim(ϕ(x, a′)).
• Algebraicity: If X is finite, then dim(X) = 0.
• Union: dim(X ∪ Y ) = max{dim(X), dim(Y )}.
• Fibration: If f : X → Y is a interpretable surjection whose fibres have

constant dimension r, then dim(X) = dim(Y ) + r.

For a partial type π we put dim(π) = inf{dim(ϕ) : π ⊢ ϕ}. We write dim(a/B) for
dim(tp(a/B)).

It follows that X ⊆ Y implies dim(X) ≤ dim(Y ), and dim(X × Y ) = dim(X) +
dim(Y ). Moreover, any partial type π can be completed to a complete type p with
dim(π) = dim(p).

Definition 2. A dimension is additive if it satisfies

• Additivity: dim(a, b/C) = dim(a/b, C) + dim(b/C).

Remark 3. Additivity is clearly equivalent to fibration for type-definable maps.

Example. Examples for an additive dimension include:
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(1) coarse pseudofinite dimension (in the expansion by cardinality comparison
quantifiers, in order to ensure invariance);

(2) Lascar rank, SU -rank or þ-rank, possibly localised at some ∅-invariant family
of types;

(3) for any ordinal α, the coefficient of ωα in one of the ordinal-valued ranks in
(2) above.

In any of the examples, we put dim(X) = ∞ if dim(X) > n for all n < ω.

Note that additivity in the above examples follows from the Lascar inequalities for
the corresponding rank in examples (2) and (3) and from [3] in example (1).

Definition 4. Let G be a type-definable group with an additive dimension, and
suppose 0 < dim(G) < ∞. A partial type π(x) implying x ∈ G is wide if dim(π) =
dim(X). It is broad if dim(π) > 0. An element g ∈ G is wide/broad over some
parameters A if tp(g/A) is. We say that π is negligible if dim(π) = 0.

Lemma 5. An additive dimension is invariant under definable bijections.

Proof: Let f be an A-definable bijection, and a ∈ dom(f). Then dim(f(a)/A, a) = 0
and dim(a/A, f(a)) = 0, whence

dim(a/A) = dim(a, f(a)/A) = dim(f(a)/A). �

Definition 6. If dim(a/A) < ∞, we say that a |d⌣ A
B if dim(a/A) = dim(AB).

It follows that |d⌣ satisfies transitivity. Moreover, for any partial type π there is a
comple type p ⊇ π (over any set of parameters containing dom(π)) with dim(p) =
dim(π), so |d⌣ satisfies extension.

Lemma 7 (Symmetry). Let dim be an additive dimension. If dim(a/A) < ∞ and
dim(b/A) < ∞, then a |d⌣ A

b if and only if b |d⌣ A
a, if and only if dim(a, b/A) =

dim(a/A) + dim(b/A).

Proof: Obvious. �

Lemma 8. Let G be a type-definable group with an additive dimension, and suppose
0 < dim(G) < ∞. If g is wide over A and h is wide over A, g, then gh and hg are
wide over A, g and over A, h.

Proof: As dimension is invariant under definable bijections

dim(gh/A, g) = dim(h/A, g) = dim(G).

The other statements follow similarly, possibly using symmetry. �
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2. Big abelian subgroups

Proposition 9. Let G be a pseudofinite group, and dim an additive dimension on
G. Then there is an element g ∈ G \ {1} such that dim(CG(g)) ≥

1

3
dim(G).

Proof: Suppose first that G has no involution. If G ≡
∏

I Gi/U for some family
(Gi)I of finite groups and some non-principal ultrafilter U , then Gi has no involution
for almost all i ∈ I, and is soluble by the Feit-Thompson theorem. So there is
gi ∈ Gi \ {1} such that 〈gGi

i 〉 is commutative. Put g = [gi]I ∈ G \ {1}. Then 〈gG〉
is commutative and gG ⊆ CG(g). As gG is in definable bijection with G/CG(g), we
have

dim(CG(g)) ≥ dim(gG) = dim(G/CG(g)) = dim(G)− dim(CG(g)).

In particular dim(CG(g)) ≥
1

2
dim(G).

Now let i ∈ G be an involution and suppose dim(CG(i)) <
1

3
dim(G). Then

dim(iG) = dim(G/CG(i)) = dim(G)− dim(CG(i)) >
2

3
dim(G)

and there is j = ig ∈ iG with dim(j) ≥ 2

3
dim(G). Note that

dim(CG(j)) = dim(CG(i)
g) = dim(CG(i)) <

1

3
dim(G).

Then

dim(jGj) = dim(G/CG(j)) = dim(G)− dim(CG(j)) >
2

3
dim(G)

and there is h = jg
′

j ∈ jGj with dim(h/j) ≥ 2

3
dim(G). Note that h is inverted by

j. By additivity,

dim(j/h) = dim(j, h)− dim(h) ≥ dim(h/j) + dim(j)− dim(G) >
1

3
dim(G).

If H = {x ∈ G : hx = h±1}, then H is an h-definable subgroup of G, and CG(h) has
index two in H . Since j ∈ H , we have

dim(CG(h)) = dim(H) ≥ dim(j/h) >
1

3
dim(G). �

Theorem 10. Let G be a pseudofinite M̃c-group, and dim an additive dimension
on G. Then G has a definable broad finite-by-abelian subgroup Z. More precisely,
Z = Z̃(C) where C is a minimal broad centralizer (up to finite index) of a finite
tuple.
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Proof: By the M̃c condition, there is a broad centralizer C of some finite tuple, such
that CC(g)) is not broad for any g ∈ C \ Z̃(C). Put Z = Z̃(C), a definable finite-by-
abelian normal subgroup of C. If Z is broad, we are done. Otherwise dim(Z) = 0,
and

dim(C/Z) = dim(C)− dim(Z) = dim(C).

For g ∈ C \ Z we have dim(CC(g)) = 0, whence for ḡ = gZ we have

dim(ḡC/Z) = dim(gCZ/Z) ≥ dim(gC)− dim(Z)

= dim(C)− dim(CC(g))− dim(Z) = dim(C/Z).

Hence for all ḡ ∈ (C/Z) \ {1̄} we have

dim(CC/Z(ḡ)) = dim(C/Z)− dim(ḡC/Z) = 0.

As C and Z are definable, C/Z is again pseudofinite, contradicting Proposition 9. �

Theorem 10 holds in particular for any pseudofinite M̃c-group with the pseudofinite
counting measure. Note that the broad finite-by-abelian subgroup is defined in the

pure group, using centralizers and almost centres. Moreover, the M̃c-condition is
just used in G, not in the section C/Z.

Corollary 11. A superrosy pseudofinite group with Uþ(G) ≥ ωα has a definable
finite-by-abelian subgroup A with Uþ(A) ≥ ωα.

Proof: A superrosy group is M̃c. If α is minimal with Uþ(G) < ωα+1 and we put

dim(X) ≥ n if Uþ(X) ≥ ωα · n,

then dim is an additive dimension with 0 < dim(G) < ∞. The assertion now follows
from Theorem 10. �

Corollary 12. For any d, d′ < ω there is n = n(d, d′) such that if G is a finite group
without elements (gi : i ≤ d′) such that

|CG(gi : i < j) : CG(gi : i ≤ j)| ≥ d

for all j ≤ d′, then G has a subgroup A with |A′| ≤ n and n |A|n ≥ |G|.

Proof: If the assertion were false, then given d, d′, there were a sequence (Gi : i < ω)
of finite groups satisfying the condition, such that Gi has no subgroup Ai with |A′

i| ≤ i
and i |Ai|

i ≥ |Gi|. But any non-principal ultraproduct G =
∏

Gn/U is a pseudofinite

M̃c-group, and has a definable subgroup A with A′ finite and dim(A) ≥ 1

n
dim(G) for

some n < ω. Unravelling the definition of the pseudofinite counting measure (and
possibly increasing n) we get |A′

i| ≤ n and n · |Ai|
n ≥ |Gi| for almost all i < ω, a

contradiction for i ≥ n. �
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3. Pseudofinite M̃c-groups of dimension 2

Theorem 13. Let G be a pseudofinite M̃c-group, and dim an additive integer-valued
dimension on G. If dim(G) = 2, then G has a broad definable finite-by-abelian
subgroup N whose normalizer is wide.

Proof: Note that since dim is integer-valued, a broad subgroup has dimension at
least 1. By Corollay 11, if C is a minimal broad centralizer (up to finite index), then
A = Z̃(C) is broad and finite-by-abelian.
If A is commensurate with Ag for all g ∈ G, then commensurativity is uniform by
compactness. So by Schlichting’s Theorem there is a normal subgroup N commen-
surate with A. But then Z̃(N) contains A ∩ N , has finite index in N and is broad;
since it is characteristic in N , it is normal in G and we are done.
Suppose g ∈ ÑG(H) is such that A is not commensurable with Ag. Then clearly C
cannot be commensurable with Cg, and

dim(A ∩ Ag) ≤ dim(C ∩ Cg) = 0.

Hence

dim(AAg) ≥ dim(AAg/(A∩Ag)) = dim(A/(A∩Ag)+dim(Ag/(A∩Ag)) = 2 dim(A).

As A is broad and dim(G) = 2, we have dim(A) = 1.
Choose some d-independent wide a, b0, c0 in A over g. Then dim(agb0/g, c0) = 2, and

2 ≥ dim(c0a
gb0/g) ≥ dim(c0a

gb0/g, c0) = dim(agb0/g, c0) = dim(agb0/g) = 2

and c0 |d⌣ g
c0a

gb0. Thus c0 is wide in A over g, c0a
gbc0. Similarly, b0 is wide in A over

g, c0a
gbc0.

Choose d, b1, c1 ≡c0agb0,g a, b0, c0 with d, b1, c1 |d⌣ c0agb0,g
a, b0, c0. Then c0a

gb0 = c1d
gb1,

whence

agb = cdg,

where c = c−1

0 c1 and b = b0b
−1

1 . Moreover,

dim(b/a, g) ≥ dim(b0b
−1

1 /a, b0, c0, g) ≥ dim(b1/a, b0, c0, g) = dim(b1/c0a
gb0, g) = 1,

so b is wide in A over g, a. Similarly, c is wide in A over g, d.
Let x and y be two d-independent wide elements of CA(a, b, c, d) over a, b, c, d, g.
Then they are d-independent wide in A, and for z = xgy we have

dim(z/a, b, c, d, g) = 2,

so z is wide in G over g, a, b, c, d. Moreover

azb = axgyb = agyby = (agb)y = (cdg)y = cydgy = cdxgy = cdz.
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Choose z′ ∈ G with z′ ≡a,b,c,d z and z′ |d⌣ a,b,c,d
z, and put r = z′−1z. Then r is wide

in G over g, a, b, c, d, z, and

azbr = az
′rbr = (az

′

b)r = (cdz
′

)r = crdz
′r = crdz.

Hence
c−1azb = dz = c−razbr.

Putting b′ = bb−r and c′ = cc−r, we obtain

azb′ = c′az,

where a is wide in A. As r |d⌣ g,a,b,c,d
z we have

dim(z/a, b′, c′) ≥ dim(z/a, b, c, d, r) = dim(z/a, b, c, d) = 2,

and z is wide in G over a, b′, c′. If z′′ ≡a,b′,c′ z with z′′ |d⌣ a,b′,c′
z, then az

′′

b′ = c′az
′′

,

whence

b′a
z

= c′ = b′a
z′′

and aza−z′′ = a′z commutes with b′, where a′ = aa−z′′z−1

.

Claim. dim(b′) ≥ 1, dim(a′/b′) ≥ 1, dim(z/a′, b′) ≥ 2 and dim(a′z/b′) ≥ 1.

Proof of Claim: If dim(b′/b) = 0, then dim(r/b, b′) = dim(r/b) = 2. Choose r′ ≡b,b′ r
with r′ |d⌣ b,b′

r. So br = b′−1b = br
′

and r′r−1 ∈ CG(b). Since r′r−1 is wide in G

over b, so is CG(b), and it has finite index in G by minimality. Thus b ∈ Z̃(G)

and dim Z̃(G) ≥ 1, so we can take N = Z̃(G). Thus we may assume dim(b′) ≥
dim(b′/b) ≥ 1.
Next, note that z and z′′z−1 are wide and d-independent over a, b′, c′ by Lemma 8. An
argument similar to the first paragraph yields dim(a′/b′) ≥ dim(a′/a, b′, z′′z−1) ≥ 1
and dim(a′z/b′) ≥ 1. �

To finish, note that dim(CG(b
′)) ≥ dim(a′z/b′) ≥ 1. If dim(CG(b

′)) = 2, then
b′ ∈ Z̃(G) and dim(Z̃(G)) ≥ dim(b′) ≥ 1, so we are done again. Otherwise

dim(CG(b
′)) = 1. By the M̃c-condition there is a broad centralizer D ≤ CG(b

′)
of some finite tuple, minimal up to finite index, and dim(D) = dim(CG(b

′)) = 1,
whence dim(CG(b

′)/D) = 0. Choose z∗ ∈ G with z∗ ≡a′,b′ z and z∗ |d⌣ a′,b′
z, and put

h = z∗−1z. Then a′z
∗

∈ CG(b
′), so a′z ∈ CG(b

′, b′h). Moreover, h is wide in G over
a′, b′ and d-independent of z, so

dim(CG(b
′, b′h)) ≥ dim(a′z/b′, h) = dim(a′z/b′) ≥ 1

and dim(CG(b
′)/CG(b

′, b′h)) = 0. It follows that

dim(D/D ∩Dh) = dim(D/(D ∩ CG(b
′h))) + dim((D ∩ CG(b

′h))/(D ∩Dh))

≤ dim(CG(b
′)/CG(b

′, b′h)) + dim(CG(b
′h)/Dh) = 0,
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whence dim(D ∩Dh) = 1, and Dh is commensurable with D by minimality. Thus

dim(ÑG(D)) ≥ dim(h/b′) = 2

and ÑG(D) is wide in G. Since D is finite-by-abelian by Corollary 11, we finish as
before, using Schlichting’s Theorem. �

Corollary 14. Let G be a pseudofinite group whose definable sections are M̃c, and
dim an additive integer-valued dimension on G. If dim(G) = 2, then G has a defin-
able wide soluble subgroup.

Proof: By Theorem 13, there is a definable finite-by-abelian group N such that
NG(N) is wide. Replacing N by CN (N

′), we may assume that N is (finite central)-
by-abelian. If dim(N) = 2 we are done. Otherwise dim(NG(N)/N) = 1; by Corollary
11 there is a definable finite-by-abelian subgroup S/N with dim(S/N) = 1. As above
we may assume that S/N is (finite central)-by-abelian, so S is soluble. Moreover,

dim(S) = dim(N) + dim(S/N) = 1 + 1 = 2,

so S is wide in G. �

Corollary 15. A pseudofinite superrosy group G with ωα · 2 ≤ Uþ(G) < ωα · 3 has
a definable soluble subgroup S with Uþ(S) ≥ ωα · 2.

Proof: Superrosiness implies that all definabel sections of G are M̃c. We put

dim(X) = n ⇔ ωα · n ≤ Uþ(X) < ωα · (n+ 1).

This defines an additive dimension with dim(G) = 2. The result now follows from
Corollary 14. �
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