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Timişoara, Romania

Email: idramnesc@info.uvt.ro

Tudor Jebelean
Research Institute for Symbolic Computation,

Johannes Kepler University,
Linz, Austria

Email: Tudor.Jebelean@jku.at

Sorin Stratulat
LITA, Department of Computer Science
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Abstract—The construction of a theory for binary trees is
presented, based on the systematic exploration of the properties
necessary for the proof-based synthesis and certification of sorting
algorithms for binary trees. The process is computer supported,
being realised in the frame of the Theorema system, with some
additional proofs in Coq required for algorithm certification. The
result of the exploration consists in 11 definitions, 3 axioms,
and more than 200 properties. Also, more than 5 algorithms
for sorting binary trees are generated.
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I. INTRODUCTION

A theory of binary trees over ordered domains is con-
structed, by systematic exploration in the context of proof-
based synthesis of sorting algorithms. The theory contains
basic definitions and axioms, properties inferred from these, as
well as propositions and conjectures relevant to the problem
of sorting. The theory is represented in the Theorema system
[5], and the proofs are also performed automatically in the
frame of this system. Additionally properties aiming to certify
synthesized sorting algorithms in the Coq system [1] have
been mechanically provided and proved. In the authors’ view,
a mathematical theory consists in a knowledge base (axioms,
definitions, propositions, etc.) – that is a collection of logical
formulae, over a certain signature (function, predicate and
constant symbols).

In general, mathematical theories are built incrementally
starting from a set of axioms, definitions, and propositions,
which are checked and proved. All the steps that mathemati-
cians make for exploring mathematical theories like defining
new notions, checking and proving propositions about the
notions, computing, solving, defining problems and their so-
lutions, can be supported by specific computer systems. The
Theorema system has been used, because it supports a notation
similar to the one used in practical mathematics, and also
provides a framework in which the natural style proof meth-
ods can be designed and implemented, moreover producing
proofs in natural language, similar to human produced proofs.
For comparison and further check, some properties are also
formalized and proved in the Coq system.

In [3] the author explains the processes of bottom-up and
top-down exploration of theories. In the process of bottom-up
exploration one starts from a set of axioms and generates new
knowledge base by introducing definitions and propositions.
In the process of top-down exploration one starts from a
problem and adds notions and properties of the notions to the

knowledge base. The author also points out the advantages and
the disadvantages of these two processes of theory exploration.
In this paper these two directions of theory exploration have
been used. First, the most obvious axioms and definitions
of the notions which are necessary for the sorting of binary
trees have been introduced, and their elementary properties
have been proved. After that the conjectures necessary for the
proof-based synthesis have been attempted to prove, and then
various properties and notions which are still necessary have
been identified. This leads to a new bottom-up exploration in
which the interaction between the old and the new notions are
investigated, until all necessary properties are discovered and
proved.

A. Applications

The immediate purpose of the theory development here
is the automated synthesis of algorithms on binary trees.
This approach opens the way for the effective automation of
proofs, of the exploration of theory and of the synthesis of
the algorithms applied on binary trees. This case study in
theory exploration can be also used in teaching, especially
because it is completely supported by the Theorema system
(https://www.risc.jku.at/research/theorema/
software). However, other applications are obviously
possible, for instance reasoning about binary trees in the
context of program verification.

B. Related work

The scheme-based model for theory exploration in the
Theorema system, introduced in [4] by Bruno Buchberger, is
applied on natural numbers in [6].

The set theory is described in [16], and [15]. Sets are
normalized in [2] in order to obtain sorted lists without
duplications. In the context of proof–based algorithm synthesis
in [8], and [11] the authors represent sets as sorted lists without
duplication, called monotone lists, and in [10] the authors
explore the corresponding theories of sets and monotone lists.

The exploration process of the theory of lists, in natural
style, and related to a complex application like automated
synthesis, see [12], is described in [9].

In contrast to all these studies, in the present work the
theory of binary trees is explored, which is carried out in
parallel with the process of proof–based synthesis of some
sorting algorithms.

In classical approaches (see e.g. [14]) the problem of
sorting of trees is not investigated.



II. BASIC APPROACH

According to the Theorema style, square brackets have
been used for function and for predicate application (e.g.,
f[x] instead of f(x) and P[a] instead of P(a)). Moreover the
quantified variables appear under the quantifier: ∀

X
(“for all

X”) is the universal quantifier, while ∃
X

(“exists X”) is the
existential quantifier.

The theory applies to binary trees and to elements of those
(which have no type but have a total ordering), however the
type of objects are not explicitly present in the formulae. This
is not a problem because the predicate and function symbols
are not overloaded. For readability, lower-case letters (e.g.,
a, b, n) represent tree elements, and upper-case letters (e.g.,
X,T, Y, Z) represent trees. Usually, the meta–variables are
starred (e.g., T ∗, T ∗1 , Z

∗) and the Skolem constants have
integer indices (e.g., X0, X1, a0).

Binary trees whose nodes are labeled with elements from
a totally ordered domain have been considered, the ordering
relation being denoted by the usual ≤ (“less or equal”). This
ordering is extended to trees as follows. The ordering between
a tree and an element is denoted by � (e.g., T � z states that
all the elements from the tree T are smaller equal than the
element z; z � T states that z is smaller equal than all the
elements from the tree T ). The ordering between trees is �
(e.g., L � R states that all the elements from L are smaller
than all the elements from R).

Two constructors for binary trees have been used, namely:
ε for the empty tree, and the triplet 〈L, a,R〉 for non-empty
trees, where L and R are trees and a is the root element.

A tree is a sorted (or search, or ordered) tree if it is either
ε or of the form 〈L, a,R〉 such that i) a is greater or equal
than any element of L and smaller or equal than any element
of R, and ii) L and R are sorted trees.

The signature of our theory contains furthermore the fol-
lowing predicates and functions:

Predicates: ≈ and IsSorted have the following interpreta-
tions, respectively: X ≈ Y states that X and Y have the same
elements with the same number of occurrences (but may have
different structures), i.e., X is a permutation of Y ; IsSorted[X]
states that X is a sorted tree.

Functions: RgM, LfM, Concat, Insert,Merge have the
following interpretations: RgM[〈L, n,R〉] returns the last vis-
ited element by traversing the tree 〈L, n,R〉 using the in-
order traversal; LfM[〈L, n,R〉] returns the first element by
traversing the tree 〈L, n,R〉 using the in-order traversal;
Concat[X,Y ] concatenates X with Y (namely, when X is
of the form 〈L, n,R〉 adds Y as a right subtree of the element
RgM[〈L, n,R〉]); Insert[n,X] inserts an element n in a tree X
(if X is sorted, then the result is also sorted); Merge[X,Y ]
combines trees X and Y into a new tree (if X,Y are sorted
then the result is also sorted).

A. Reasoning

As the theory exploration is performed in the context of
proof-based synthesis, a special prover has been implemented
in frame of the Theorema system, which has specific inference

rules for binary trees. The illustration of the inference rules
and of the induction principles presented in this subsection is
similar to the one from [10], but they are adapted and modified
for binary trees.

The prover has mainly the following types of inference
rules:

Rewriting rules: rewrite using definitions, by replacing
equals by equals.

Domain specific inference rules: which result from lifting
some properties from the knowledge base to the inference
level. These rules are useful because they do not generate
alternative branches in proofs and thus one avoids the search
space explosion.

Matching and unification: The most general case is match-
ing a conjunctive goal with the conclusion of an universal
assumed implication. E.g.: if the assumption is (ExprL =⇒
ExprR) and the goal is G1∧G2 it first tries to do matching on
G1 with ExprR (or on G2 with ExprR) of the assumed impli-
cation and if the matching is done with the substitution σ, then
it is sufficient to prove (ExprL)σ ∧G2 (or (ExprL)σ ∧G1 ).

A special situation is when variables become meta-
variables: if after matching no substitution is found for a
variable, then that variable becomes a meta-variable for which
a substitution term is needed using unification. This situation
is also described in [7].

Induction principles: lifted to the inference level, they are
adapted to prove properties about binary trees.

In the experiments the following induction principles have
been used for proving properties P [X], where X is a vector
of variables and some of them have as sort binary trees. They
are (direct or indirect) term-based instances of the Noetherian
induction principle [17] and are represented using induction
schemas.

When X has only one variable of binary tree sort:

Induction-1:(
P [ε]

∧
∀

n,L,R
((P [L]∧P [R]) =⇒ P [〈L, n,R〉])

)
=⇒ ∀

X
P [X]

Induction-2:(
P [ε]

∧
∀

n,L
(P [L] =⇒ P [〈L, n, ε〉])

∧
∀

n,L,R
((P [〈L, n, ε〉] ∧

P [R]) =⇒ P [〈L, n,R〉])
)
=⇒ ∀

X
P [X]

Induction-3:(
P [ε]

∧
∀
n
(P [〈ε, n, ε〉])

∧
∀

n,L
(P [L] =⇒

P [〈L, n, ε〉])
∧
∀

n,R
(P [R] =⇒ P [〈ε, n,R〉])

∧
∀

n,L,R
((P [L] ∧ P [R]) =⇒ P [〈L, n,R〉])

)
=⇒ ∀

X
P [X]

When X has two variables of binary tree sort:
Induction-4:(
P [ε, ε]

∧
∀

b,C,D
((P [ε, C] ∧ P [ε,D]) =⇒ P [ε, 〈C, b,D〉])

∧
∀

a,A,B
((P [A, ε] ∧ P [B, ε]) =⇒ P [〈A, a,B〉, ε])

∧



∀
a,b,A,B,C,D

((P [〈A, a,B〉, C] ∧ P [〈A, a,B〉, D] ∧
P [A, 〈C, b,D〉] ∧ P [B, 〈C, b,D〉]) =⇒

P [〈A, a,B〉, 〈C, b,D〉])
)
=⇒ ∀

X,Y
P [X,Y ]

When X has one variable of element sort and one variable
of binary tree sort:

Induction-5:(
∀
a
P [a, ε]

∧
∀

a,b,L,R
((P [a, L] ∧ P [a,R]) =⇒ P [a, 〈L, b,R〉])

)
=⇒ ∀

a,X
P [a,X]

III. THEORY EXPLORATION

This section presents the formal definitions of the functions
and predicates and their properties. As usual, the free variables
occurring in these formulae are implicitly universally quanti-
fied.

A. Basic Notions

1) The relation “≤” between elements:

P-1. (a ≤ b ∧ b ≤ c) =⇒ a ≤ c

2) The relation “�” between an element and a tree:

Definition 1. ∀
n,L

(
∀

Member[m,L]

(
n ≤ m

)
⇐⇒ n � L

)
One adds the following properties in the knowledge base:

P-2. m � ε ∧ ε � m
P-3. (m � L ∧m ≤ n ∧m � R) =⇒ m � 〈L, n,R〉
P-4. (a ≤ b ∧ b � L) =⇒ a � L

3) The relation “� ” between trees:

Definition 2. ∀
L,R

(
L� R⇐⇒ ∀

Member[m,L]
Member[n,R]

(
m ≤ n

))
P-5. L� ε

P-6. ε� L

P-7. (L� S ∧ n � S ∧R� S)⇐⇒ (〈L, n,R〉 � S)

P-8. (L� S ∧R� S ∧L� T ∧R� T ∧m � S ∧m �
T ∧m ≤ n ∧ L � n ∧R � n)⇐⇒ (〈L,m,R〉 � 〈S, n, T 〉)
P-9. (L� R ∧R� S) =⇒ L� S

P-10. (L � n ∧ n � R) =⇒ L� R

P-11. (m � L ∧ L� R) =⇒ m � R

P-12. L� R⇐⇒ ∀
Member[m,L]

(
m � R

)
P-13. L� R⇐⇒ ∀

Member[m,R]

(
L � m

)
4) The right most element:

Definition 3.
∀

n,m,L,R,S

(
RgM[〈L, n, ε〉] = n

RgM[〈L, n, 〈R,m, S〉〉] = RgM[〈R,m, S〉]

)

5) The left most element:

Definition 4.
∀

n,m,L,R,S

(
LfM[〈ε, n,R〉] = n

LfM[〈〈L, n,R〉,m, S〉] = LfM[〈L, n,R〉]

)
Remark. The functions LfM and RgM do not have a

definition for the empty tree, however the following axiom
has been assumed:

Axiom 1. ∀
m

(
RgM[ε] ≤ m ≤ LfM[ε]

)
.

6) The ‘IsSorted’ predicate:

Definition 5. ∀
L,m,R IsSorted[ε]

IsSorted[L] ∧ IsSorted[R] ∧ RgM[L] ≤ m ≤ LfM[R]

⇐⇒ IsSorted[〈L,m,R〉]


The following properties have been added in the knowledge

base:

P-14. IsSorted[T ] =⇒ (T � z ⇐⇒ RgM[T ] ≤ z)
P-15. IsSorted[T ] =⇒ (z � T ⇐⇒ z ≤ LfM[T ])

P-16. (IsSorted[L]∧ IsSorted[R]∧L � n∧ n � R∧L� R)

⇐⇒ IsSorted[〈L, n,R〉]

7) The ‘Member’ predicate:

Axiom 2. ∀
n
¬
(

Member[n, ε])
)

Definition 6. ∀
a,b,L,R

(
Member[a, 〈L, b,R〉]⇐⇒

((a = b) ∨Member[a, L] ∨Member[a,R])
)

P-17. Member[a, L] =⇒ Member[a, 〈L, b,R〉]
P-18. Member[a,R] =⇒ Member[a, 〈L, b,R〉]
P-19. Member[a, 〈L, a,R〉]

8) The permutation of a tree:

Definition 7.

∀
T,T ′


((∀

x
(Member[x, T ] =⇒

(Member[x, T ′] ∧ NbOcc[x, T ] = NbOcc[x, T ′])) ∧
∧ (∀

x
(Member[x, T ′] =⇒

(Member[x, T ] ∧ NbOcc[x, T ] = NbOcc[x, T ′])))
⇐⇒ T ≈ T ′


where NbOcc is the function which returns the number of

occurrences of an element into a tree. The definition is not
used explicitly in the proofs.

Additionally, we have considered the following properties:

P-20. (L ≈ R) =⇒ (NbOcc[a, L] = NbOcc[a,R])

P-21. (L ≈ R) =⇒ (Member[a, L]⇐⇒ Member[a,R])

P-22. 〈L, n,R〉 ≈ 〈R,n, L〉

Note also that the ≈ relation is an equivalence (this is used
implicitly by the prover).



B. Auxiliary functions

These functions are used in the sorting algorithms.

1) The concatenation of trees:

Definition 8.
∀

n,L,R,S

(
Concat[ε,R] = R

Concat[〈L, n,R〉, S] = 〈L, n,Concat[R,S]〉

)
A first simple property which can be proven inductively

from Definition 8 is the following:

P-23. Concat[L, ε] = L

Other properties:

P-24. (L� R ∧ S � R)⇐⇒ Concat[L, S]� R

P-25. (L� R ∧ L� S)⇐⇒ L� Concat[R,S]

P-26. (n � L ∧ n � R)⇐⇒ n � Concat[L,R]

P-27. (L � n ∧R � n)⇐⇒ Concat[L,R] � n
P-28. (IsSorted[L] ∧ IsSorted[R] ∧ L� R)⇐⇒

IsSorted[Concat[L,R]]

P-29. Concat[L,R] ≈ Concat[R,L]

2) The insertion of an element in a tree. If the tree is sorted,
then the resulted tree is sorted:

Definition 9. ∀
n,m,L,R Insert[n, ε] = 〈ε, n, ε〉

Insert[n, 〈L,m,R〉] =

{
〈L,m, Insert[n,R]〉, if m ≤ n
〈Insert[n,L],m,R〉, otherwise


P-30. 〈L, n,R〉 ≈ Insert[n,Concat[L,R]]

P-31. 〈L, n,R〉 ≈ Insert[n,Concat[R,L]]

P-32. IsSorted[X] =⇒ IsSorted[Insert[n,X]]

3) The ‘Merge’ operation between two trees. If the two trees
are sorted, then the resulted tree is sorted:

Definition 10. ∀
n,L,R,S(

Merge[ε,R] = R

Merge[〈L, n,R〉, S] = Insert[n,Merge[L,Merge[R,S]]]

)
P-33. Merge[T, ε] ≈ T
P-34. Merge[ε, T ] ≈ T

Other properties added to the knowledge base are:

P-35. (L� R ∧ L� S)⇐⇒ L� Merge[R,S]

P-36. (L� S ∧R� S)⇐⇒ Merge[L,R]� S

P-37. (L � n ∧R � n)⇐⇒ Merge[L,R] � n
P-38. (n � L ∧ n � R)⇐⇒ n � Merge[L,R]

P-39. 〈L, n,R〉 ≈ Insert[n,Merge[L,R]]

P-40. 〈L, n,R〉 ≈ Insert[n,Merge[R,L]]

P-41. (IsSorted[L] ∧ IsSorted[R]) =⇒ IsSorted[Merge[L,R]]

P-42. Merge[L,R] ≈ Merge[R,L]

C. Useful properties for proofs

1) Using multisets: Since the relation ≈ is an equivalence,
reasoning about it often reduces to reasoning about the multiset
of elements of the trees, which furthermore reduces to reason-
ing about the multiset of symbols occurring in an expression
which represents a tree. This is because most of the functions
which operate on trees combine the multisets of elements of
their arguments (Concat, Merge, Insert, and the constructor
〈. . .〉).

As an illustration of this principle 6 properties have been
listed below which correspond to some of the permutations of
the tree 〈L, n,Merge[R,S]〉. These properties can be generated
automatically in the Theorema system. The automation mech-
anism consists in: having an expression, obtain its multiset of
symbols, then generate the permutations of the multiset, and
then build an equivalent expression by using the constructor
〈〉, and the functions Concat, Insert, and Merge.

P-43. 〈L, n,Merge[R,S]〉 ≈ Insert[n,Merge[L,Merge[R,S]]]

P-44. 〈L, n,Merge[R,S]〉 ≈ Insert[n,Merge[Merge[L,R], S]]

P-45. 〈L, n,Merge[R,S]〉≈ Insert[n,Concat[L,Merge[R,S]]]

P-46. 〈L, n,Merge[R,S]〉≈ Insert[n,Merge[Concat[L,R], S]]

P-47. 〈L, n,Merge[R,S]〉 ≈ 〈L, n,Concat[R,S]〉
P-48. 〈L, n,Merge[R,S]〉 ≈ 〈Merge[L,R], n, S〉

Similarly, one obtains more than 100 properties correspon-
ding to the permutations of the trees: 〈L, n,Concat[R,S]〉,
〈Merge[L,R], n, S〉, and 〈Concat[L,R], n, S〉. These proper-
ties can be extended for more complex trees.

2) Decomposition into microatoms: During the proof de-
velopment it is sometimes useful to replace an atom whose
arguments include tree expressions into several atoms whose
arguments consist only of variables or constants – thus no
composite terms (the latter have been called microatoms). The
decomposition can be done both forward (generate microatoms
as consequences of an assumption) and backward (replace an
atom in the goal by the microatoms whose consequence it is).
Some properties which are necessary for such decompositions
are the following:

P-49. (IsSorted[L] ∧ IsSorted[R] ∧ IsSorted[S]) =⇒
IsSorted[Insert[n,Merge[L,Merge[R,S]]]]

P-50. (IsSorted[L] ∧ IsSorted[R] ∧ IsSorted[S]) =⇒
IsSorted[Insert[n,Merge[Merge[L,R], S]]]

The proofs of Properties 49 and 50 come directly from
Properties 32, 41.

P-51. (IsSorted[L] ∧ IsSorted[R] ∧ IsSorted[S] ∧ L� R ∧
L� S) =⇒ IsSorted[Insert[n,Concat[L,Merge[R,S]]]]

P-52. (IsSorted[L] ∧ IsSorted[R] ∧ IsSorted[S] ∧ L� R)

=⇒ IsSorted[Insert[n,Merge[Concat[L,R], S]]]

The proof of Property 52 comes directly from Proper-
ties 25, 28, 32, and 41.

P-53. (IsSorted[L]∧ IsSorted[R]∧ IsSorted[S]∧L � n ∧n �



R ∧ n � S ∧R� S) =⇒ IsSorted[〈L, n,Concat[R,S]〉]

Property 53 is easily proved using Properties 16, 25, 26, 28,
and 9.

P-54. (IsSorted[L] ∧ IsSorted[R] ∧ IsSorted[S] ∧ L � n ∧

R � n ∧ n � S) =⇒ IsSorted[〈Merge[L,R], n, S〉]

Property 54 is proved by Properties 16, 41, 37, and 36.

Similarly, one obtains numerous properties
which correspond to the sorted permutations of the
trees 〈L, n,Concat[R,S]〉, 〈Merge[L,R], n, S〉, and
〈Concat[L,R], n, S〉.

IV. SORTING ALGORITHMS

The final goal of the theory exploration case study is the
generation of sorting algorithms. The following sorting algo-
rithms are new and they have been discovered automatically
from proofs by the new prover which the authors implemented
in the Theorema system [5] (see, e.g., [5]) which is itself imple-
mented in Mathematica [18]. The method and the algorithms
extraction are presented in other authors’ paper [13].

Each algorithm has been extracted from the proof of the
conjecture formalizing the statement “for each binary tree X
there exists a sorted binary tree Y having the same elements
as X”. (Different proofs yield different algorithms.) To each
algorithm corresponds the theorem that its result is sorted.

Sort-1: The following algorithm uses the functions LfM,
RgM, Insert and Merge.

Algorithm 1.

∀
n,L,R



F1[ε] = ε

F1[〈ε, n, ε〉] = 〈ε, n, ε〉

F1[〈ε, n,R〉] =


〈ε, n, F1[R]〉, if n ≤ LfM[F1[R]]

〈F1[R], n, ε〉, if RgM[F1[R]] ≤ n
Insert[n, F1[R]], otherwise

F1[〈L, n, ε〉] =


〈ε, n, F1[L]〉, if n ≤ LfM[F1[L]]

〈F1[L], n, ε〉, if RgM[F1[L]] ≤ n
Insert[n, F1[L]], otherwise

F1[〈L, n,R〉] = Insert[n,Merge[F1[L], F1[R]]]


Sort-2: The following algorithm uses the functions LfM,

RgM, Insert, Concat, and Merge.

Algorithm 2.

∀
n,L,R


F2[ε] = ε

F2[〈L, n, ε〉] =


〈F2[L], n, ε〉, if RgM[F2[L]] ≤ n
〈ε, n, F2[L]〉, if n ≤ LfM[F2[L]]

Insert[n, F2[L]], otherwise
F2[〈L, n,R〉]=Merge[F2[〈L, n, ε〉], F2[R]]


Sort-3: The following algorithm is similar to F1, excepting

the last case where F3 uses the functions Insert and Concat.

Algorithm 3.

∀
n,L,R



F3[ε] = ε

F3[〈ε, n, ε〉] = 〈ε, n, ε〉

F3[〈ε, n,R〉] =


〈ε, n, F3[R]〉, if n ≤ LfM[F3[R]]

〈F3[R], n, ε〉, if RgM[F3[R]] ≤ n
Insert[n, F3[R]], otherwise

F3[〈L, n, ε〉] =


〈F3[L], n, ε〉, if RgM[F3[L]] ≤ n
〈ε, n, F3[L]〉, if n ≤ LfM[F3[L]]

Insert[n, F3[L]], otherwise
F3[〈L, n,R〉] = Insert[n, F3[Concat[L,R]]]


Sort-4: This algorithm is similar to F1, excepting the last

branch where F4 has three cases.

Algorithm 4. ∀
n,L,R

F4[ε] = ε

F4[〈ε, n, ε〉] = 〈ε, n, ε〉

F4[〈L, n, ε〉] =


〈F4[L], n, ε〉, if RgM[F4[L]] ≤ n
〈ε, n, F4[L]〉, if n ≤ LfM[F4[L]]

Insert[n, F4[L]], otherwise

F4[〈ε, n,R〉] =


〈ε, n, F4[R]〉, if n ≤ LfM[F4[R]]

〈F4[R], n, ε〉, if RgM[F4[R]] ≤ n
Insert[n, F4[R]], otherwise

F4[〈L, n,R〉] =



〈F4[L], n, F4[R]〉,
if (RgM[F4[L]] ≤ n ∧
n ≤ LfM[F4[R]])

〈F4[L], n, F4[R]〉,
if (RgM[F4[R]] ≤ n ∧
n ≤ LfM[F4[L]])

Insert[n,Merge[F4[L], F4[R]]], ow.


Sort-5: This algorithm is similar to F3, excepting the last

case where F5 has three branches.

Algorithm 5. ∀
n,L,R

F5[ε] = ε

F5[〈ε, n, ε〉] = 〈ε, n, ε〉

F5[〈ε, n,R〉] =


〈ε, n, F3[R]〉, if n ≤ LfM[F5[R]]

〈F5[R], n, ε〉, if RgM[F5[R]] ≤ n
Insert[n,Merge[ε, F5[R]]], ow.

F5[〈L, n, ε〉] =


〈F5[L], n, ε〉, if RgM[F5[L]] ≤ n
〈ε, n, F5[L]〉, if n ≤ LfM[F5[L]]

Insert[n,Merge[F5[R], ε]], ow.

F5[〈L, n,R〉] =



〈F5[L], n, F5[R]〉, if RgM[F5[L]] ≤ n ∧
n ≤ LfM[F5[R]]

〈F5[R], n, F5[L]〉, if RgM[F5[R]] ≤ n ∧
n ≤ LfM[F5[L]]

Insert[n, F5[Concat[L,R]]], ow.


Other sorting algorithms are generated (by generating the

permutations of a triplet of the form 〈T1, n, T2〉 and by using
the functions Insert, Concat, Merge, and the constructor 〈〉),
but they are not shown here due to lack of space.



V. ADDITIONAL CERTIFICATION OF PROPERTIES AND
SORTING ALGORITHMS

The correctness of the approach presented in this pa-
per is guaranteed by the way the synthesized algorithms
are built. However, the generated theory and the imple-
mented inference rules used for synthesizing algorithms are
error-prone and can be tested by certifying that the syn-
thesized algorithms are indeed sorting algorithms. The cer-
tification effort is important and mechanized assistance is
recommended. For example, the Sort-1 algorithm has been
successfully certified using Coq [1]. See the Coq script at
http://web.info.uvt.ro/ĩdramnesc/SISY2015/
coq.v. Even if few properties are shared between the certifi-
cation and synthesis proofs, the certification proof is built using
different inference rules and proof scripts, in a less automatic
way and requiring additional properties:

P-55. IsSorted[〈L, n,R〉] =⇒ IsSorted[L]

P-56. IsSorted[〈L, n,R〉] =⇒ IsSorted[R]

P-57. IsSorted[〈T1, n, 〈L,m,R〉〉] =⇒ n ≤ LfM[〈L,m,R〉]
P-58. IsSorted[〈〈L,m,R〉, n, T2〉] =⇒ RgM[〈L,m,R〉] ≤ n
P-59. IsSorted[〈L,m,R〉] ∧ RgM[〈L,m,R〉] ≤ n

=⇒ IsSorted[〈〈L,m,R〉, n, ε〉]
P-60. IsSorted[〈L,m,R〉] ∧ n ≤ LfM[〈L,m,R〉]

=⇒ IsSorted[〈ε, n, 〈L,m,R〉〉]
P-61. RgM[〈L1, n,R〉] = RgM[〈L2, n,R〉]
P-62. LfM[〈L, n,R1〉] = LfM[〈L, n,R2〉]
P-63. Insert[n, T ] 6= ε

P-64. LfM[〈Insert[n, T ],m, T1〉] = n ∨
LfM[〈Insert[n, T ],m, T1〉] = LfM[〈T,m, T1〉]

P-65. RgM[T1,m, 〈Insert[n, T ]〉] = n ∨
RgM[〈T1,m, Insert[n, T ]〉] = RgM[〈T1,m, T 〉]

P-66. F1[〈L, n,R〉] 6= ε

All these properties are mechanically proved, and based on
them also the theorem stating that F1 is a sorting algorithm:

Theorem 1. ∀
T

(
IsSorted[F1[T ]]

)
VI. CONCLUSIONS

Verification of the sorting algorithms needs a correct for-
malization of the domain of binary trees, which also contains
all the necessary properties needed for the correctness proofs.
The construction of such a correct and sufficient formaliza-
tion has been shown possible, and moreover it can support
the actual synthesis of various sorting algorithms. The Coq
certification of the synthesized algorithms can be seen as unit
tests for checking the soundness of the presented approach,
the generated theory and the implemented inference rules in
Theorema. Moreover, this case study on theory exploration
demonstrates that the formalization is not a trivial task and it
yields numerous notions and properties which are necessary in
the process of algorithm synthesis by proving, and surely also
in the process of certification.

Using the presented approach one manages to build a
knowledge base which is useful in concrete applications of
binary trees – in this case for the automatic proof-based
synthesis of algorithms on binary trees.

Not all the presented properties have been certified by Coq.
In the future, it would be interesting to build a Coq library with
the proposed theory of binary trees and, on the other hand,
certify the synthesized sorting algorithms other than Sort-1.
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