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The Mahler measure of trinomials of height 1

Introduction

The Mahler measure of a polynomial P (z) = a 0 z n + . . . + a n = a 0 n j=1 (z -α j ) ∈ C[X], a 0 = 0, as defined by D. H. Lehmer [L] in 1933, is

M (P ) = |a 0 | n j=1 max(1, |α j |).
In 1962, K. Mahler [Ma] gave the following definition

M (P ) = exp 1 0 log |P (e 2πit )|dt ,
which is equivalent to Lehmer's definition by Jensen's formula [J] 1 0 log |e 2πit -α|dt = log max(1, |α|).

The polynomial P is reciprocal if z n P (1/z) = P (z) and an algebraic number is reciprocal if its minimal polynomial is reciprocal. C.J. Smyth [START_REF] Smyth | On the product of the conjugates outside the unit circle of an algebraic integer[END_REF] has proved that, if the algebraic number α = 0, 1 is nonreciprocal, then M (α) ≥ θ 0 , where θ 0 = 1.324717 . . . is the smallest Pisot number which is the real root of the polynomial z 3 -z -1.

Concerning the Mahler measures of reciprocal polynomials, D. Boyd [B1] [B3] computed all irreducible, noncyclotomic integer polynomials P with degree D ≤ 20 having M (P ) < 1.3. M.J. Mossinghoff [M], using the same algorithm, extended the computation to D ≤ 24. The author, G. Rhin and J-M Sac-Epée [FRSE] employed a new method that uses a large family of explicit auxiliary functions to produce improved bounds on the coefficients of polynomials with small Mahler measure and determined all irreducible polynomials P with M (P ) < θ 0 and D ≤ 36 and polynomials P with M (P ) < 1.31 and D = 38 or 40. More recently, M.J. Mossinghoff, G. Rhin and Q. Wu [MRW] computed all primitive, irreducible, noncyclotomic polynomials P with degree at most 44 and M (P ) < 1.3. C.J. Smyth [START_REF] Smyth | Topics in the theory of numbers[END_REF] has also shown that θ 0 is an isolated point in the spectrum of Mahler measures of nonreciprocal algebraic integers. We have done an exhaustive search of nonreciprocal polynomials of height 1 and Mahler measure less than 1.381356 . . . up to degree 12. We observed that the smallest points of the spectrum are either trinomials of the type P(z) = z n ± z k ± 1 or their irreducible factors. As the number of nonreciprocal polynomials grows quickly, we have studied then trinomials of height 1 with Mahler measure less than 1.381356 . . . from degree 13 up to degree 20. They are either irreducible and give a new point of the spectrum or are divisible by z 2 + z + 1. In the latter case, their quotient gives a new point of the spectrum. The results of these computations are in the Appendix. For example, the six smallest known points are (more points of the spectrum are given in the Appendix):

1.324717 . . . = M (z 3 -z -1), 1.349716 . . . = M (z 5 -z 4 + z 2 -z + 1) = M z 7 +z 2 +1 z 2 +z+1 , 1.359914 . . . = M (z 6 -z 5 + z 3 -z 2 + 1) = M z 8 +z+1 z 2 +z+1 , 1.364199 . . . = M (z 5 -z 2 + 1), 1.367854 . . . = M (z 9 -z 8 + z 6 -z 5 + z 3 -z + 1) = M z 11 +z 4 +1 z 2 +z+1 , 1.370226 . . . = M (z 9 -z 8 + z 6 -z 5 + z 3 -z 2 + 1) = M z 11 +z+1 z 2 +z+1 .
The four first points were found by D. Boyd.

D. Boyd and M. Mossinghoff [BM] have computed a set of 48 small Mahler measures of twovariable polynomials less than 1.37. These measures are limit points of Mahler measures of one-variable polynomials. This set contains the five first points of our list.

For any trinomial P (z), we have

M (P (z)) = M (±P (-z)) = M (z n P (1/z)) = M (P (z l
)) for all integer l so we can assume that gcd(n, k) = 1, k < n/2 and we can restrict the trinomials z n ± z k ± 1 to three families:

(1)

z n + z k + 1 (2) z n -z k + 1 with n odd (3) z n -z k -1 with n even. Put λ = M (z 1 + z 2 + 1). C.J.
Smyth proved that λ = 1.381356 . . . (for more details, see [B2]). C.J. Smyth (private communication) claims that the following conjecture is true:

Conjecture 1. (1) M (z n + z k + 1) < λ iff 3 divides n + k (2) M (z n -z k + 1) < λ with n odd iff 3 does not divide n + k (3) M (z n -z k -1) < λ with n even iff 3 does not divide n + k.
This criterion generalizes a result of D. Boyd. In [B2], he has shown the criterion for the first family when k is equal to 1 and n is sufficiently large. A first generalization for the first family has been done by W. Duke in [D] in 2007. He showed:

for 0 < k < n with (n, k) = 1, log M(x n + x k + 1)= log M(x + y + 1) + c(n, k) n 2 + 0 k n 3 where c(n, k) = -π √ 3/6 if 3 divides n + k and c(n, k) = π √ 3/18 otherwise.
Then, in 2012, J. Condon [Co] has studied the quantities µ n (P ) = M (P (x, x n )) -M (P (x, y)) for a large set of bivariate polynomials but uniquely irreducible. He has obtained some considerably more general results. However, some polynomials of our families are reducible. So the results that we need are easier to obtain by following Duke's proof because it does not depend on the factorization of the polynomial. Although Condon's formula is more precise, it is not feasible in practice to use it to obtain a general formula for polynomials of our families whose factorization depends on n and k. It makes sense to recall here a result of W. Ljunggren [Lj] on the irreducibility of trinomials of height 1. He proved:

if n = n 1 d, k = k 1 d, (n 1 , k 1 ) = 1, n ≥ 2k then the polynomial g(x) = x n + x k + , = ±1, = ±1 
, is irreducible, apart from the following three cases, where n 1 + k 1 ≡ 0 mod 3: n 1 , k 1 both odd, = 1; n 1 even, = 1; k 1 even, = , g(x) then being a product of the polynomial

x 2d + k n x d + 1
and a second irreducible polynomial.

In Section 2, we establish Conjecture 1 when n is sufficiently large relative to k for the second family of trinomials z n -z k + 1. Section 3 deals with the third family. We give the main elements of the proof that differ from those of Section 2. In Section 4, we give a second criterion equivalent to the first one and involving resultants of trinomials of the three families with some cyclotomic polynomials.

Proof of Conjecture 1 for n large

We prove the following result: Theorem 1.

1. For the second family of trinomials, we have:

log M (z n -z k + 1) = log M (z 1 + z 2 + 1) + c(n, k) n 2 + 0 k n 3 where c(n, k) = -π √ 3/36 if 3 does not divide n + k and c(n, k) = π √ 3/12 otherwise.
2. For the third family of trinomials, we have:

log M (z n -z k -1) = log M (z 1 + z 2 + 1) + c(n, k) n 2 + 0 k n 3 where c(n, k) = -π √ 3/18 if 3 does not divide n + k and c(n, k) = π √ 3/6 otherwise.
The constants involved in O are effective.

The proof follows the same scheme as Duke's one in [D].

Corollary 1. There exists a computable constant

c 0 ≥ 2 such that if n > c 0 k then M (z n - z k ± 1) -M (z 1 + z 2 + 1) < 0 if 3 does not divide n + k and > 0 otherwise.
We choose to present first the proof in detail for the second family of trinomials z n -z k + 1.

Let z = e it for 0 ≤ t ≤ 2π. When t belongs to

k-1 l=0 π + 6πl 3k , 5π + 6πl 3k , i.e. |1-z k | > 1, we have log (z n -z k + 1) = log (1 -z k ) + m≥1 (-1) m-1 m z n 1 -z k m and when t belongs to 0, π 3k ∪ 5π + 6π(k -1) 3k , 2π ∪ k-2 l=0 5π + 6πl 3k , 7π + 6πl 3k , i.e. |1-z k | < 1, we have log (z n -z k + 1) = log (z n ) + m≥1 (-1) m-1 m 1 -z k z n m . Put λ n,k = log M (z n -z k + 1) = 1 2π 2π 0 log |z n -z k + 1|dt and λ = log M (z 1 + z 2 + 1) = 1 2π 2π 0 log + |z + 1|dt.
Putting u = tk, we have

k-1 l=0 5π+6πl 3k π+6πl 3k log|1 -e itk |dt = 1 k k-1 l=0 5π 3 +2πl π 3 +2πl = 5π 3 π 3 log|1 -e iu |du = 2 π π 3 log|1 -e iu |du = 2 π π 3 log + |1 -e iu |du = 2π 0 log + |1 + e iu |du.
Hence

λ n,k -λ = 1 2π Re m≥1 (-1) m-1 m (c 1 (m) + c 2 (m)),
where

c 1 (m) = k-1 l=0 5π+6πl 3k π+6πl 3k e inmt (1 -e itk ) -m dt and c 2 (m) = π 3k 0 e -inmt (1-e itk ) m dt+ k-2 l=0 7π+6πl 3k 5π+6πl 3k e -inmt (1-e itk ) m dt+ 2π 5π+6π(k-1) 3k e -inmt (1-e itk ) m dt. Put u = tk then c 1 (m) = 1 k k-1 l=0 5π 3 +2πl π 3 +2πl e inmu k (1 -e iu ) -m du = 1 k k-1 l=0 π(1+2l) π 3 +2πl e inmu k (1 -e iu ) -m du + 5π 3 +2πl π(1+2l) e inmu k (1 -e iu ) -m du = 1 k k-1 l=0 e 2πlnm k 2 π π 3 e inmu k (1 -e iu ) -m du .
Thus, Re c 1 (m) = 2 Re We obtain for each integral four types of terms that we have to study.

• The first type of term is e inqt (1 -e it ) -kq inq

π π 3
and -e -inqt (1 -e it ) kq inq π 3

0

. It is easy to see that the sum of such terms is not real and thus does not occur in Re(c 1 (kq) + c 2 (kq)).

•The second type of term is kq(kq + 1)e it(nq+2) (1 -e it ) -kq-2 inq(nq + 1)(nq + 2)

π π 3 and kq(kq -1)e -it(nq-2) (1 -e it ) kq-2 inq(nq -1)(nq -2) π 3 0 .
These terms are in modulus ≤ K 1 k n 3 . •Now we have to estimate the modulus of the third type of term I = -kq(kq + 1)(kq + 2) nq(nq + 1)(nq + 2) nq+3) (1 -e it ) -kq-3 dt coming from the integration of c 1 (kq).

π π 3 e it(
In the integral

I 1 = π π 3 |1 -e it | -kq-3 dt, put v = t 2 .
Thus

I 1 = 2 π 2 π 6 dv (2 sin v) kq+3 . For any v ∈ [ π 6 , π 2 ], 1 2 sin v ≤ - 3 2π v + 5 4 so that I 1 ≤ 2 π 2 π 6 - 3 2π v + 5 4 kq+3 dv ≤ 4π 3(kq + 4)
.

Finally, we get |I| ≤ K 2 k 2 n 3 . In the same way, we have to estimate the modulus of nq-3) (1 -e it ) kq-3 dt, due to the integration of c 2 (kq).

J = - kq(kq -1)(kq -2) nq(nq -1)(nq -2) π 3 0 e -it(
For q > 3, in the integral

J 1 = π 3 0 |1 -e it | kq-3 dt, put v = t 2 .
Thus J 1 = 2 π 6 0

(2 sin v) kq-3 dv.

For any v ∈ [0, π 6 ], 2 sin v ≤ √ 3 v + 1 - √ 3π
6 so that

J 1 ≤ 2 π 6 0 √ 3 v + 1 - √ 3π 6 kq-3 dv ≤ 2 √ 3 (kq -2) .
Thus, we get |J| ≤ K 3 k 2 n 3 for m ≥ 1.

• Finally, the only terms that occur in Re(c 1 (kq) + c 2 (kq)) are those which contain kq inq(nq + 1) in c 1 (kq) and kq inq(nq -1) in c 2 (kq).

We obtain As before, we put m = kq. We integrate three times by parts and keep only the terms with m in 2 q 2 . We get Re(c 1 (kq) + c 2 (kq)) = 2 (-1) kq kq √ 3 n 2 q 2 cos 2π 3 q(n -2k) + 0 k 2 n 3 .

Re(c 1 (kq) + c 2 (kq)) = Re kq in 2 q 2 e i π 3 (nq+1) (1 -e iπ 3 ) -kq-1 + e -i π 3 (nq-1) (1 -e iπ 3 ) kq-1 + 0 k 2 n 3 = 2kq √ 3 n 2 q 2 cos π 3 q(n + k) + 0 k 2 n 3 Hence λ n,k -λ = √ 3 πn 2 q≥1 (-1) qk-1 cos π 3 q(n + k) q 2 + 0 k n 3 i. e. λ n,k -λ =            - π √ 3 36n 2 + 0 k n 3 if 3 does not divide n + k π √ 3 12n 2 + 0 k n 3 if 3 divides n + k 3 The family z n -z k -1 Here, we have λ n,k = logM (z n -z k -1) = 1 2π 2π 0 log|z n -z k -1|dt = 1 2π 2π 0 log| -z n + z k + 1|dt = logM (-z n + z k + 1)
i.e. λ n,k -λ = √ 3 πn 2 q≥1 cos 2π 3 q(n -2k)

q 2 + 0 k n 3
Therefore,

λ n,k -λ =            - π √ 3 18n 2 + 0 k n 3 if 3 does not divide n + k π √ 3 6n 2 + 0 k n 3 if 3 divides n + k

3 0e

 3 e it ) -m dt if k divides m and Re c 1 (m) = 0 otherwise. By the same argument, we obtain Re c 2 (m) e it ) m dt if k divides m and Re c 2 (m) = 0 otherwise. Put m = kq. In order to estimate c 1 (kq) + c 2 (kq), we need to integrate by parts three times the integrals π π 3 e inqt (1 -e it ) -kq dt and π -inqt (1 -e it ) kq dt.

e 0 e

 0 -inmt (1 + e itk ) m dt. By the same argument as in Section 1, we obtain Re c 1 (m) = 2 Re 2π 3 inmt/k (1 + e it ) -m if k divides m and Re c 1 (m) = 0 otherwise and Re c 2 (m) = 2 Re π 2π 3 e -inmt/k (1 + e it ) m dt if k divides m and Re c 2 (m) = 0 otherwise.

  so we work with log(-z n + z k + 1).

	If t belongs to 0,	2π 3k	∪	4π + 6(k -1)πl 3k	, 2π ∪	k-2 l=0	4π + 6πl 3k	,	8π + 6πl 3k	then |1 + e itk | > 1
	and if t belongs to	k-1 l=0	2π + 6πl 3k	,	4π + 6πl 3k	then |1 + e itk | < 1.
	Hence									
	λ n,k -λ = -	1 2π	Re							
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An equivalent criterion

We claim that the following conjecture is true: Conjecture 2. Let , η be equal to ±1. Put r 1 = resultant(z n + z k + η, z 2 + z + 1) and r 2 = resultant(z n + z k + η, z 2 -z + 1).

(1) M (z n + z k + 1) < λ iff z 2 + z + 1 divides z n + z k + 1.

(2) M (z n -z k + 1) < λ with n odd iff {r 1 , r 2 } = {1,1} or {1,7}.

(3) M (z n -z k -1) < λ with n even iff {r 1 , r 2 } = {1,1} or {1,7}.

In this section, we prove that:

Theorem 2. Conjectures 1 and 2 are equivalent.

Proof

Put j = e 2iπ 3 .

1. 3 divides n + k ⇐⇒ ( n ≡ 1 mod 3 and k ≡ 2 mod 3) or ( n ≡ 2 mod 3 and k ≡ 1 mod 3) ⇐⇒ j n + j k + 1 = j 2 + j + 1 = 0.

2. We give the proof for the family z n -z k + 1 . The argument is the same for the family

Thus, the situations {r 1 , r 2 } = {1,1} or {1,7} are not possible.

• Suppose that 3 does not divide n + k. It is easy to see that this is equivalent to 3 divides nk(n -k).

Appendix

Smallest known Mahler measures of nonreciprocal polynomials with coefficients -1, 0, 1 up to degree 20.

1.376087 = M (z 15 -z 14 + z 12 -z 10 + z 9 -z 7 + z 6 -z 4 + z 3 -z + 1) = M z 17 + z 13 + 1 z 2 + z + 1

1.376755 = M (z 17 -z 16 +z 14 -z 13 +z 11 -z 10 +z 9 -z 7 +z 6 -z

1.377059 = M (z 17 -z 16 +z 14 -z 13 +z 12 -z 10 +z 9 -z 7 +z 6 -z 4 +z 3 -z +1) = M z 19 + z 14 + 1

1.379730 = M (z 14 -z 9 -1) 1.379849 = M (z 11 -z 8 + 1) 1.379954 = M (z 15 -z 11 -1) 1.378082 = M (z 18 -z 16 +z 15 -z 13 +z 12 -z 10 +z 9 -z 7 +z 6 -z 4 +z 3 -z +1) = M z 20 + z 19 + 1