

# **Development of a particulate matter sensor for diesel engine**

### **D.** Grondin<sup>ab</sup>, P. Breuil<sup>a</sup>, J-P. Viricelle<sup>a</sup>, P. Vernoux<sup>b</sup>

<sup>a</sup>Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR5307, LGF, F- 42023 Saint-Etienne, France <sup>b</sup>Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR5256, CNRS, Université C. Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne, France

Emission standards for light-duty vehicles legislations become more stringent



### **Context and objectives**

Actual on-board technology estimates PM emissions with a differential pressure sensor across the Diesel Particulate Filter (DPF)

This technology

- Shows a limited sensitivity



There is a need for an on board sensor able to detect

#### **Standard limit**

Due to the health risk of fine particles, from Euro 5, limits take into consideration the particulate number of emitted soot

- Perform only mass measurement
- Can not measure when there is a DPF failure

DPF failure and to determine the number and the size of soot particles



on

Three analyzers are used :

| ОР   | Propane flow<br>(L/h) | Air flow<br>(L/h) | Mixture richness<br>propane/air |  |
|------|-----------------------|-------------------|---------------------------------|--|
| OP1  | 3.6                   | 93.0              | 0.97                            |  |
| OP1B | 3.1                   | 80.1              | 0.97                            |  |
| OP4  | 3.6                   | 90.0              | 1.00                            |  |
| OP5  | 3.6                   | 88.2              | 1.02                            |  |

| ОР   | Mixture richness<br>propane/air | EEPS                      | PEGASOR           | MAAP              |
|------|---------------------------------|---------------------------|-------------------|-------------------|
|      |                                 | particles/cm <sup>3</sup> | mg/m <sup>3</sup> | mg/m <sup>3</sup> |
| OP1  | 0.97                            | 1.7 E+8                   | 94                | 143               |
| OP1B | 0.97                            | 1.2 E+8                   | 61                | 81                |
| OP4  | 1.00                            | 2.5 E+8                   | 91                | 70                |
| OP5  | 1.02                            | 2.1 E+8                   | 55                | 22                |

- Weak variation of the soot number
- OP1B and OP5 ; OP1 and OP4 : similar mass concentration (PEGASOR)
- OP4 and OP1B : similar black carbon mass concentration (MAAP)

### **Mass concentration effect**

• MAAP : (Multi-Angle Absorption Photometer) Measures the black carbon mass concentration

• PEGASOR : Mass concentration estimation from leakage current measurement of charged particles

• EEPS : (Engine Exhaust Particle Sizer) Measures the number and the size distribution

**Conductance measurement for each OP for 60 V polarization** 

Mini-CAST produces soot particles from the combustion of a propane/air mixture. Concentration and soot size depend on the mixture richness

![](_page_0_Figure_34.jpeg)

## **Polarization voltage effect**

![](_page_0_Figure_36.jpeg)

![](_page_0_Figure_37.jpeg)

results ensor S

- Good repeatability for the same operation point
- High soot mass sensitivity at equivalent size distribution (OP1 and OP1B)

- Polarization voltage (Volt)
- Sensor response strongly depends on the polarization level
- The soot collection rate shows an optimum depending on the polarization
- The optimum voltage is higher when the particles are smaller

![](_page_0_Figure_46.jpeg)

Soot bridge arrangement makes contacts between the platinum electrodes

![](_page_0_Figure_48.jpeg)

![](_page_0_Figure_49.jpeg)

![](_page_0_Figure_50.jpeg)

• Electrical model according to Ohmic law can be used to model the sensor signal

![](_page_0_Figure_52.jpeg)

• Prediction/measurement of the soot number

### Conclusions

- simple sensor have been made and Α characterized
- The sensor demonstrates good sensitivity to particle mass
- The collection rate passes by an optimum polarization voltage
- By varying the polarization voltage, the sensor is sensitive to the particle size
- In order to build a predictive model, more parameters such as the effect of the temperature and the size distribution need to be investigated