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ABSTRACT

In this paper, the impact of array geometry on the direction of
arrival (DOA) estimation of spatially distributed sources im-
pinging on a sensor array is considered. Taking into account
the coherently distributed source model proposed in [1], we
establish closed-form expressions of the MUSIC-based DOA
estimation error as functions of the positions of the array sen-
sors in the presence of model errors due to the angular disper-
sion of the signal sources. The impact of the array geometry
is studied and particular array designs are proposed to make
DOA estimation more robust to source dispersion. The ana-
lytical results are validated by numerical simulations.

Index Terms— array signal processing, distributed sources,
array geometry, performance, MUSIC

1. INTRODUCTION

The direction of arrival (DOA) estimation based on snapshots
received on a sensor array has been widely studied with plenty
of methods [2]. Among these methods, the multiple signal
classification (MUSIC) [3] is famous for its high resolution
in the case of punctual sources. However, in many appli-
cations, such as acoustic source imaging [4], the physical
sources can no longer be considered as point sources and a
spatially distributed model of the sources could be more ap-
propriate, which degrades the performance of the DOA esti-
mation obtained by MUSIC.

The models for spatially distributed sources have been
classified into two types, namely incoherently distributed
(ID) sources and coherently distributed (CD) sources. On one
hand, for ID sources, signals coming from different points
of the same distributed source can be considered uncorre-
lated. On the other hand, in the scenario of CD sources, the
received signal components are delayed and scaled replicas
from different points of the same one [1]. For CD sources, the
performances of MUSIC with discretely distributed sources
and continuously distributed sources have been investigated
in [5], and [6], respectively. As expected, the mismatch due to
the angular dispersion between the steering vector model of
MUSIC and the actual steering vectors of the sources causes
estimation errors. MUSIC-based methods for the joint esti-

mation of both the DOA and the angular dispersion parameter
can be used to avoid the angular dispersion mismatch prob-
lem [1]. More recently, another MUSIC-based method [7]
makes it possible to have a good performance regardless of
the angular distribution shape of the signal sources.

The array geometry on the DOA estimation has been stud-
ied in plenty of publications. Optimal array geometries have
been designed to reach isotropic and/or optimal performance
based on the Cramér-Rao bound (CRB) criterion (eg : [8,
9]). More recently, based on the spatial aliasing phenomenon,
a class of non-uniform array geometries composed of two
or more uniform linear arrays (ULAs) with different inter-
element spacing has been used to reduce the computational
burden of Maximum Likelihood (ML) estimator [10].

In this paper, we focus on the impact of the array geome-
try on the performance of the MUSIC estimator with the CD
source model, in the presence of model errors due to the an-
gular dispersion of the source signals. Based on the work
in [6], we first propose an analytical expression of the DOA
estimation error as an explicit function of the sensor positions
for a single source. Subsequently, the array design of spe-
cial geometries to ensure robustness to the angular dispersion
of the signal sources will be investigated. In the case of two
sources, the DOA estimation error with a uniform circular ar-
ray (UCA) will be proved to be an explicit function of the
DOA separation between the two sources. Simulation results
illustrate the validation of the theoretical results.

The organization of this paper is as follows. The signal
model and a brief recall of MUSIC are given in section 2.
The particular array geometry design is investigated in sec-
tion 3. Numerical simulations are presented in section 4 to
validate the analytical results of the previous section. Finally,
conclusions are given in section 5.

2. SIGNAL MODEL AND MUSIC ESTIMATOR

Let us consider q spatially CD far-field narrow-band sources
impinging on an array of M sensors. The sources arrive
from the DOA θ1, ..., θq , and the position of the m − th sen-
sor is given by the polar coordinate ρm and αm. Without
loss of generality, the signals and the sensors are assumed
to be in the same plane, as shown in Figure 1a. The q



source signals and the M signals received by the array at
moment t are denoted by s(t) = [s1(t), . . . , sq(t)]

T and
y(t) = [y1(t), . . . , yM (t)]T , respectively, with:

y(t) = C(θ)s(t) + n(t), (1)

where n(t) ∈ CM×1 represents the complex Gaussian dis-
tributed additive noise, C(θ) = [ch1

(θ1), . . . , chq (θq)] ∈
CM×q is the array steering matrix composed of q steering
vectors chi(θ) that can be written as proposed in [1] by:

chi(θi) =

∫ π
2

−π
2

a(θi + φ)hi(φ)dφ, (2)

where i = 1 . . . q, and a(θ) is the steering vector for a point
source, which can be given by:

a(θi) =
[
e−j2π

ρ1
λ cos(θi−α1), . . . , e−j2π

ρM
λ cos(θi−αM )

]T
,

(3)
where λ is the wavelength, and [·]T is the transpose operation.
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(a) Planar array and source DOAs (b) V-shape array

Fig. 1: Illustration of planar arrays

The function h(φ) is introduced to describe the angular
spread distribution (for instance, Uniform and Gaussian dis-
tributions) and it can be parameterized by an angular disper-
sion ∆ which is omitted in the notation. The source signals
and the additive noise are considered to be complex centered
Gaussian independent random variables. Assuming that sig-
nals and noises are uncorrelated and the sources are uncorre-
lated with each other, the correlation matrix is given by:

R = E[yyH ] = CRsCH + σ2
b I, (4)

where E[.] is the expectation operator, Rs and σ2
b are the

source covariance matrix and the noise variance, respectively.
Under the hypothesis that q < M and Rs and C are not

rank deficient, it is well known that the decomposition of R
into eigenvalues λm and eigenvectors em is as follows :

R =

M∑
m=1

λmemem = UΛsUH + σ2
bVVH , (5)

where U = [e1, . . . , eq] spans the signal subspace defined by
the columns of C and V = [eq+1, . . . , eM ] spans the noise
subspace defined as the orthogonal complement of U, Λs =
diag{λ1, . . . , λq}.

The MUSIC method makes use of the orthogonal property
of subspaces spanned by C(θ) and V to estimate the DOA θ.
In practice it is difficult to know exactly the angular dispersion
of the actual sources, consequently, the steering vector model
of the punctual source a(θ) is used here instead of c(θ) to
estimate the value of θ so as to have:

θ̂i = argmax
θ

1

‖aH(θ)V‖2
. (6)

We note Π = VVH the noise subspace projector corre-
sponding to the actual sources, and Π̃ = I − A(AHA)−1AH

the noise subspace projector corresponding to the model
in the estimator, with I the M × M identity matrix, A =
[a(θ1), . . . , a(θq)]. Due to the mismatch of the angular dis-
persion parameter between the model of the MUSIC estimator
a(θ) and the actual source chi(θi), and the fact that the num-
ber of snapshots can not be infinite in practice, an estimation
error then arises [6]. In this paper, we focus on the influence
of the antenna array geometry on the DOA estimation error
due to the model error, the covariance matrix is thus assumed
to be perfectly known. In the following, for simplicity we
note ci for chi(θi), and ai for a(θi), respectively. For source
i, from eq(13) in [6], the DOA estimation error can be given
by:

∆θi = θ̂i − θi =
Re{ȧHi Π̃ci}

ȧHi Π̃ȧi
. (7)

where ȧi = ∂a
∂θ .

3. INFLUENCE OF THE ANTENNA ARRAY
GEOMETRY

In the following, we show that ∆θi can be expressed as an ex-
plicit function of the antenna positions, the effects of special
arrays can thus be investigated.

3.1. Single source

In this subsection, we study the particular scenario where
there is only one source arriving from the DOA θ. Notice
that in this case Π̃ = I − 1

M aaH , the DOA estimation error
can then be given by:

∆θ =
Re{ȧHc− 1

M ȧHaaHc}
ȧH ȧ− 1

M |ȧ
Ha|2

. (8)

For the m− th sensor, let us define:

ϕm = 2π
ρm
λ

cos(θ − αm),

ϕ̇m = −2π
ρm
λ

sin(θ − αm),

um =

∫
cos(ϕm(θ + φ)− ϕm(θ))h(φ)dφ,

vm =

∫
sin(ϕm(θ + φ)− ϕm(θ))h(φ)dφ. (9)



Introducing the notations defined in (9) in (8), ∆θ can be
given by:

∆θ =
ϕ̇ · v − ϕ̇ · v
ϕ̇2 − (ϕ̇)2

, (10)

where x = 1
M

∑M
m=1 xm is the mean value operator for the

variable x. Eq (10) makes it possible to design the geometry
in order to minimize ∆θ,

Assuming that the angular dispersion of the distributed
source is small enough with a symmetrical distribution, we
introduce a third order Taylor approximation in φ of ϕm(θ +
φ)− ϕm(θ) so as:

vm ≈
1

2
ϕ̈mσ

2, (11)

where ϕ̈m(θ) = −2π ρmλ cos(θ−αm), and σ2 ,
∫
φ2h(φ)dφ

is the parameter related to the angular dispersion of the source
signal.

Let us introduce (11) in (10), ∆θ can be given by:

∆θ =
1

2
σ2 ϕ̇ · ϕ̈− ϕ̇ · ϕ̈

ϕ̇2 − (ϕ̇)2
. (12)

We can observe that this approximative expression of the
DOA estimation error is proportional to the angular disper-
sion of the signal source.

3.1.1. Uniform circular array

Inspired by (12), we find that for a UCA with an even number
of symmetrical elements, where ρm = ρ, and αm = 2π (m−1)

M
with M even, the terms in the numerator can be null:

ϕ̇ = − 1

M
2π
ρ

λ

M∑
m=1

sin(θ − αm)

= − 1

M
2π
ρ

λ

 M
2∑

m=1

sin(θ − αm) +

M
2∑

m=1

sin(θ − αm + π)


= 0, (13)

and similarly :

ϕ̇ · ϕ̈ =
(2π ρλ )2

M

M∑
m=1

sin(θ − αm) cos(θ − αm)︸ ︷︷ ︸
1
2 sin(2θ−2αm)

= 0, (14)

which leads ∆θ to be 0, The result illustrates that a symmet-
rical even elements UCA can be robust to the model error due
to the source dispersion, in the scenario of one source.

3.1.2. V-shape array

The V-shape array (VA) is another type of particular geome-
tries which has been widely studied, thanks to its easiness to

parameterize. It has been proven in [8] that with the array
angle fixed to a specific value, a VA with any size can have
an isotropic behavior, and outperforms the UCA in terms of
CRB.

Let us assume that, without loss of generality, the two
identical branches are symmetrical with respect to the y axis,
with no sensor placed at the origin, as depicted in Figure 1b,
and that, the distance between two sensors is fixed to d. The
coordinates of the sensors can be expressed as:

ρm =

{
md, 1 6 m 6 M

2

(m− M
2 )d, M

2 6 m 6M
, (15)

and:

αm =

{
α, 1 6 m 6 M

2

π − α, M
2 6 m 6M

, (16)

respectively.
Considering the described V-shape geometry, (12) can be

derived as:

∆θ =
1

2
σ2 sin θ cos θ

[
(4 + 4M) cos2 α+ (2−M) sin2 α

]
(4 + 4M) cos2 α sin2 θ + (2−M) sin2 α cos2 θ

,

(17)
we can see that the DOA estimation error is independent of d.

To make ∆θ equal to 0, the numerator of (17) should be
0, which yields:

tan2 α =
4M + 4

M − 2
, (18)

the expression reveals that the array angular α can be fixed
to a special value to be robust to the model error due to the
source dispersion, which depends roughly on the array size,
and is robust to other parameters.

3.1.3. Linear array

Notice that the scenario of αm = 0 in (12) corresponds to the
linear array (LA), after some straightforward calculus from
(12) with αm = 0, the DOA estimation error is derived as:

∆θ =
1

2
σ2 cot θ, (19)

which reveals that in the case of LA, the DOA estimation er-
ror does not depend on the sensors positions but only on the
DOA and the model error. Taking into account that the model
error can not be modified, the sensor array should be rotated
to reduce the value of cot θ, so as to get a smaller estimation
error, if θ is roughly known.

3.2. Two sources in the case of a UCA

In the case of multiple sources, we take the example of two
sources arriving from θi, where i = 1, 2 and assuming that
θ2 > θ1. For the m− th sensor, let us introduce the notation:

∆ϕm = ϕm(θ2)− ϕm(θ1) = ϕm,2 − ϕm,1. (20)



We here focus on the above-mentioned case of a UCA
with an even number of symmetrically positioned sensors,
which is easier to manipulate mathematically comparing to
other geometries. Notice that with such a geometry:

Re{ȧHi ai} = −
M∑
m=1

2π
ρ

λ
sin(θ − αm) = 0, (21)

and:

Re{ȧHi ci} =

M∑
m=1

ϕ̇m,ium,i =

M/2∑
m=1

Φ(θi) +

M/2∑
m=1

Φ(θi + π)


︸ ︷︷ ︸

=0,

(22)
where Φ(θi) =

∫
ϕ̇m(θi) [cos(ϕm(θi + φ)) cos(ϕm(θi))+

sin(ϕm(θi + φ)) sin(ϕm(θi))]h(φ)dφ.
Introducing (21), (22), and the expression A = [a1, a2] in

(7) gives:

∆θ1 =
Re{−M ȧH1 a2aH2 c1 + ȧH1 a2aH1 c1aH2 a1}

ȧH1 ȧ1(M2 − |aH2 a1|2)−M |ȧH1 a2|2
. (23)

Introducing the notations of (9) and (20) in (23). The
DOA estimation error as an explicit function of the sensor
positions can be given by:

∆θ1 =
ϕ̇1 · sin(∆ϕ)

[
cos(∆ϕ) · u− cos(∆ϕ) · u

]
ϕ̇2
1 − ϕ̇2

1 · cos2(∆ϕ)−
(
ϕ̇1 sin(∆ϕ)

)2 . (24)

Let us note δ = θ2 − θ1, and introduce a third order ap-
proximation in δ in (24), after some straightforward calculus,
the expression of the DOA estimation error for θ1 can be de-
rived as:

∆θ1 =

(
18ϕ̇2 − 3δ2ϕ̇2 + ϕ̇4

)(
ϕ̇2
1 · u1 − ϕ̇2

1 · u1
)

δ
[
−9(ϕ̇2

1)3 + 12ϕ̇2 · ϕ̇4
1 + ϕ̇2

1 − δ2(ϕ̇2
1 + ϕ̇4

1)2
] .
(25)

Let us consider the sign of ∆θ1: firstly, Π̃ is Hermitian, so
the denominator ȧHi Π̃ȧi in (7) is non-negative, it is enough to
focus on the numerator in (7) for θ1 which yields δ3(18ϕ̇2 −
3δ2ϕ̇2 + ϕ̇4)(ϕ̇2

1 · u1 − ϕ̇2
1 · u1) after some straightforward

calculus; secondly with a small δ, 18ϕ̇2 − 3δ2ϕ̇2 + ϕ̇4 can
be approximated by 18ϕ̇2 which is positive; thirdly, by the
CauchySchwarz inequality, ϕ̇2

1 · u1 − ϕ̇2
1 · u1 is negative.

Therefore, ∆θ1 is opposite to the sign of δ.
For θ2, after some similar calculus, we have:

∆θ2 = −∆θ1. (26)

It is interesting to see that, the value of the estimation error for
both the two sources are inversely proportional to the value
of δ for small δ, which illustrates that the estimation error

decreases as the sources move away from each other. Besides,
∆θ1 is negative and ∆θ2 is positive, which implies that when
the two sources are close to each other, MUSIC is always able
to give the estimation of two DOAs separately, despite that the
value of the estimation error increases.

4. NUMERICAL SIMULATIONS

In this section, we validate the theoretical results through nu-
merical experiments. In all simulations, uniformly distributed
sources with the angular dispersion ∆0 = 10◦ are considered,
the theoretical covariance matrix is assumed to be known,
with SNR = 10dB. All the arrays are composed of M = 20
sensors, the sensors are uniformly distributed on a circle with
the diameter equal to 5λ for the UCA, for the VA, 10 sensors
are identically uniformly placed at the two branches, spaced
by d = λ/4, and the VA with α = 0 is considered as the
case of LA. Such array configurations ensure that the UCA
and the LA have the same horizontal aperture. The snapshots
number N = 1000 and 100 experiments are realized for the
simulation results.
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Fig. 2: DOA estimation error vs. DOA separation (UCA with
M = 20, LA with M = 20 and d = λ/4, two sources with
uniform angular dispersion, ∆0 = 10◦, θc = 1
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Fig. 3: The absolute value of DOA estimation error in loga-
rithm vs. DOA and array aperture angle β (VA with M = 20
and d = λ/4, one source with uniform angular dispersion,
∆0 = 10◦)
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In Figure 2, we compare the performance of MUSIC with
the UCA and that with the LA versus the DOA separation,
in the scenario of two sources. The DOA separation varies
with θc = 1

2 (θ1 + θ2) fixed to 60◦, assuming that θ2 > θ1.
We can see that when the two sources are too close to each
other, the estimation error can not be ignored despite the ar-
ray geometry, due to the interference between the sources. For
LA, ∆θ1 decreases as the DOA separation increases and as θ1
tends to zero, by contrast, ∆θ2 decreases as the interference
phenomenon fades, but increases again along with the DOA
separation, which coincides with the well-known conclusion
that the ULA has a better performance for broadside sources.
For UCA, both ∆θ1 and ∆θ2 tend to zero quickly as the DOA
separation increases, which is in adequacy with the scenario
of one source where the DOA estimation error is null and out-
performs its LA partner. In addition, it is interesting to see the
validity of the approximated expression (25) and (26) for de-
scribing the trend and the sign of the estimation error when
the sources are close to each other.

In Figure 3, the absolute value in logarithm of the estima-
tion error of one uniform distributed source with ∆0 = 10◦ is
plotted with respect to the DOA and the array aperture angle
β = π − 2α, to validate the approximated expression (17).
We note βmin for the array aperture angle corresponding to
the minimum value of |∆θ|, and βmin is plotted versus θ in
the dashed line. According to (18), to have a null estimation
error, β ≈ 49.7◦ regardless of the value of DOA, which cor-
responds to the simulation result illustrated in Figure 3b.

In Figure 4, the DOA estimation error of MUSIC versus
the angular dispersion of the signal source with θ = 45◦ are
presented, in the case of LA and VA with β = 100◦. We
can observe the validation of expression (17) and (19) which
makes it possible to consider the DOA estimation error as an
explicit convex quadratic function of the angular dispersion
of the signal source. Furthermore, regardless of a more com-
plicated geometry, VA outperforms LA, which reveals the in-
terest to optimize the array geometry to have a better perfor-
mance.

5. CONCLUSION

In this paper, we have investigated the impact of the array
geometry on the performance of the MUSIC-based DOA es-
timation in the presence of the spatially distributed sources.
We have found that the DOA estimation error can be reduced
and even canceled for particular array geometries in the case
of one source or in the case where the DOA separation be-
tween two sources is large enough. Simulations which are
carried out are in adequacy with the proposed theoretical re-
sults.
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