
HAL Id: hal-01235033
https://hal.science/hal-01235033

Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Triplet proximity effect in superconducting
heterostructures with a half-metallic layer

Sergei V. Mironov, Alexandre I. Buzdin

To cite this version:
Sergei V. Mironov, Alexandre I. Buzdin. Triplet proximity effect in superconducting heterostructures
with a half-metallic layer. Physical Review B: Condensed Matter and Materials Physics (1998-2015),
2015, 92 (18), pp.184506 (1-11). �10.1103/PhysRevB.92.184506�. �hal-01235033�

https://hal.science/hal-01235033
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
7.

02
42

9v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  9
 J

ul
 2

01
5

Triplet proximity effect in superconducting heterostructures with a half-metallic layer
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We present the Usadel theory describing the superconducting proximity effect in heterostructures
with a half-metallic layer. It is shown that the full spin polarization inside the half-metals gives
rise to the giant triplet spin-valve effect in superconductor (S) – ferromagnet (F) – half-metal (HM)
trilayers as well as to the ϕ0-junction formation in the S/F/HM/F/S systems. In addition, we
consider the exactly solvable model of the S/F/HM trilayers of atomic thickness and demonstrate
that it reproduces the main features of the spin-valve effect found within the Usadel approach.
Our results are shown to be in a qualitative agreement with the recent experimental data on the
spin-valve effect in MoGe/Cu/Ni/CrO2 hybrids [A. Singh et al., Phys. Rev. X 5, 021019 (2015)].

PACS numbers: 74.62.-c, 74.78.Fk, 74.45.+c, 72.25.-b

I. INTRODUCTION

Spin-polarized superconducting states attracts grow-
ing interest since they are expected to provide power-
ful mechanisms for controlling the current and magne-
tization in the devices of superconducting spintronics.1

Although polarized states are not supported in conven-
tional s-wave superconductors, they can emerge in ar-
tificial heterostructures consisting of a superconductor
(S) and several ferromagnetic (F) layers with different
orientations of magnetic moments.2–5 The non-collinear
exchange field in the F-layers destroys the spin-singlet
structure of Cooper pairs penetrating from the super-
conductor. This results in the appearance of spin-triplet
superconducting correlations with all possible spin pro-
jections S, both polarized states with S = ±1 and non-
polarized one with S = 0.

The correlations with S ± 1 have two distinctive fea-
tures which give an insight into their experimental ob-
servation and practical utilization.2,3 First, such corre-
lations are unsensitive to the exchange field parallel to
the spin quantization axis. As a result, they become
long-range: in diffusive systems their decay length inside
the ferromagnet is comparable with the one in normal
metal while the correlations with S = 0 decay at much
shorter distances from the superconductor. Second, these
long-range triplet correlations (LRTC) appear only if the
ferromagnet has a non-collinear distribution of magneti-
zation. Thus, to control the amplitude of the LRTC in
the system one can use ferromagnetic bilayer with tun-
able mutual orientation of magnetic moments while the
effects coming from the correlations with S = 0 can be
damped by increasing the F-layer thickness.

Experimental observation of the LRTC is mostly based
on probing the long-range Josephson current in the
S/F′/F/F′/S junctions.6–11 If the thickness of the cen-
tral F layer is believed to exceed the decay length of the
short-range non-polarized correlations the observation of
non-zero critical current can be attributed to the pres-
ence of the LRTC.12 Other observations of the LRTC are

based on the so-called triplet spin-valve effect in S/F1/F2

and F1/S/F2 systems revealing in non-monotonic depen-
dence of the S-layer critical temperature Tc on the an-
gle θ between the magnetic moments in the F1 and F2

layers.13–17 The LRTC open an additional channel for the
“leakage” of the Cooper pairs from the superconductor.
As a result, Tc can have the minimum at θ 6= 0, π.18,19

However this effect in Tc(θ) is typically washed out by
the monotonically increasing contribution from the cor-
relations with S = 0, which shifts the minimum of Tc
from θ = π/2.

During the past few years the focus in the studies of
LRTC is moving towards the heterostructures contain-
ing half-metallic (HM) layers (e.g. CrO2).

20,21 A recent
progress in fabrication of such structures has resulted in
several breakthrough experiments manifesting the long-
range Josephson current through the layer of CrO2

22,23

and triplet spin-valve effect in MoGe/Cu/Ni/CrO2

structures.24 The importance of these experiments is con-
nected with the fact that in half-metals the energy bands
for electrons with spin up and down are separated at a
distances comparable with the Fermi energy. As a result,
only spin-polarized correlations with S = +1 can pene-
trate into the HM-layer while all other correlations should
vanish at its boundary and cannot influence the Joseph-
son current in S/F/HM/F/S junctions or the triplet spin-
valve effect in S/F/HM systems. Thus, half-metals pro-
vide a unique possibility to probe the phenomena caused
by LRTC independently from other effects.

However up to now there is no convenient and com-
monly accepted theoretical model describing the su-
perconducting proximity effect with half-metals. Most
common approaches for the treatment of the proxim-
ity effect in multilayered structures are based on the
quasiclassical approximation.4,5 This approximation be-
comes broken near the interfaces which implies using
some sort of boundary conditions matching the quasi-
classical Green functions in different layers. In con-
trast with the S/F interfaces where near the critical
temperature one may use linear Kupriyanov-Lukichev
boundary conditions for the anomalous Green function,25

http://arxiv.org/abs/1507.02429v1
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the interfaces with half-metals require more sophisti-
cated boundary conditions since the number of the Green
function components at the opposite sides of the inter-
face is different due to the large energy separation of
the spin-up and spin-down bands. There are a lot of
papers where the authors made attempts to overcome
this problem using different versions of the scattering
matrix approach. The resulting boundary conditions
were extensively used for the description of half-metals
within the Blonder-Tinkham-Klapwijk,26–29 Bogoliubov-
de-Gennes,30–32 Eilenberger,33–37 and Usadel38–41 for-
malisms. Despite the fact that these models provide a
number of generic qualitative predictions, most of the re-
sults strongly depend on the microscopical mechanisms
of the singlet-triplet conversion and on the concrete form
of the scattering matrices,35,42,43 which are not available
form the experimental data. An alternative phenomeno-
logical approach based on the circuit theory44 does not
contain any information about the particular geometry
of the system and, thus, can hardly be applied for the
quantitative description of real heterostructures.

In the present paper we propose the phenomenologi-
cal model of the superconducting proximity effect with
half-metals based on the Usadel equation in the diffu-
sive limit. Our model is based on the following three
key assumptions. (i) The impurities are non-magnetic
and do not cause spin-flip processes, which allows to in-
troduce the anomalous Green function inside the half-
metal. The Green function component with S = +1 sat-
isfies the Usadel equation equivalent to the one in normal
metal while all other components are zero. (ii) The are
no barriers at the boundaries of the HM layers which re-
sults in the continuity of the component with S = +1.
(iii) The components with S = 0 and S = −1 cannot
penetrate the HM layer and vanish at its outer bound-
aries. Our simple model is shown to explain all main
features of the recently observed triplet spin-valve effect
in MoGe/Cu/Ni/CrO2 structures24 and predict several
unusual phenomena manifesting the differences between
the influence of weak and strong ferromagnets on the
proximity effect.

To verify our main conclusions we also considered the
situation when the layers of the S/F/HM spin-valve have
atomic thickness and are separated by the tunnel bar-
riers. The advantage of such microscopical model is the
possibility to find the exact solution of the Gor’kov equa-
tions without any prior assumptions about the profiles of
the Green functions. Using this model we obtained the
analytical dependencies Tc(θ) which appear to reproduce
all main features found within the Usadel approach.

The paper is organized as follows. In Sec. II we intro-
duce our model. In Sec. III we apply it for the descrip-
tion of the triplet spin-valve effect in S/F/HM systems
and compare our results with the experimental observa-
tions of Ref. 24. In Sec. IV we study the anomalous
Josephson effect in dirty S/F/HM/F/S structures with
non-coplanar magnetic moments and demonstrate that
such systems support the states with the spontaneous

θ

F HMS
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f

FIG. 1: (Color online) The sketch of the S/F/HM spin valve.
The exchange field in the F-layer makes the angle θ with the
spin quantization axis in the half-metal.

phase difference, previously predicted for the ballistic
limit.36 In Sec. V we consider the spin-valve effect for
the S/F/HM systems of atomic thickness and compare
the results with the conclusions of Sec. III. In Sec. VI we
summarize our results and discuss their possible applica-
tions.

II. MODEL

Let us consider a multilayered structure consisting of
superconductors, ferromagnets and half-metals with the
interfaces perpendicular to the x-axis. Two examples
of such structures are shown in Fig. 1 and Fig. 4. We
assume that the systems is in the diffusive limit and the
temperature T is close to the critical temperature Tc of
the superconducting transition. In this case outside the
half-metallic layers the superconducting properties of the
system can be described in terms of the linearized Usadel
equation45

D

2
∂2xf̂ − ωnf̂ −

i

2

(

hσ̂f̂ + f̂hσ̂
)

+ ∆̂ = 0, (1)

where the quasiclassical Green function

f̂ =

(

f↑↑ f↑↓
f↓↑ f↓↓

)

= (fs + ftσ̂) iσ̂y (2)

is the 2 × 2 matrix in the spin space, ∆̂ = ∆iσ̂y is
the superconducting pairing potential inside the S lay-
ers, ωn = πT (2n+1) > 0 are the Matsubara frequencies,
h is the exchange field in the ferromagnets, and D is the
diffusion constant.
To describe the superconducting correlations inside the

half-metallic layers we assume that (i) electron scatter-
ing on the impurities does not cause spin-flips and (ii)
the barriers are not spin-active. In this case we may in-
troduce the Usadel Green function with only one nonzero
component f↑↑ meaning that the spin polarization in the
half-metal is directed along the z-axis.
To match the solutions of the Eq. (1) in different layers

one should put the boundary conditions at each interface.
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We assume all interfaces between the layers to be trans-
parent for electrons. In this case at the interfaces which
separate two non-halfmetallic material the boundary con-

ditions come to the continuity of f̂ and the combination

σ∂xf̂ (σ is the Drude conductivity of the corresponding
layer).25 Similarly, for the interfaces with the half-metal
we demand only the continuity of f↑↑ and σ∂xf↑↑ while
all other components f↓↓, f↑↓ and f↓↑ should vanish at
the HM-layer boundaries. At the outer boundaries of the

heterostructure we demand ∂xf̂ = 0.
The physical meaning of the boundary conditions at

the interface with half-metal is very clear: the interface
with the HM layer plays the role of spin filter, which is
absolutely transparent for the correlations with S = +1
and opaque for all other correlations.

III. TRIPLET SPIN-VALVE EFFECT IN
S/F/HM SYSTEMS

The geometry of the S/F/HM system under consider-
ation is shown schematically in Fig. 1. We choose the
origin of the x-axis in a way that the superconductor is
at −ds < x < 0, the ferromagnet is at 0 < x < df , and
the HM layer occupies the region df < x < df + dh. The
exchange field h in the F-layer is assumed to be rotated
on the angle θ in the xz-plane and have two components:
hz = h cos θ and hx = h sin θ. The spin quantization axis
in the HM-layer coincides with the z one.
To demonstrate the key difference between the

S/F/HM system and classical S/F2/F2 spin valves it is
instructive to write the explicit form of Eq. (1) inside the
F-layer for all components fs and ft:

(Df/2)∂
2
xfs = ωnfs + ih cos θftz + ih sin θftx,

(Df/2)∂
2
xftz = ωnftz + ih cos θfs,

(Df/2)∂
2
xftx = ωnftx + ih sin θfs,

(Df/2)∂
2
xfty = ωnfty,

(3)

where Df is the diffusion constants in the ferromagnet.
Clearly the spin-singlet component fs of the anomalous
function coming from the superconductor induces the
triplet components ftz and ftx while the equation for
fty remains independent. In the S/F2/F2 structures the
boundary conditions do not mix different components of

the function f̂ and, thus, the absence of the source in
equation for fty immediately leads to fty(x) = 0 in the
whole heterostructure.
However, in the S/F/HM systems the situation is com-

pletely different. The penetration of the non-zero com-
ponent f↑↑ = −ftx+ifty into the HM-layer together with
the vanishing of the component f↓↓ = ftx+ifty is possible
only if inside the half-metal

fty = iftx 6= 0. (4)

Consequently, this results in the appearance of fty also
in the S and F layers.
For the further analysis it is convenient to exclude fty

from (1) by substituting the solution of the equation for
fty into the boundary conditions. As a result, all infor-
mation about the component fty becomes included into
the effective boundary condition for ftx, which reads (see
Appendix A)

∂xftx
ftx

∣

∣

∣

∣

x=df

= −qfΓ (5)

with

Γ = 2µh +
µs + µf
1 + µsµf

. (6)

In this expression

µj =
σj
σf

√

Df

Dj
tanh(qjdj), (7)

where the index j ∈ {s, f, h} corresponds to the S, F and

HM layers respectively, qj =
√

2ωn/Dj, Dj and σj are
the diffusion constant and the normal conductivity in the
j-th layer.
Note that in the case when the diffusion constants and

conductivities of all layers are equal to each other the
expression for Γ takes the form

Γ = 2 tanh(qhdh) + tanh [qf (ds + df )] . (8)

Clearly, this expression reflects the fact that at the F/HM
interface the component ftx of the Green function induces
two components (ftx and fty) in the half-metal and also
the component fty in the S/F bilayer.
Now let us analyze the dependence of the S-layer crit-

ical temperature on the angle θ. To simplify the cal-
culations we assume that the thickness of the S-layer is
much smaller than the superconducting coherence length
ξs0 =

√

Ds/4πTc0, which enables neglecting the spatial
variation of the pairing potential ∆ across the supercon-
ducting film (here Tc0 is the critical temperature of the
isolated superconductor). For convenience we choose ∆
to be real. Then the dependence Tc(θ) is defined by the
self-consistency equation

∆ ln
Tc (θ)

Tc0
+

∞
∑

n=0

[

∆

n+ 1/2
− 2πTc (θ) fs (θ)

]

= 0. (9)

The equation (1) with the boundary conditions de-
scribed above allows us to obtain the analytical expres-
sions for the anomalous Green function in each layer (the
details of the calculations are presented in Appendix B).
Inside the superconductor the component fs has the form

fs = ℜ

(

∆

ωn + τ−1
π

)

−
∆

ωn

µsW
2 sin2 θ

Q sin2 θ + Γ + (Γ− 2µh) cos2 θ
,

(10)
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FIG. 2: (Color online) The dependencies of the critical tem-
perature on the angle θ for different thicknesses df of the
ferromagnetic layer. The system parameters are: ds = 0.5ξs0,
h/4πTc0 = 2, dh =

√

Dh/4πTc0, Df/Ds = σf/σs = 10−3,
and Dh/Df = σh/σf = 10−3.

where q =
√

2 (ωn + ih) /Df , p = µsqf ,

W = ℑ

{

q

q cosh(qdf ) + p sinh(qdf )

}

, (11)

Q = ℜ

{

q

qf

p+ q tanh(qdf )

q + p tanh(qdf )

}

, (12)

and the pair-breaking parameter

τ−1
π =

σf
σs

Ds

2ds
q coth(qdf ) (13)

is the same as for the S/F/S junction with the F-layer
thickness 2df in the π-state (see, e.g., Ref. 4).
The expression (10) allows to analyze the main features

of the critical temperature behavior. First, in contrast
with the case of S/F1/F2 spin valve18 the dependence
Tc(θ) is always symmetric, i.e. Tc(π − θ) = Tc(θ). Sec-
ond, fs

(

sin2 θ
)

is a monotonically decreasing function
and, thus, the minimum of the critical temperature cor-
responds to θ = π/2. Note that these two features were
clearly observed in recent experiments with spin valves
containing the half-metallic CrO2 layer.24

The typical dependencies Tc(θ) are shown in Fig. 2.
One sees that S/F/HM system with df ∼ ξf reveal gi-
ant triplet spin-valve effect originating due to the LRTC:
for the chosen parameters the increase of θ results in the
damping of Tc from 0.4Tc0 to zero. In Fig. 3 we also plot
the dependencies of Tc on the F-layer thickness df for
θ = 0 and θ = π/2. For df ≪ ξf the superconductiv-
ity is fully suppressed by the proximity with half-metal.
When increasing df above a certain threshold, which de-
pends on θ, the critical temperature becomes non-zero
and grows rapidly. Interestingly, the difference in the
thresholds for θ = 0 and θ = π/2 makes it possible to si-
multaneously reach the absolute maximum of Tc for θ = 0
and have Tc(π/2) = 0.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = π/2

θ = 0

d
f
 / ξ

f

T
 / 

T c0

FIG. 3: (Color online) The dependencies of the critical tem-
perature on the thickness of the ferromagnetic layer for θ = 0
(blue curve) and θ = π/2 (red curve). The system parameters
are the same as in Fig. 2.

IV. ANOMALOUS JOSEPHSON EFFECT IN
S/F/HM/F/S SYSTEMS

In this section we analyze the behavior of the Joseph-
son current through the F1/HM/F2-trilayer (see Fig. 4).
In particular, we show that the peculiar mixing of differ-

ent spin-triplet f̂ components at F/HM interfaces results
in the ϕ0-junction formation provided the magnetic mo-
ments in the F-layers and the spin quantization axis in
the HM-layer are the non-coplanar vectors. Previously
this effect was noted within the circuit-theory for the
junctions consisting of two ferromagnetic superconduc-
tors separated by the half-metal.44 The model of the fer-
romagnetic superconductors44 allows to simplify the cal-
culations but can hardly be applied for the real systems in
which the ferromagnetic order strongly suppresses super-
conductivity. Here we consider a more realistic situation
when the regions with superconducting and ferromag-
netic orders are separated in space.

To make the physical origin of the effects under con-
sideration more transparent we restrict ourselves to the
simplest case when the exchange field in the F1-layer is
directed along the x-axis while the magnetic moment of

HMS

dd h

x

f

S

df

z

F
1

F
2

FIG. 4: (Color online) The sketch of the S/F1/HM/F2/S
Josephson junction. The exchange field vectors in the fer-
romagnets and half-metal are perpendicular to each other.
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the F2-layer has only y-component. For simplicity we
consider equal magnitude h of the exchange field in the
F1 and F1-layers. Similar to the previous sections we as-
sume that in the half-metal the spins are quantized in the
z-direction. We choose the x-axis perpendicular to the
interfaces so that the F1, HM and F2-layers occupies the
regions −(df + dh/2) < x < −dh/2, −dh/2 < x < dh/2
and dh/2 < x < df + dh/2 respectively.
Before proceeding with the calculation of the Joseph-

son current let us briefly point out the main difference of
the described system from the S1/F1/F

′/F2/S2 junctions
with the same magnetic configuration extensively studied
before. In the latter system if the magnetic moments in
the three ferromagnets are perpendicular to each other
and the thickness of the central layer strongly exceeds
the coherence length

√

D2/h2 the Josephson current is
negligibly small. Indeed, the F1 layer produces the com-
ponent ftx of the anomalous Green function which be-
comes long-range in the F′ layer and reaches the ferro-
magnet F2. However, this component do not contribute
to the Josephson current since the magnetic moment in
the F2 directed along the y-axis cannot convert this ftx
component into the singlet fs one.
The situation becomes completely different if instead

of the ferromagnet F′ one has half-metallic layer. In this
case at the F1/HM interface both ftx and fty compo-
nents are produced. As a result, in the F2-layer the fty
component can be effectively converted into the fs one
and, thus, produce the non-vanishing Josephson current.
The current-phase relation j(ϕ) of the Josephson junc-

tion is defined by the sum

j (ϕ) = 8πeDNT
∑

ωn>0

ℑ (f∗
s ∂xfs − f∗t ∂xft) , (14)

where e is the charge of electron, N is the electronic
density of states, D is the diffusion coefficient. Since
the current does not depend on the position across the
junction the anomalous Green function can be taken in
arbitrary point. Practically it is convenient to choose this
point, e.g., at the S/F1 interface (at x = −df − dh/2)
where only the singlet component fs is non-zero.
To simplify the further calculations we assume that the

normal conductivity of the superconducting electrodes
strongly exceed the ones in the ferromagnets, so that at
both S/F interfaces the rigid boundary conditions are
fulfilled: fs = (∆/ωn)e

±iϕ/2 (the signs + and − in the
phase factor correspond to the right and left S-layers re-
spectively) while ft = 0. Also we assume that the thick-
ness of the HM-layer is much less than the coherence
length

√

Dh/4πTc0 which allows to neglect the spatial
variations of the function f↑↑ across this layer. Solving
the Usadel equation with the boundary conditions dis-
cussed above we obtain the analytical expression for the
derivative ∂xfs at x = −df −dh/2 (see Appendix C) and
the resulting current-phase relation:

j (ϕ) = 4πeDfNT sin
(

ϕ+
π

2

)

∑

ωn>0

∆2

ω2
n

Jn, (15)

θ

tt

S F HM

FIG. 5: (Color online) S/F/HM spin valve of the atomic thick-
ness. The angle between the exchange field in the ferromagnet
and the spin quantization axis in the half-metal is denoted as
θ. The coupling between the layers is described by the trans-
fer integral t.

where

Jn =
1

qf coth(qfdf ) + ℜ [q coth(qdf )]
ℑ2

[

q

sinh(qdf )

]

(16)
and the definition of q and qf are the same as in Sec. III.
From Eq. (16) one can see that the non-coplanarity of

the magnetic moments in the magnetic layers results in
the appearance of the spontaneous Josephson phase dif-
ference (so-called ϕ0-junction). In contrast with the ordi-
nary S/F/S systems where the formation of ϕ0-junction
requires strong spin-orbit, coupling46–49 here the sponta-
neous phase arises due to spin polarization in the HM-
layer. Note that in case of arbitrary mutual orientation
of the magnetic moments in the F-layers one can expect
the spontaneous Josephson phase ϕ0 to be equal to the
angle between the projections of these magnetic moments
to the xy-plane (see Ref. 44).

V. S/F/HM SPIN VALVE OF THE ATOMIC
THICKNESS

In this section we study the spin-valve effect in the
S/F/HM trilayers of atomic thickness. Experimentally
such kind of systems can be realized, e.g., on the basis
of the RuSr2GdCu2O8 and La0.7Ca0.3MnO3 compounds.
The first one is the ferromagnetic superconductor with
the alternating S-layers of CuO2 and the magnetically
ordered RuO2 layers. The second compound is a half-
metal54 which is recently shown to have a strong influence
on the properties of the superconducting systems.55

Here we use the microscopical Gor’kov formalism to
calculate how the critical temperature of the S/F/HM
trilayer depends on the angle θ between the exchange
field h = h cos θẑ + h sin θx̂ in the ferromagnet and the
spin quantization axis ẑ in the HM-layer (see Fig. 5).
We assume that the neighboring layers are coupled by
the electron tunneling describing by the transfer integral
t. Previously this approach was successfully applied for
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the description of the spin-valve effect in F/S/F struc-
tures (see [50–53] and references therein). The main ad-
vantage of the atomic layers model is the possibility to
obtain the exact solutions for the Green functions and
analyze their properties. Below we obtain such solutions
for the case of the S/F/HM structures and demonstrate
that they reproduce all main features of the spin-valve ef-
fect described within the phenomenological Usadel model
in Sec. III.
Let us denote the two-component electronic operators

in the S, F and HM layers as ϕ, ψ and η respectively.
For simplicity we assume that the quasiparticle motion in
the plane of the S and F-layers is described by the same
energy spectrum ξ(p). At the same time, in the half-
metal the energy is strongly spin dependant: we assume
that for the spin-up quasiparticles ξ↑ = ξ(p) while for
the spin-down ones ξ↓ = +∞, which implies η↓ = 0.
The Hamiltonian of the system under consideration

has the form50

Ĥ = Ĥ0 + ĤS + Ĥt, (17)

where

Ĥ0 =
∑

p;α=1,2

[

ξ(p)ϕ+
αϕα + ψ+

α Ĉ(θ)ψα + η+α P̂ ηα

]

, (18)

ĤS =
∑

p

(

∆∗ϕp,2ϕ−p,1 +∆ϕ+
p,1ϕ

+
−p,2

)

, (19)

Ĥt =
∑

p;α=1,2

t
(

ϕ+
αψα + ψ+

αϕα + ψ+
α ηα + η+αψα

)

. (20)

In Eq. (18) we introduces two matrices describing the
effect of Zeeman coupling in the F-layer and the spin
polarization in the half-metal:50

Ĉ(θ) =

(

ξ − h cos θ −h sin θ
−h sin θ ξ + h cos θ

)

, P̂ =

(

ξ 0
0 +∞

)

.

(21)
Note that in contrast with the model of Ref. 44 in our
system the superconducting and ferromagnetic regions
are separated in space which makes it possible to consider
the exchange field h of arbitrary magnitude.
The critical temperature Tc of the S-layer is defined

by the linear expansion of the anomalous Green func-

tion F+
α,β =

〈

Tτ

(

ϕ+
α , ϕ

+
β

)〉

over the gap potential |∆|,

where Tτ denotes the time-ordered product for the imag-
inary time τ . Writing and solving the systems of Gor’kov
equations for the S/F/HM system we find (the details of
calculations are presented in Appendix D):

F̂+

∆∗
=

{

(iω + ξ)1̂− t2
[

(iω + Ĉ)− t2(iω + P̂ )−1
]−1

}−1

×Î

{

(iω − ξ)1̂− t2
[

(iω − Ĉ)− t2(iω − P̂ )−1
]−1

}−1

.

(22)

To simplify the further calculations we assume the tun-
neling constant t to be small and perform the power ex-
pansion of Eq. (22) over t2. To obtain the non-trivial de-
pendence Tc(θ) we should keep the terms up to t6. Also it
is convenient to represent the self-consistency equation51

in the form

Tc(θ) = Tc(0)− 2T 2
c0

∑

ωn>0

+∞
∫

−∞

Re
F+
12(θ) − F+

12(0)

∆∗
dξ,

(23)
where Tc(0) = Tc0

[

1−O(t2)
]

is the critical temperature
at θ = 0 [for t ≪ Tc0 one has |Tc(θ) − Tc0| ≪ Tc0] and the
sum is taken over the discrete set of positive Matsubara
frequencies ωn = πTc0(2n+ 1).
Substituting the expression for F+

12 into Eq. (23) we
found:

Tc(θ) = Tc(0)+
∑

ωn>0

+∞
∫

−∞

4T 2
c0t

6h2 sin2 θdξ

(iω − ξ)(iω + ξ)3 [(iω + ξ)2 − h2]3
,

(24)
Taking the integral over ξ we get:

Tc(θ) = Tc(0)−
∑

ωn>0

πT 2
c0t

6h2 sin2 θ

ω3(4ω2 + h2)3
, (25)

First, one can clearly see that the deviation of the crit-
ical temperature from Tc(0) is proportional to sin2 θ and,
thus, Tc(π − θ) = Tc(θ) in the full accordance with the
conclusion of Sec. III.
Second, Eq. (25) shows that the magnitude of the

spin-valve effect which can be characterized by the value
δTc = Tc(0)−Tc(θ) has non-monotonic dependence on h
with the maximum δTmaxc ∝ t6/T 5

c0 at h ∼ Tc0. Indeed,
for h ≪ Tc0 the exchange field weakly affect the system
properties, and

δTc =
511ζ(9)t6h2

215π8T 7
c0

∝
t6

T 5
c0

(

h

Tc0

)2

. (26)

In the opposite limit when h ≫ Tc0 the strong Zeeman
splitting of the energy bands inside the F-layer effectively
damps the tunneling constant between the layers, and as
a result the spin-valve effect is also weak:

δTc =
7ζ(3)t6

8π2Tc0h4
∝

t6

T 5
c0

(

Tc0
h

)4

. (27)

In terms of the previously discussed Usadel theory the
latter relation simply reflects the fact that for h ≫ Tc0
the coherence length ξf =

√

Df/h in the F-layer be-
comes much smaller than its thickness, and supercon-
ducting correlations do not reach half-metal.

VI. CONCLUSION

To sum up, we proposed the phenomenological Usadel
theory of the superconducting proximity effect in multi-
layered systems with a half-metallic layer. It is shown
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that the boundary between ferromagnet and half-metal
serves as a source of additional triplet component of the
anomalous Green function which is perpendicular to both
exchange field h in the F-layer and the spin quantization
axis in half-metal ẑ. For the S/F/HM trilayes we ana-
lyzed the dependence of the critical temperature Tc on
the angle θ between h and ẑ and found that the discov-
ered triplet component strongly enhances the spin valve
effect compared to the traditional S/F/F structures: in-
creasing the angle θ one can damp Tc from the value com-
parable to the critical temperature of the isolated super-
conductor down to zero. Note that the described giant
damping of Tc appears only due to the long-range triplet
correlations (LRTC) since the short range ones do not
penetrate the HM-layer and, thus, are not sensitive to θ.
In addition, we showed that the full spin polarization in
the HM-layer requires the symmetry Tc(π − θ) = Tc(θ),
which was clearly observed in recent experiments with
the MoGe/Cu/Ni/CrO2 spin valves.24

To verify our main conclusions about the peculiarities
of the spin-valve effect in the S/F/HM structures we con-
sidered the case when the layers of such system have the
atomic thickness. For this case we obtained the exact an-
alytical solution of the Gor’kov equations and calculated
the dependencies Tc(θ). We found that if the tunneling
rate between the layers is small the deviation of Tc(θ)
from the critical temperature at θ = 0 is proportional
to sin2 θ which reproduces the symmetry relation found
within the Usadel formalism.

Also we demonstrated that the new “perpendicu-
lar” triplet component of the anomalous Green func-
tion dramatically modifies the current-phase relation of
the S/F/HM/F/S Josephson junctions provided the ex-
change field vectors in the F-layers and the spin quanti-
zation axis ẑ in half-metal are non-coplanar. First, we
found that such systems support the ϕ0-junction for-
mation. This result is non-trivial since in the usual
S/F/S and S/N/S structures the appearance of the spon-
taneous Josephson phase difference requires strong spin-
orbit coupling.46–49 In contrast, here such phase emerges
only due to the spin selectivity of the half-metal. Second,
the critical current of the S/F/HM/F/S structures does
not vanish when the exchange field vectors and ẑ are
perpendicular to each other. This result directly origi-
nates from the presence of the additional Green function
component. It is exactly this component, which makes it
possible not only to generate the long-range triplet corre-
lations near the S-lead but also to convert them back into
the singlet ones near the opposite lead. Note that previ-
ously these effects were discussed for the system of two
ferromagnetic superconductors and the half-metal sepa-
rated with the tunnel barriers.44 However the model of
ferromagnetic superconductor is valid only for extremely
weak exchange field values which make it inapplicable to
the real heterostructures.

Finally, we would like to mention that the appearance
of the additional triplet component of the anomalous
Green function should strongly influence the local density

of states (LDOS) and the electromagnetic response of all
considered heterostructures. Indeed, spin-triplet correla-
tions make positive contribution into the LDOS44,56–58

and, as a result, LDOS in the superconducting state can
even exceed the one above Tc. Obviously, the new triplet
component generated by the half-metal should provide
more favorable conditions for the investigation of this un-
usual phenomenon as well as for the observation of the
related Fulde-Ferrell-Larkin-Ovchinnikov instabilities.59
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Appendix A: Effective boundary conditions at
F/HM interface

Let us derive the effective boundary condition for the
ftx component of the anomalous Green function at the
F/HM interface of the S/F/HM heterostructure. From
Eq. (1) using the condition ∂xfty = 0 at x = −dS and
x = dF+dH one finds the solution for the fty in the S and
F layers as well as the solution for f↑↑ in the HM-layer:

S : fty = A cosh [qs (x+ ds)] ,
F : fty = B cosh [qf (x− df )] + C sinh [qf (x− df )] ,
HM : f↑↑ = H cosh [qh (x− df − dh)] ,

(A1)

where qj =
√

2ωn/Dj (the index j = s, f, h corresponds
to the S, F and HM layer respectively), Dj is the dif-
fusion constant in the j-th layer, and A, B, C and H
are the integration constants. Introducing the parame-
ter νsf = (σs/σf )

√

Df/Ds and νhf = (σh/σf )
√

Df/Dh

and using the boundary conditions at x = 0 and x = d
we obtain the systems of equations:

B cosh(qfdf )− C sinh(qfdf ) = A cosh (qsds) ,
−B sinh(qfdf ) + C cosh(qfdf ) = νsfA sinh (qsds) ,

ftx(df ) + iB = 0,
−ftx(df ) + iB = H cosh (qhdh) ,

−∂xftx(df ) + iqfC = −qfνhfH sinh (qhdh) .
(A2)

Excluding the constants A, B, C and H from this system
we obtain the effective boundary condition (5) for the
component ftx.

Appendix B: Calculation of the anomalous Green
function in the S/F/HM spin valve

As follows from Eq. (1) if the gap potential ∆ is cho-
sen to be real then the components fs and fty of the
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anomalous Green function are also real while the compo-
nents ftz and ftx are imaginary. Then it is convenient to
introduce the complex function

F (x) = fs + ftz cos θ + ftx sin θ (B1)

and the real function

R(x) = i (ftz sin θ − ftx cos θ) , (B2)

so that

fs = ℜ(F ),
ftz = iℑ(F ) cos θ − iR sin θ,
ftx = iℑ(F ) sin θ + iR cos θ.

(B3)

The introduced functions satisfy the systems of equations

D

2
∂2xF = (ωn + ih)F −∆,

D

2
∂2xR = ωnR.

(B4)

The boundary conditions for F and R straightly follow

from the corresponding conditions for the f̂ components.
Since we assumed that ds ≪ ξs0 the solution of

Eq. (B4) inside the superconductor satisfying the bound-
ary conditions at x = −ds can be represented in the form

F =
∆

ωn
+ FS

q2s(x+ ds)
2

2
,

R = RS
q2s(x + ds)

2

2
.

(B5)

The analogous solution in the F layer reads

F = F1 cosh [q(x− df )] + F2 sinh [q(x− df )] ,

R = R1 cosh [qf (x− df )] +R2 sinh [qf (x− df )] ,
(B6)

where we have introduced the complex wave-vector q =
√

2 (ωn + ih) /Df .
To calculate the unknown amplitudes in the functions

F and R let us first consider the boundary conditions at
x = df . Since fs = ftz = 0 at this interface one finds:

ℜ(F1) = 0, ℑ(F1) cos θ = R1 sin θ. (B7)

These two equations can be rewritten as

F1 = iR1 tan θ. (B8)

The condition for the component ftx reads [see (5)]

ℑ(qF2) sin θ+qfR2 cos θ = −qfΓ [ℑ(F1) sin θ +R1 cos θ] .
(B9)

The boundary conditions at x = 0 give the rest four
equations:

∆

ωn
+ FS = F1 cosh(qdf )− F2 sinh(qdf ),

pFS = −qF1 sinh(qdf ) + qF2 cosh(qdf ),

RS = R1 cosh(qfdf )−R2 sinh(qfdf ),

pRS = −qfR1 sinh(qfdf ) + qfR2 cosh(qfdf ),

(B10)

where

p = µsqf ≈
σs
σf

2ds
Ds

ωn. (B11)

To solve the system of equations (B8)-(B10) it is conve-
nient to exclude FS and RS from (B10) and then express
R2 and F2 in terms of R1 using (B8). The result is [see
Eq. (6)]

R2 = (Γ− 2µh)R1,

F2 =
iR1 tan θ [p cosh(qdf ) + q sinh(qdf )]− p∆/ωn

q cosh(qdf ) + p sinh(qdf )
.

(B12)
Finally, substituting (B12) into (B9) we obtain:

R1 =
∆

ωn

µsW sin θ cos θ

Q sin2 θ + Γ+ (Γ− 2µh) cos2 θ
, (B13)

where

W = ℑ

{

q

q cosh(qdf ) + p sinh(qdf )

}

, (B14)

Q = ℜ

{

q

qf

p+ q tanh(qdf )

q + p tanh(qdf )

}

. (B15)

The obtained explicit expression for R1 enables straight-
forward calculation of all other amplitudes in the anoma-
lous Green function. In particular,

FS =
q [iR1 tan θ − (∆/ωn) cosh(qdf )]

q cosh(qdf ) + p sinh(qdf )
. (B16)

Appendix C: Calculation of the current-phase
relation for the S/F/HM/F/S junction

Let us denote the coordinates of the left and right
boundaries of the HM-layer as xL = −dh/2 and xR =
dh/2. It is convenient to represent the solution of the
Usadel equation in the F1-layer in the form

fs + ftx = A+
1 sinh [q (x− xL)] +B1 cosh [q (x− xL)] ,

fs − ftx = A−
1 sinh [q∗ (x− xL)]−B1 cosh [q

∗ (x− xL)] ,

fty = iB1
sinh [qf (x− xL + df )]

sinh(qfdf )
,

ftz = 0,
(C1)

where qf =
√

2ωn/Df and q =
√

2(ωn + ih)/Df (we as-
sume that the diffusion constants and normal conductiv-
ities in the F-layers are equal to each other). In Eq. (C1)
we took into account that fs = f↓↓ = 0 at x = xL and
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fty = 0 at x = xL − df . Analogously, the solution in the
F2-layer can be written as

fs + fty = A+
2 sinh [q (x− xR)] +B2 cosh [q (x− xR)] ,

fs − fty = A−
2 sinh [q∗ (x− xR)]−B2 cosh [q

∗ (x− xR)] ,

ftx = iB2
sinh [qf (x− xR − df )]

sinh(qfdf )
,

ftz = 0.
(C2)

Inside the HM-layer the solution for the only non-zero
component f↑↑ = −ftx + ifty has the form

f↑↑ = P1 sinh(qhx) + P2 cosh(qhx), (C3)

with qh =
√

2ωn/Dh. Taking derivation of Eq. (C3) and
excluding the constants P1 and P2 we obtain two equa-
tions which connect the values of f↑↑ and ∂xf↑↑ on the
left and right sides of the half-metal (the corresponding
values are indicated by the upper indexes L and R):

qhf
R
↑↑ = ∂xf

L
↑↑ sinh(qhdh) + qhf

L
↑↑ cosh(qhdh),

∂xf
R
↑↑ = ∂xf

L
↑↑ cosh(qhdh) + qhf

L
↑↑ sinh(qhdh).

(C4)

Further for simplicity we will assume that dh ≪
√

Dh/4πTc0. Then the system (C4) transforms into
fR↑↑ = fL↑↑ and ∂xf

R
↑↑ = ∂xf

L
↑↑. Taking this into account

and substituting Eqs. (C1)-(C2) into the boundary con-
ditions at the S/F and F/HM interfaces we obtain:

−A+
1 sinh(qdf ) +B1 cosh(qdf ) =

∆

ωn
e−iϕ/2, (C5)

−A−
1 sinh(q∗df )−B1 cosh(q

∗df ) =
∆

ωn
e−iϕ/2, (C6)

A+
2 sinh(qdf ) +B2 cosh(qdf ) =

∆

ωn
eiϕ/2, (C7)

A−
2 sinh(q∗df )− B2 cosh(q

∗df ) =
∆

ωn
eiϕ/2, (C8)

− B1 = iB2, (C9)

−B1 = iB2 (C10)

−qA+
1 + q∗A−

1 − 2B1qf coth(qfdf ) =

− 2iB2qf coth(qfdf ) + iqA+
2 − iq∗A−

2 .
(C11)

To calculate the Josephson current through the junc-
tion we need to find only the combination ℑ (f∗

s ∂xfs) at

x = −df − dh/2. Solving the system of equations (C5)-
(C11) we find:

B1 =
1

2

ie−iϕ/2 + eiϕ/2

qf coth(qfdf ) + ℜ [q coth(qdf )]
ℑ

[

q

sinh(qdf )

]

(C12)
and, as a consequence,

ℑ (f∗
s ∂xfs) =

1

2

sin (ϕ+ π/2)ℑ2
[

q
sinh(qdf )

]

qf coth(qfdf ) + ℜ [q coth(qdf )]
(C13)

Substituting this expression into Eq. (14) we obtain the
desired current-phase relation.

Appendix D: Calculation of the Green function for
the S/F/HM system of atomic thickness

Let us introduce the following Green functions in the
imaginary time representation:

Gα,β = −
〈

Tτ

(

ϕα, ϕ
+
β

)〉

, F+
α,β =

〈

Tτ

(

ϕ+
α , ϕ

+
β

)〉

,

Eψα,β = −
〈

Tτ

(

ψα, ϕ
+
β

)〉

, Fψ+α,β =
〈

Tτ

(

ψ+
α , ϕ

+
β

)〉

,

Eηα,β = −
〈

Tτ

(

ηα, ϕ
+
β

)〉

, F η+α,β =
〈

Tτ

(

η+α , ϕ
+
β

)〉

,

(D1)
Then performing the Fourier transform we obtain the
following system of the matrix Gor’kov equations:

(iω − ξ) Ĝ− tÊψ +∆ÎF̂+ = 1̂, (D2)

(iω + ξ) F̂+ + tF̂ψ+ −∆∗ÎĜ = 0, (D3)

(

iω − Ĉ
)

Êψ − tĜ− tÊη = 0, (D4)

(

iω + Ĉ
)

F̂ψ+ + tF̂+ + tF̂ η+ = 0, (D5)

(

iω − P̂
)

Êη − tÊψ = 0, (D6)

(

iω + P̂
)

F̂ η+ + tF̂ψ+ = 0, (D7)

where Î = iσ̂y, and 1̂ is the unit matrix in the spin space.
Solving the system (D2)-(D7) and considering only the

linear term in the expansion of the function F̂+ over |∆|
we obtain the expression (22).
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Phys. Rev. B 59, 587 (1999).
54 J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys.

48, 167 (1999).
55 C. Visani, Z. Sefrioui, J. Tornos, C. Leon, J. Briatico, M.
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