
HAL Id: hal-01234982
https://hal.science/hal-01234982

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding First Integrals Using Normal Forms Modulo
Differential Regular Chains

François Boulier, François Lemaire

To cite this version:
François Boulier, François Lemaire. Finding First Integrals Using Normal Forms Modulo Differen-
tial Regular Chains. Computer Algebra in Scientific Computing 2015, Sep 2015, Aachen, Germany.
pp.101-118. �hal-01234982�

https://hal.science/hal-01234982
https://hal.archives-ouvertes.fr

Finding First Integrals Using Normal Forms
Modulo Differential Regular Chains

François Boulier and François Lemaire

Univ. Lille, CRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France
{francois.boulier,francois.lemaire}@univ-lille1.fr

Abstract. This paper introduces a definition of polynomial first inte-
grals in the differential algebra context and an algorithm for comput-
ing them. The method has been coded in the Maple computer algebra
system and is illustrated on the pendulum and the Lotka-Volterra equa-
tions. Our algorithm amounts to finding linear dependences of rational
fractions, which is solved by evaluation techniques.

Keywords: First integral, linear algebra, differential algebra, nonlinear
system.

1 Introduction

This paper deals with the computation of polynomial first integrals of systems
of ODEs, where the independent variable is t (for time). A first integral is a
function whose value is constant over time along every solution of a system of
ODEs. First integrals are useful to understand the structure of systems of ODEs.
A well known example of first integral is the energy of a mechanical conservative
system, as shown by Example 1.

Example 1. Using a Lagrange multiplier λ(t), a pendulum of fixed length l, with
a centered mass m submitted to gravity g can be coded by:

x

y

l

m

g
Σ


mẍ(t) = λ(t)x(t)

mÿ(t) = λ(t) y(t) +mg

x(t)2 + y(t)2 = l2.

(1)

A trivial first integral is x(t)2 + y(t)2 since x(t)2 + y(t)2 = l2 on any solution. A
less trivial first integral is m

2

(
ẋ(t)2 + ẏ(t)2

)
−mg y(t) which corresponds to the

total energy of the system (kinetic energy + potential energy).

When no physical considerations can be used, one needs alternative methods.
Assume we want to compute a polynomial first integral of a system of ODEs.
Our algorithm findAllFirstIntegrals, which has been coded in Maple, relies on the
following strategy. We choose a certain number of monomials µ1, µ2, . . . , µe built

over t, the unknown functions and their derivatives (namely t, x(t), y(t), ẋ(t),
ẏ(t), . . . on Example 1), and look for a candidate of the form q = α1µ1+· · ·+αeµe
satisfying dq(t)

dt = 0 for all solutions, where the αi are in some field K. If the αi
are constant (i.e. dαi

dt = 0 for each αi), then our problem amounts to finding αi

such that dq(t)
dt = α1

dµ1

dt + · · · + αe
dµe

dt is zero for all solutions. On Example 1,
µ1, µ2 and µ3 could be the monomials ẋ(t)2, ẏ(t)2 and y(t) and α1, α2 and α3

could be m/2, m/2 and −mg.

Anticipating Section 4, differential algebra techniques combined with the
Nullstellensatz Theorem permit to check that a polynomial p vanishes on all
solutions of a radical ideal A by checking that p belongs to A. Moreover, in the
case where the ideal A is represented1 by a list of differential regular chains
M = [C1, . . . , Cf], checking that p ∈ A can be done by checking that the normal
form (see Section 4) of p modulo the list of differential regular chains M , denoted
NF(p,M), is zero. Since the normal form is K-linear (see Section 4), finding first
integrals can be solved by finding a linear dependence between NF(dµ1

dt ,M),

NF(dµ2

dt ,M), . . . , NF(dµe

dt ,M).

This process, which is in the spirit of [3, 8], encounters a difficulty: the nor-
mal forms usually involve fractions. As a consequence, we need a method for
finding linear dependences between rational functions. A possible approch con-
sists in reducing all fractions to the same denominator, and solving a linear
system based on the monomial structure of the numerators. However, this has
disadvantages. First, the sizes of the numerators might grow if the denominators
are large. Second, the linear system built above is completely modified if one
considers a new fraction. Finding linear dependences between rational functions
is addressed in Sections 2 and 3 by evaluating the variables occurring on the
denominators, thus transforming the fractions into polynomials. The main diffi-
culty with this process is to choose adequate evaluations to obtain deterministic
(i.e. non probabilistic) and terminating algorithms.

This paper is structured as follows. Section 2 presents some lemmas around
evaluation and Algorithm findKernelBasis (and its variant findKernelBasisMatrix)
which computes a basis of the linear dependences of some given rational func-
tions. Section 3 presents Algorithm incrementalFindDependence (and its variant
incrementalFindDependenceLU) which sequentially treats the fractions and stops
when a linear dependence is detected. Section 4 recalls some differential algebra
techniques and presents Algorithm findAllFirstIntegrals which computes a basis of
first integrals which are K-linear combinations of a predefined set of monomials.

In Sections 2 and 3, k is a commutative field of characteristic zero contain-
ing R, A is an integral domain with unit, a commutative k-algebra and also a
k-vector space equipped with a norm ‖·‖A. Moreover, K is the total field of frac-
tions of A. In Section 4, we will require, moreover, that K is a field of constants.
In applications, k is usually R, A is usually a commutative ring of multivariate
polynomials over k (i.e. A = k[z1, . . . , zs]) and K is the field of fractions of A
(i.e. the field of rational functions k(z1, . . . , zs)).

1 more precisely A = [C1] :H∞C1
∩ · · · ∩ [Cf] :H∞Cf

2 Basis of Linear Dependences of Rational Functions

This section presents Algorithms findKernelBasis and findKernelBasisMatrix which
compute a basis of the linear dependences over K of e multivariate rational
functions denoted by q1, . . . , qe. More precisely, they compute a K-basis of the
vectors (α1, . . . , αe) ∈ Ke satisfying

∑e
i=1 αiqi = 0.

Those algorithms are mainly given for pedagogical reasons, in order to focus
on the difficulties related to the evaluations (especially Lemma 2). The rational
functions are taken in the ring K(Y)[X] where Y = {y1, . . . , ym} is a finite set
of indeterminates and X is another (possibly infinite) set of indeterminates such
that Y ∩X = ∅. The idea consists in evaluating the variables Y , thus reducing
our problem to finding the linear dependences over K of polynomials in K[X],
which can be easily solved for instance with linear algebra techniques. If enough
evaluations are made, the linear dependences of the evaluated fractions coincide
with the linear dependences of the non evaluated fractions.

Even if it is based on evaluations, our algorithm is not probabilistic. A pos-
sible alternative is to use [12] by writing each rational function into a (infinite)
basis of multivariate rational functions. However, we chose not to use that tech-
nique because it relies on multivariate polynomial factorization into irreducible
factors, and because of a possible expression swell.

2.1 Preliminary Results

This section introduces two basic definitions as well as three lemmas needed for
proving Algorithm findKernelBasis.

Definition 1 (Evaluation). Let D = {g1, . . . , ge} be a set of polynomials of
K[Y] where Y = {y1, . . . , ym}. Let y0 = (y0

1 , y
0
2 , . . . , y

0
m) be an element of Km,

such that none of the polynomials of D vanish on y0. One denotes σy0 the ring
homomorphism from K[X,Y, g−1

1 , . . . , g−1
e] to K[X] defined by σy0(yj) = y0

j for
1 ≤ j ≤ m and σy0(x) = x for x ∈ X. Roughly speaking, the ring homomorphism
σy0 evaluates at y = y0 the rational functions whose denominator divides a
product of powers of gi.

Definition 2 (Linear combination application). Let E be a K-vector space.
For any vector v = (v1, v2, . . . , ve) of Ee, Φv denotes the linear application from
Ke to E defined by α = (α1, α2, . . . , αe)→ Φv(α) =

∑e
i=1 αivi.

The notation Φv defined above is handy: if q = (q1, . . . , qe) is (for example)
a vector of rational functions, then the set of the vectors α = (α1, . . . , αn) in Ke
satisfying

∑e
i=1 αiqi = 0 is simply kerΦq.

The following Lemma 1 is basically a generalization to several variables of
the classical following result: a polynomial of degree d over an integral domain
admitting d+ 1 roots is necessarily the zero polynomial.

Lemma 1. Let p ∈ K[Y] where Y = {y1, . . . , ym}. Assume degyi p ≤ d for all
1 ≤ i ≤ m. Let S1, S2, . . . , Sm be m sets of d + 1 points in Q. If p(y0) = 0 for
all y0 ∈ S1 × S2 × . . .× Sm, then p is the zero polynomial.

Proof. By induction on m. When m = 1, p has d+ 1 distinct roots and a degree
at most d. Since p is a polynomial over a field K, p is the zero polynomial.

Suppose the lemma is true for m. One shows it is true for m + 1. Seeing
p as an element of K(y1, . . . , ym)[ym+1] and using the Lagrange polynomial in-
terpolation formula [9, page 101] over the ring K(y1, . . . , ym)[ym+1], one has

p =
∑d+1
i=1

(
p(y1, . . . , ym, si)

∏d+1
j=1,j 6=i

ym+1−sj
si−sj

)
where Sm+1 = {s1, . . . , sd+1}.

For each 1 ≤ i ≤ d+1, p(y1, . . . , ym, si) vanishes on all points of S1×S2×. . .×Sm.
By induction, all p(y1, . . . , ym, si) are thus zero, and p is the zero polynomial. ut

The following lemma is quite intuitive. If one takes a nonzero polynomial g in
K[Y], then it is possible to find an arbitrary large “grid” of points in Nm where
g does not vanish. This lemma will be applied later when g is the product of
some denominators that we do not want to cancel.

Lemma 2. Let g be a nonzero polynomial in K[Y] and d be a positive inte-
ger. There exist m sets S1, S2, . . . , Sm, each one containing d + 1 consecutive
nonnegative integers, such that g(y0) 6= 0 for all y0 in S = S1 × S2 × · · · × Sm.

The proof of Lemma 2 is the only one explicitly using the norm ‖·‖A. The
proof is a bit technical but the underlying idea is simple and deserves a rough
explanation. If g is nonzero, then its homogeneous part of highest degree, denoted
by h, must be nonzero at some point ȳ, hence on a neighborhood of ȳ. Since g
“behaves like” h at infinity (the use of ‖·‖A will make precise this statement),
one can scale the neighborhood to prove the lemma.

Proof. Since K is the field of fraction of A, one can assume with no loss of
generality that g is in A[Y].

Denote g = h + p where h is the homogeneous part of g of (total) degree
e = deg g. Since, g is nonzero, so is h. By Lemma 1, there exists a point ȳ ∈
Rm>0, such that h(ȳ) 6= 0, where R>0 denotes the positive reals. Without loss of
generality, one can assume that ‖ȳ‖∞ = 1 since h is homogeneous. There exists
an open neighborhood V of ȳ such that V ⊂ Rm>0 and 0 /∈ h(V). Moreover,
this open neighborhood V also contains a closed ball B centered at ȳ for some
positive real ε i.e. B = {y ∈ Rm>0 | ‖y − ȳ‖∞ ≤ ε} ⊂ V .

Since B is a compact set and the functions h and t are continuous, the
two following numbers are well-defined and finite: m = miny∈B ‖h(y)‖A and
M = maxy∈B(

∑
i∈I ‖ai‖Ami(y)) (where p =

∑
i∈I aimi with ai ∈ A and mi is

a monomial in Y). Moreover, m > 0 (since by a compactness argument there
exists y ∈ B such that h(y) = m).

Take y ∈ B and s > 1 ∈ R. Then g(sy) = h(sy) + p(sy) = seh(y) + p(sy). By
the reverse triangular inequality and the homogeneity of h, one has ‖g(sy)‖A ≥
se ‖h(y)‖A − ‖p(sy)‖A. Moreover

‖p(sy)‖A ≤
∑
i∈I
‖ai‖Ami(sy) ≤

∑
i∈I
‖ai‖A s

e−1mi(y) ≤ se−1M .

Consequently, ‖g(sy)‖A ≥ sem−se−1M . If one takes s sufficiently large to ensure
sem−se−1M > 0 and sε ≥ (d+1)/2, the ball B̄ obtained by uniformly scaling B

by a factor s contains no root of g. Since the width of the box B̄ is at least d+1,
the existence of the expected Si is guaranteed. ut

Roughly speaking, the following lemma ensures that if a fraction q in K(Y)[X]
evaluates to zero for well chosen evaluations of Y , then q is necessarily zero.

Lemma 3. Take an element q in K(Y)[X]. Then, there exist an integer d, and
m sets S1, S2, . . . , Sm, each one containing d+1 nonnegative consecutive integers,
such that σy0(q) is well-defined for all y0 ∈ S = S1 × S2 × · · · × Sm. Moreover,
if σy0(q) = 0 for all y0 in S, then q = 0.

Proof. Let us write q = p/g where p ∈ K[X,Y] and g ∈ K[Y]. Consider d =
max1≤i≤m degyi(p). By Lemma 2, there exist m sets S1, . . . , Sm of d+1 consecu-
tive nonnegative integers such that g(y0) 6= 0 for all y0 in S = S1×S2×· · ·×Sm.
Consequently, σy0(q) is well-defined for all y0 in S. Let us assume that σy0(q) = 0
for all y0 in S. As a consequence, one has σy0(p) = 0 for any y0 in S. By Lemma 1,
one has p = 0, hence q = 0. ut

2.2 Algorithm findKernelBasis

We rely on the notion of iterator, which is a tool in computer programming that
enables to enumerate all values of a structure (such as a list, a vector, . . .). An
iterator can be finite (if it becomes empty after enumerating a finite number of
values) or infinite (if it never gets empty).

In order to enumerate evaluation points (that we take in Nm for simplicity),
we use two basic functions to generate one by one all the tuples, which do not
cancel any element of D, where D is a list of nonzero polynomials of K[Y].
The first one is called newTupleIteratorNotCancelling(Y,D). It builds an iterator
I to be used with the second function getNewTuple(I). Each time one calls the
function getNewTuple(I), one retrieves a new tuple which does not cancel any
element of D. The only constraint we require for getNewTuple is that any tuple
of Nm (which does not cancel any element of D) should be output after a finite
number of calls to getNewTuple. To ensure that, one can for example enumerate
all integer tuples by increasing order (where the order is the sum of the entries of
the tuple) refined by the lexicographic order for tuples of the same order. Without
this constraint on getNewTuple, Algorithm findKernelBasis may not terminate.

Example 2. Take K = Q(z), Y = {a} and X = {x}. Consider q = (q1, q2, q3) =

(ax+2
a+1 ,

z(a−1−ax)
1+a , 1). One can show that the only (up to a constant) K-linear

dependence between the qi is −q1 − (1/z)q2 + q3 = 0.
Apply Algorithm findKernelBasis. One has D = [a+ 1] at Line 3, so one can

evaluate the indeterminate a on any nonnegative integer. At Line 7, S̄ contains
the tuple s1 = (0), corresponding to the evaluation a = 0. One builds the
vectors v1, v2 and v3 at Line 7 by evaluating q1, q2 and q3 on a = 0. One
obtains polynomials in K[x]. Thus v1 = (2), v2 = (−z) and v3 = (1). A basis of
kerΦv computed at Line 10 could be B = {(−1/2, 0, 1), (z/2, 1, 0)}. Note that
it is normal that both v = (v1, v2, v3) and B involve z since one performs linear

Input: Two lists of variables Y and X
Input: A vector q = (q1, . . . , qe) of e rational fractions in K(Y)[X]
Output: A basis of kerΦq

1 begin
2 For each 1 ≤ i ≤ e, denote the reduced fraction qi as fi/gi

with fi ∈ K[Y,X], gi ∈ K[Y];
3 D ← [g1, . . . , ge];
4 I ← newTupleIteratorNotCancelling(Y,D);
5 S̄ ← [getNewTuple(I)];
6 while true do
7 For each 1 ≤ i ≤ e, denote vi the vector (σs1(qi), σs2(qi), . . . , σsr (qi))

where S̄ = [s1, s2, . . . , sr];
8 // each vi is a vector of r = |S̄| elements of K[X], obtained by

evaluating qi on all points of S̄
9 Denote v = (v1, . . . , ve);

10 Compute a basis B of the kernel of Φv using linear algebra;
11 // if kerΦq ⊃ kerΦv, one returns B
12 if

∑e
i=1 biqi = 0 for all b = (b1, . . . , be) ∈ B then return B;

13 ;
14 Append to S̄ the new evaluation getNewTuple(I);

Algorithm 1: findKernelBasis

algebra over K, which contains z. The test at Line 12 fails because the vector
b1 = (−1/2, 0, 1) of B does not yield a linear dependence over the qi. Indeed,
−(1/2)q1 + 0q2 + q3 6= 0.

Consequently, S̄ is enriched with the new tuple s1 = (1) at Line 14 and
one performs a second iteration. One builds the vectors v1, v2 and v3 at Line 7
by evaluating q1, q2 and q3 on a = 0 and a = 1. Thus v1 = (2, 1 + x/2),
v2 = (−z,−xz/2) and v3 = (1, 1). A basis B computed at Line 10 could be
(−1,−1/z, 1). This time, the test at Line 12 succeeds since −q1−(1/z)q2+q3 = 0.
The algorithm stops by returning the basis (−1,−1/z, 1).

Proof (Algorithm findKernelBasis). Correctness. If the algorithm returns, then
kerΦq ⊃ kerΦv. Moreover, at each loop, one has kerΦq ⊂ kerΦv since

∑
αiqi = 0

implies
∑
αiσ(qi) = 0 for any evaluation which does not cancel any denomina-

tor. Consequently, if the algorithm stops, kerΦq = kerΦv, and B is a basis
of kerΦq. Termination. Assume the algorithm does not terminate. The vector
space kerΦv is smaller at each step since the set S̄ grows. By a classical dimension
argument, the vector space kerΦv admits a limit denoted by E, and reaches it af-
ter a finite number of iterations. From kerΦq ⊂ kerΦv, one has kerΦq ⊂ E. Since
the test at Line 12 always fails (the algorithm does not terminate), kerΦq (E.

Take α ∈ E \ kerΦq and consider the set S obtained by applying Lemma 3
with q̄ =

∑e
i=1 αiqi. Since the algorithm does not terminate, S̄ will eventually

contain S. By construction of v, one has
∑e
i=1 αiσy0(qi) = 0 = σy0(q̄) for all y0

in S. By Lemma 3, one has q̄ =
∑e
i=1 αiqi = 0 which proves that α ∈ kerΦq.

Contradiction since α /∈ kerΦq. ut

Input: Two lists of variables Y and X
Input: A vector q = (q1, . . . , qe) of e rational fractions in K(Y)[X]
Output: A basis of kerΦq

1 begin
2 For each 1 ≤ i ≤ e, denote the reduced fraction qi as fi/gi

with fi ∈ K[Y,X], gi ∈ K[Y];
3 D ← [g1, . . . , ge];
4 I ← newTupleIteratorNotCancelling(Y,D);
5 M ← the 0× e matrix;
6 while true do
7 y0 ← getNewTuple(I);
8 // evaluate the vector q at y0

9 q̄ ← σy0(q);
10 build L = [ω1, . . . , ωl] the list of monomials involved in q̄;
11 build the l× e matrix N = (Nij) where Nij is the coefficient of q̄j in the

monomial ωi ;

12 M ←
(
M

N

)
;

13 Compute a basis B of the right kernel of M ;
14 if

∑e
i=1 biqi = 0 for all b = (b1, . . . , be) ∈ B then return B;

15 ;

Algorithm 2: findKernelBasisMatrix

2.3 A Variant of findKernelBasis

A variant of algorithm findKernelBasis consists in incrementally building a ma-
trix M with values in K, encoding all the evaluations. Each column of M cor-
responds to a certain qj , and each line corresponds to a couple (s,m), where
s is an evaluation point, and m is a monomial of K[X]. This yields Algorithm
findKernelBasisMatrix.

Example 3. Apply Algorithm findKernelBasisMatrix on Example 2. The only dif-
ference with Algorithm findKernelBasis is that the vectors vi are stored ver-
tically in a matrix M that grows at each iteration. At the end of the first
iteration of the while loop, one has y0 = (0), q̄ = (2,−z, 1), L = [1], and
M = N =

(
2 −z 1

)
, and B = {(−1/2, 0, 1), (z/2, 1, 0)}. Another iteration

is needed since −(1/2)q1 + 0q2 + q3 6= 0.
At the end of the second iteration, one has y0 = (1), q̄ = (1 +x/2,−xz/2, 1),

L = [1, x], N =

(
1 0 1

1/2 −z/2 0

)
, and M =

 2 −z 1
1 0 1

1/2 −z/2 0

. A basis B is

(−1,−1/z, 1) and the algorithm stops since −q1 − (1/z)q2 + q3 = 0.

Proof (Algorithm findKernelBasisMatrix). The proof is identical to the proof of
findKernelBasis. Indeed, the vector vi in findKernelBasis is encoded vertically in

the ith column of the M matrix in findKernelBasisMatrix. Thus, the kernel of Φv
in findKernelBasis and the kernel of M in findKernelBasisMatrix coincide. ut

In terms of efficiency, Algorithm findKernelBasisMatrix is far from optimal
for many reasons. First, the number of lines of the matrix M grows excessively.
Second, a basis B has to be computed at each step of the loop. Third, the
algorithm needs to know all the rational functions in advance, which forbids an
incremental approach. Next section addresses those issues.

3 Incremental Computation of Linear Dependences

The main idea for building incrementally the linear dependences is presented
in Algorithm incrementalFindDependence. It is a sub-algorithm of Algorithms
findFirstDependence and findAllFirstIntegrals. Assume we have e linearly indepen-
dent rational functions q1, . . . , qe and a new rational function qe+1: either the
q1, . . . , qe+1 are also linearly independent, or there exists (α1, . . . , αe+1) ∈ Ke+1

such that
∑e+1
i=1 αiqi = 0 with αe+1 6= 0. It suffices to iterate this idea by increas-

ing the index e until a linear dependence is found. When such a dependence has
been found, one can either stop, or continue to get further dependences.

3.1 Algorithm incrementalFindDependence

The main point is to detect and store the property that the q1, . . . , qe are linearly
independent, hence the following definition. Moreover, for efficiency reasons, one
should be able to update this property at least cost when a new polynomial qe+1

is considered.

Definition 3 (Evaluation matrix). Consider e rational functions q1, . . . , qe
in K(Y)[X], and e couples (s1, ω1), . . . , (se, ωe) where each si is taken in Nm and
each ωi is a monomial in X. Assume that none of the si cancels any denominator
of the qi. Consider the e× e matrix M with coefficients in K, defined by Mij =
coeff(σsi(qj), ωi) where coeff(p,m) is the coefficient of the monomial m in the
polynomial p. The matrix M is called the evaluation matrix of q1, . . . , qe w.r.t
(s1, ω1), . . . , (se, ωe).

Example 4. Recall q1 = ax+2
a+1 and q2 = z(a−1−ax)

1+a from Example 2. Consider
(s1, ω1) = (0, 1) and (s2, ω2) = (1, 1). Thus, σs1(q1) = 2, σs1(q2) = −z, σs2(q1) =
x/2 + 1 and σs2(q2) = −zx/2. Then, the evaluation matrix for (s1, ω1), (s2, ω2)

is M =

(
2 −z
1 0

)
· If w2 were the monomial x instead of 1, the evaluation matrix

would be M =

(
2 −z

1/2 −z/2

)
· In both cases, the matrix M is invertible.

The evaluation matrices computed in Algorithms incrementalFindDependence,
findFirstDependence and findAllFirstIntegrals will be kept invertible, to ensure that
some fractions are linearly independent (see Proposition 1 below).

Proposition 1. Keeping the same notations as in Definition 3, if the matrix
M is invertible, then the rational functions q1, . . . , qe are linearly independent.

Input: Two lists of variables Y and X, and a list D of elements of K[Y]
Input: A list Q = [q1, . . . , qe] of e rational functions in K(Y)[X]
Input: A list E = [(s1, ω1), . . . , (se, ωe)], with si ∈ Nm and ωi a monomial in X
Input: M an invertible eval. matrix of q1, . . . , qe w.r.t. (s1, ω1), . . . , (se, ωe)
Input: qe+1 a rational function
Assumption: denote qi = fi/gi with fi ∈ K[X,Y] and gi ∈ K[Y] for

1 ≤ i ≤ e+ 1. Each gi divides a power of elements of D.
Moreover, σsi(dj) 6= 0 for any si and dj ∈ D.

Output: Case 1 : (α1, . . . , αe, 1) s.t. qe+1 +
∑e

i=1 αiqi = 0
Output: Case 2 : M ′, (se+1, ωe+1) such that M ′ is the evaluation matrix of

q1, . . . , qe+1 w.r.t. (s1, ω1), . . . , (se+1, ωe+1), with M ′ invertible
1 begin
2 b← (. . . , coeff(σsj (qe+1), ωj), . . .)1≤j≤e;
3 solve Mα = −b in the unknown α = (α1, . . . , αe);
4 h← qe+1 +

∑e
i=1 αiqi;

5 if h = 0 then
6 return (α1, . . . , αe, 1) ; // Case 1: a linear dependence has been found

7 else
8 I ← newTupleIteratorNotCancelling(Y,D);
9 repeat se+1 ← getNewTuple(I) until σse+1(h) 6= 0;

10 ;
11 choose a monomial ωe+1 such that coeff(σse+1(h), ωe+1) 6= 0 ;
12 l← (coeff(σse+1(q1), ωe+1) · · · coeff(σse+1(qe+1), ωe+1));

13 M ′ ←
(
M | b
l

)
;

14 return M ′, (se+1, ωe+1) // Case 2: q1, . . . , qe+1 are linearly independent

Algorithm 3: incrementalFindDependence

Proof. Consider α = (α1, . . . , αe) such that
∑e
i=1 αiqi = 0. One proves that

α = 0. For each 1 ≤ j ≤ e, one has
∑e
i=1 αiσsj (qi) = 0, and consequently∑e

i=1 αicoeff(σsj (qi), ωj) = 0. This can be rewritten as Mα = 0, which implies
α = 0 since M is invertible. ut

By Proposition 1, each evaluation matrix of Example 4 proves that q1 and q2

are linearly independent. In some sense, an invertible evaluation matrix can be
viewed as a certificate (in the the computational complexity theory terminology)
that some fractions are linearly independent.

Proposition 2. Take the same notations as in Definition 3 and assume the
evaluation matrix M is invertible. Consider a new rational function qe+1. If
the rational functions q1, . . . , qe+1 are linearly independent then one necessarily
has qe+1 +

∑e
i=1 αiqi = 0 where α is the unique solution of Mα = −b, with

b = (. . . , coeff(σsj (qe+1), ωj), . . .)1≤j≤e.

Proof. SinceM is invertible and by Proposition 1, any linear dependence involves
qe+1 with a nonzero coefficient, assumed to be 1. Assume qe+1 +

∑e
i=1 αiqi = 0.

Then for each j, one has
∑e
i=1 αicoeff(σsj (qi), ωj) = −coeff(σsj (qe+1), ωj) which

can be rewritten as Mα = −b. ut

Example 5. Consider the qi of Example 2. Take D = [a+1], and (s1, ω1) = (0, 1),
and the 1×1 matrix M = (2) which is the evaluation matrix of q1 w.r.t. (s1, ω1).
Apply algorithm incrementalFindDependence on Y , X, D, [q1], [(s1, ω1)], M and
q2. The vector b at Line 2 equals (−z) since q2 = z(a− ax− 1)/(a+ 1) evaluates
to −z when a = 0. Solving Mα = −b yields α = (z/2). Then h = q2 + (z/2)q1 =
az(2−x)
2(a+1) 6= 0. One then iterates the repeat until loop until h evaluates to a non

zero polynomial. The value a = 0 is skipped, and the repeat until loop stops

with s2 = 1. Choosing the monomial w2 = 1 yields the matrix M ′ =

(
2 −z
1 0

)
·

Proof (Algorithm incrementalFindDependence). Correctness. Assume the frac-
tions q1, . . . , qe+1 are not linearly independent. Then Proposition 2 ensures that
h must be zero and Case 1 is correct. It the q1, . . . , qe+1 are linearly independent,
then necessarily h is non zero. Assume the repeat until loop terminates (see proof
below). Since σse+1

(h) 6= 0, a monomial ωe+1 such that coeff(σse+1
(h), ωe+1) 6= 0

can be chosen. By construction, the matrix M ′ is the evaluation matrix of
q1, . . . , qe+1 w.r.t (s1, ω1), . . . , (se+1, ωe+1). One just needs to prove that M ′ is
invertible to end the correctness proof. Assume M ′v = 0 with a non zero vector
v = (α1, . . . , αe, β). If β = 0, then Mα = 0 where α = (α1, . . . , αe) and α 6= 0
since v 6= 0 and β = 0. Since M is invertible, α = 0 hence a contradiction. If
β 6= 0, then one can assume β = 1. The e first lines of M ′v = 0 imply Mα = −b
where α is the vector computed in the algorithm. The last line of M ′v = 0
implies that l(α1, . . . , αe, 1) = 0, which implies coeff(σse+1(h, ωe+1)) = 0 and
contradicts the choice of ωe+1.

Termination. One only needs to show that the repeat until loop terminates.
This follows from Lemma 3 in the case of the single fraction qe+1. ut

3.2 Improvement Using a LU-decomposition

In order to optimize the solving of Mα = −b in incrementalFindDependence, one
can require a LU-decomposition of the evaluation matrix M . The specification
of Algorithm incrementalFindDependence can be slightly adapted by passing a
LU-decomposition of M = LU (with L lower triangular with a diagonal of 1,
and U upper triangular), and by returning a LU-decomposition of M ′ = L′U ′

in Case 2. Note that a PLU-decomposition (where P is a permutation matrix)
is not needed in our case as shown by Proposition 4 below.

Proposition 3 (Solving α). Solving Mα = −b is equivalent to solving the two
triangular systems Ly = −b, then Uα = y.

Proposition 4 (The LU-decomposition of M ′). The LU-decomposition of
M ′ can be obtained by:

– solve γU = l1:e (in the variable γ), where l1:e denotes the e first components
of the line vector l computed in findFirstDependence

Input: Two lists of variables Y and X
Input: A list D of elements of K[Y]
Input: A finite iterator J which outputs rational functions q1, q2, . . . in K(Y)[X]
Assumption: Denote the reduced fraction qi = fi/gi with fi ∈ K[X,Y] and

gi ∈ K[Y]. Each gi divides a power of elements of D.
Output: Case 1: a shortest linear dependence i.e. a vector (α1, . . . , αe) and a

list [q1, . . . , qe] with
∑e

i=1 αiqi = 0 and e the smallest possible.
Output: Case 2: FAIL if no linear dependence exists

1 begin
2 M ← the 0× 0 matrix ; // M is an evaluation matrix
3 Q← the empty list [] ; // Q is the list of the qi
4 // E is a list of (s, ω), where s is an evaluation and w is a monomial
5 E ← the empty list [] ;
6 bool← false;
7 while (bool=false) and (the iterator J is not empty) do
8 q ← getNewRationalFunction(J);
9 r ← incrementalFindDependence(Y,X,D,Q,E,M, q);

10 append q at the end of Q;
11 if r is a linear dependence then α← r ; bool← true ;
12 ;
13 else M ′, (s, ω)← r ; M ←M ′ ; append (s, ω) at the end of E;
14 ;

15 if bool=true then return (α,Q) ;
16 else return FAIL ;
17 ;

Algorithm 4: findFirstDependence

– solve Ly = −b (in the variable y)

– L′ ←
(
L 0e×1

γ 1

)
and U ′ ←

(
U −y

01×e le+1 + γy

)

3.3 Finding the First Linear Dependence

The main advantage of Algorithm incrementalFindDependence is to limit the
number of computations if one does not know in advance the number of rational
fractions needed for having a linear dependence. Imagine the rational functions
are provided by a finite iterator (i.e. a iterator that outputs a finite number of
fractions), one can build the algorithm findFirstDependence which terminates on
the first linear dependence it finds, or fails if no linear dependence exists.

Example 6. Let us apply Algorithm findFirstDependence on Example 2. The first
fraction q to be considered is ax+2

a+1 . The call to incrementalFindDependence re-
turns the 1× 1 matrix (2) and the couple (s1, ω1) = (0, 1). One can check that q
evaluated at a = 0 yields 2 and that (2) is indeed the evaluation matrix for the
couple (s1, ω1) = (0, 1).

Continue with the second iteration. One now considers q = z(a−ax−1)
a+1 . Exam-

ple 5 shows that the call to incrementalFindDependence returns the 2×2 invertible

matrix

(
2 −z
1 0

)
and the couple (s2, ω2) = (1, 1).

Finally, the third iteration makes a call to incrementalFindDependence. Line 2
builds the vector b = (1, 1). Line 3 solves Mα = −b, yielding α = (−1,−1/z).
Line 4 builds h = q3 − q1 − (1/z)q2 which is zero, so incrementalFindDependence
returns at Line 6. As a consequence, findFirstDependence detects that a linear
dependence has been found at Line 11 and returns ((−1,−1/z), [q1, q2, q3]) at
Line 15.

Proof (Algorithm findFirstDependence). Termination. The algorithm obviously
terminates since the number of loops is bounded by the number of elements
output by the iterator J .

Correctness. One first proves the following loop invariant: M is invert-
ible, and M is the evaluation matrix of Q w.r.t. E. The invariant is true when
first entering the loop (even if the case is a bit degenerated since M , Q and
E are all empty). Assume the invariant is true at some point. The call to
incrementalFindDependence either detects a linear dependence α, or returns an
evaluation matrix M ′ and a couple (s, ω). In the first case, M , Q and E are left
unmodified so the invariant remains true. In the second case, M , Q and E are
modified to incorporate the new fraction q, and the invariant is still true thanks
to the specification of incrementalFindDependence. The invariant is thus proven.

When the algorithm terminates, it returns either (α,Q) or FAIL. If it returns
(α,Q), this means that the variable bool has changed to true at some point.
Consequently a linear dependence α has been found, and the algorithm returns
(α,Q). The dependence is necessarily the one with the smallest e because of the
invariant (ensuring M is invertible) and Proposition 1. This proves the Case 1
of the specification.

If the algorithms returns FAIL, the iterator has been emptied, and the variable
bool is still false. Consequently, all elements of the iterator have been stored in
Q, and because of the invariant and Proposition 1, the elements of Q are linearly
independent. This proves the Case 2 of the specification. ut

Remark 1. Please note that Algorithm findFirstDependence can be used with an
infinite iterator (i.e. an iterator that never gets empty). However, Algorithm
findFirstDependence becomes a semi-algorithm since it will find the first linear
dependence if it exists, but will never terminates if no such dependence exists.

3.4 Complexity of the Linear Algebra

When findFirstDependence terminates, it has solved at most e square systems
with increasing sizes from 1 to e. Assuming the solving of each system Mα = b
has a complexity of O(nω) [7] arithmetic operations, where n is the size of the
matrix and ω is the exponent of linear algebra, the total number of arithmetic
operations for the linear algebra is O(eω+1). If the LU-decomposition variant is

used in Algorithm incrementalFindDependence, then the complexity of drops to
O(e3), since solving a triangular system of size n can be made inO(n2) arithmetic
operations. As for the space complexity of algorithm findFirstDependence, it is
O(e2), whether using the LU-decomposition variant or not.

4 Application to Finding First Integrals

In this section, we look for first integrals for ODE systems. Roughly speaking, a
first integral is an expression which is constant over time along any solution of
the ODE system. This is a difficult problem and we will make several simplifying
hypotheses. First, we work in the context of differential algebra, and assume that
the ODE system is given by polynomial differential equations. Second, we will
only look for polynomial first integrals.

4.1 Basic Differential Algebra

This section is mostly borrowed from [6] and [2]. It has been simplified in the
case of a single derivative. The reference books are [11] and [10]. A differential
ring R is a ring endowed with an2 abstract derivation δ i.e. a unary operation
which satisfies the axioms δ(a + b) = δ(a) + δ(b) and δ(a b) = δ(a) b + aδ(b)
for all a, b ∈ R. This paper considers a differential polynomial ring R in n
differential indeterminates u1, . . . , un with coefficients in the field K. Moreover,
we assume that K is a field of constants (i.e. δk = 0 for any k ∈ K). Letting
U = {u1, . . . , un}, one denotes R = K{U}, following Ritt and Kolchin. The
derivation δ generates a monoid w.r.t. the composition operation. It is denoted:
Θ = {δi, i ∈ N} where N stands for the set of the nonnegative integers. The
elements of Θ are the derivation operators. The monoid Θ acts multiplicatively
on U , giving the infinite set ΘU of the derivatives.

If A is a finite subset of R, one denotes (A) the smallest ideal containing A
w.r.t. the inclusion relation and [A] the smallest differential ideal containing A.
Let A be an ideal and S = {s1, . . . , st} be a finite subset of R, not containing
zero. Then A : S∞ = {p ∈ R | ∃ a1, . . . , at ∈ N, sa11 · · · s

at
t p ∈ A} is called the

saturation of A by the multiplicative family generated by S. The saturation of a
(differential) ideal is a (differential) ideal [10, chapter I, Corollary to Lemma 1].

Fix a ranking, i.e. a total ordering over ΘU satisfying some properties [10,
chapter I, section 8]. Consider some differential polynomial p /∈ K. The highest
derivative v w.r.t. the ranking such that deg(p, v) > 0 is called the leading
derivative of p. It is denoted ld p. The leading coefficient of p w.r.t. v is called
the initial of p. The differential polynomial ∂p/∂v is called the separant of p. If
C is a finite subset of R \K then IC denotes its set of initials, SC denotes its set
of separants and HC = IC ∪ SC .

A differential polynomial q is said to be partially reduced w.r.t. p if it does not
depend on any proper derivative of the leading derivative v of p. It is said to be

2 In the general setting, differential ring are endowed with finitely many derivations

reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q, v) < deg(p, v). A set
of differential polynomials of R \ K is said to be autoreduced if its elements are
pairwise reduced. Autoreduced sets are necessarily finite [10, chapter I, section 9].
To each autoreduced set C, one may associate the set L = ldC of the leading
derivatives of C and the set N = ΘU \ ΘL of the derivatives which are not
derivatives of any element of L (the derivatives “under the stairs” defined by C).

In this paper, we need not recall the (rather technical) definition of differential
regular chains (see [2, Definition 3.1]). We only need to know that a differential
regular chain C is a particular case of an autoreduced set and that membership
to the ideal [C] :H∞C can be decided by means of normal form computations, as
explained below.

4.2 Normal Form Modulo a Differential Regular Chain

All the results of this section are borrowed from [2] and [6]. Let C be a regular
differential chain of R, defining a differential ideal A = [C]:H∞C . Let L = ldC and
N = ΘU \ΘL. The normal form of a rational differential fraction is introduced
in [2, Definition 5.1 and Proposition 5.2], recalled below.

Definition 4. Let a/b be a rational differential fraction with b regular modulo A.
A normal form of a/b modulo C is any rational differential fraction f/g such
that

1 f is reduced with respect to C,

2 g belongs to K[N] (and is thus regular modulo A),

3 a/b and f/g are equivalent modulo A (in the sense that a g − b f ∈ A).

Proposition 5. Let a/b be a rational differential fraction, with b regular mod-
ulo A. The normal form f/g of a/b exists and is unique. The normal form is a
K-linear operation. Moreover

4 a belongs to A if and only if its normal form is zero,

5 f/g is a canonical representative of the residue class of a/b in the total fraction
ring of R/A,

6 each irreducible factor of g divides the denominator of an inverse of b, or of
some initial or separant of C .

The interest of [6] is that it provides a normal form algorithm which always
succeeds (while [2] provides an algorithm which fails when splittings occur).

Recall that the normal form algorithm relies on the computation of inverses
of differential polynomials, defined below.

Definition 5. Let f be a nonzero differential polynomial of R. An inverse of f
modulo C is any fraction p/q of nonzero differential polynomials such that p ∈
K[N ∪ L] and q ∈ K[N] and f p ≡ q mod A.

4.3 Normal Form Modulo a Decomposition

This subsection introduces a new definition which in practice is useful for per-
forming computations modulo a radical ideal

√
[Σ] expressed as an intersection

of differential regular chains (i.e.
√

[Σ] = [C1] : H∞C1
∩ · · · ∩ [Cf] : H∞Cf

). Such a

decomposition can be computed with the RosenfeldGroebner algorithm [1, 4].

Definition 6 (Normal form modulo a decomposition). Let Σ be a set of
differential polynomials, such that

√
[Σ] is a proper ideal. Consider a decompo-

sition of
√

[Σ] into differential regular chains C1, . . . , Cf for some ranking, that

is differential regular chains satisfying
√

[Σ] = [C1] :H∞C1
∩ . . .∩ [Cf] :H∞Cf

. For

any differential fraction a/b with b regular modulo each [Ci] : H∞Ci
, one defines

the normal form of a/b w.r.t. to the list [C1, . . . , Cf] by the list

[NF(a/b, C1), . . . ,NF(a/b, Cf)] .

It is simply denoted by NF(a/b, [C1, . . . , Cf]).

Since it is an open problem to compute a canonical (e.g. minimal) decom-
position of the radical of a differential ideal, the normal form of Definition 6
depends on the decomposition and not on the ideal.

Proposition 6. With the same notations as in Definition 6, for any polynomial
p ∈ R, one has p ∈

√
[Σ] ⇐⇒ NF(p, [C1, . . . , Cf]) = [0, . . . , 0]. Moreover, the

normal form modulo a decomposition is K-linear.

4.4 First Integrals in Differential Algebra

Definition 7 (First integral modulo an ideal). Let p be a differential poly-
nomial and A be an ideal. One says p is a first integral modulo A if δp ∈ A.

For any ideal A, the set of the first integrals modulo A contains the ideal A.
If A is a proper ideal, the inclusion is strict since any element of K is a first
integral. In practice, the first integrals taken in K are obviously useless.

Example 7 (Pendulum). Take K = Q(m, l, g). Consider the ranking · · · > l̈ >
ẍ > ÿ > l̇ > ẋ > ẏ > l > x > y. Recall the pendulum equations Σ in Equa-
tions (1). Algorithm RosenfeldGroebner [4] shows that

√
[Σ] = [C1] :H∞C1

∩ [C2] :

H∞C2 where C1 and C2 are given by:

– C1 = [λ̇ = −3 ẏgm
l2
, ẏ2 = −−λy

2l2+λl4−y3gm+ygml2

ml2
, x2 = −y2 + l2] ;

– C2 = [λ = −ygm
l2
, x = 0, y2 = l2].

Remark that the differential regular chain C2 corresponds to a degenerate
case, where the pendulum is vertical since x = 0. Further computations show that
NF(δ(m2 (ẋ2 + ẏ2)−mg y), [C1, C2]) = [0, 0]), proving that p = m

2 (ẋ2 + ẏ2)−mg y
is a first integral modulo

√
[Σ]. Remark that x2 +y2 is also a first integral. This

is immediate since δ(x2 + y2) = δ(x2 + y2 − 1) ∈
√

[Σ].

Definition 7 is new to our knowledge. It is expressed in a differential algebra
context. The end of Section 4.4 makes the link with the definition of first integral
in a analysis context, through analytic solutions using results from [5].

Definition 8 (Formal power solution of an ideal). Consider a n-uple ū =
(ū1(t),. . . ,ūn(t)) of formal power series in t over K. For any differential poly-
nomial, one defines p(ū) as the formal power series in t obtained by replacing
each ui by ūi and interpreting the derivation δ as the usual derivation on formal
power series. The n-uple ū = (ū1, . . . , ūn) is called a solution of an ideal A if
p(ū) = 0 for all p ∈ A.

Lemma 4. Take a differential polynomial p and n-uple ū = (ū1(t),. . . ,ūn(t)) of

formal power series. Then (δp)(ū) = dp(ū)
dt . If p is a first integral modulo an ideal

A and ū is a solution of A, then the formal power series p(ū) satisfies dp(ū)
dt = 0.

Proof. Since δ is a derivation, (δp)(ū) = dp(ū)
dt is proved if one proves it when p

equals any ui. Assume that p = ui. Then (δp)(ūi) = (δui)(ūi) = dp(ū)
dt . Assume p

is a first integral modulo A and ū is a solution of A. Then δp ∈ A and (δp)(ū) = 0.

Using (δp)(ū) = dp(ū)
dt , one has dp(ū)

dt = 0 ut

Take a system of differential polynomials Σ. By [5, Theorem and definition
3], a differential polynomial p in R vanishes on all analytic solutions (over some
open set with coordinates in the algebraic closure of the base field) of Σ if and
only if p ∈

√
[Σ]. Applying this statement to p = δq for some first integral q

w.r.t.
√

[Σ], then δq vanishes on all analytic solutions of
√

[Σ] so p is a first
integral in the context of analysis, if one excludes the non analytic solutions.

4.5 Algorithm findAllFirstIntegrals

In this section, one considers a proper ideal A given as A = [C1] :H∞C1
∩· · ·∩ [Cf] :

H∞Cf
where the Ci are differential regular chains. Denote M = [C1, . . . , Cf]. Take

a first integral modulo A of the form p =
∑
αiµi, where the αi’s are in K and

the µi’s are monomials in the derivatives. Computing on lists componentwise,
we have 0 = NF(δp,M) =

∑
αiNF(δµi,M). Consequently, a candidate

∑
αiµi

is a first integral modulo A if and only if the NF(δµi,M) are linearly dependent
over K.

Since the µi have no denominators, every irreducible factor of the denomina-
tor of any NF(wi, Cj) necessarily divides (by Proposition 5) the denominator of
the inverse of a separant or initial of Cj . As a consequence, the algorithms pre-
sented in the previous sections can be applied since we can precompute factors
which should not be cancelled.

Algorithm findAllFirstIntegrals is very close to Algorithm findFirstDependence
and only requires a few remarks. Instead of stopping at the first found depen-
dence, it continues until the iterator has been emptied and stores all first depen-
dences encountered. It starts by precomputing a safe setD for avoiding cancelling
the denominators of any NF(δwi, Cj). The algorithm introduces some dummy

Input: A list of differential regular chains M = [C1, . . . , Cf]
Input: A finite iterator J which outputs differential monomials
Output: A K-basis of the linear combinations of momomials of J which are

first integrals w.r.t. [C1] :H∞C1
∩ · · · ∩ [Cf] :H∞Cf

1 begin
2 result← the empty list [] ; D ← the empty list [] ;
3 for i = 1 to f do
4 I ← the inverses of the initials and separants of Ci modulo Ci ;
5 append to D the denominators of the elements of I ;

6 Y ← the list of derivatives occurring in D ;
7 X ← the list of dummy variables [d1, . . . , df] ;
8 M ← the 0× 0 matrix ; Q← the empty list [] ;
9 E ← the empty list [] ; F ← the empty list [];

10 while the iterator J is not empty do
11 µ← getNewDerivativeMonomial(J);

12 q ←
∑f

i=1 diNF(δµ,Ci);
13 append to X the variables of the numerator of q,

which are neither in X nor Y ;
14 r ← incrementalFindDependence(Y,X,D,Q,E,M, q);
15 if r is a linear dependence then
16 // A new first integral has been found
17 (α1, . . . , αe, 1)← r ;
18 append α1µ1 + · · ·+ αeµe + w to result, where F = (µ1, . . . , µe);

19 else
20 append µ to the end of F ; append q to the end of Q ;
21 M ′, (s, ω)← r ; M ←M ′ ; append (s, ω) to the end of E;

22 return result ;

Algorithm 5: findAllFirstIntegrals

variables d1, . . . , df for storing the normal form NF(δµ,M), which is by defini-
tion a list, as the polynomial d1NF(δµ,C1)+ · · ·+dfNF(δµ,Cf). This alternative
storage allows us to directly reuse Algorithm incrementalFindDependence which
expects a polynomial.

Example 8 (Pendulum). Take the same notations as in Example 7. Take an
iterator J enumerating the monomials 1, y, x, ẏ, ẋ, y2, xy, y2, ẏy, ẏx, ẏ2,
ẋy, ẋx, ẋẏ and ẋ2. Then Algorithm findAllFirstIntegrals returns the list [1, x2 +
y2, ẏy + ẋx,−2g y + ẋ2 + ẏ2]. Note the presence of ẏy + ẋx which is in the ideal
since it is the derivative of (x2 + y2 − 1)/2.

The intermediate computations are too big be displayed here. As an illustra-
tion, one gives the normal forms of δy, δ(ẏ2), δ(ẋẏ) and δ(ẋ2) modulo [C1, C2]
which are respectively

[ẏ, 0] ,

[
2(λyẏ +mgẏ)

m
, 0

]
,

[
xẏ(λ(2y2 − l2) +mgy)

m(y2 − l2)
, 0

]
and

[
−2λyẏ

m
, 0

]
.

When increasing the degree bound, one finds more and more spurious first inte-
grals like ẏ y2 + ẋ x y (which is in the ideal) or some powers of the first integral
−2g y + ẋ2 + ẏ2.

Example 9 (Lotka-Volterra equations).

C

{
ẋ(t) = a x(t)− b x(t) y(t)

ẏ(t) = −c y(t) + d x(t) y(t)

x(t) u̇(t) = ẋ(t)

y(t) v̇(t) = ẏ(t)
(2)

Take K = Q(a, b, c, d) and the ranking · · · > u̇ > v̇ > ẋ > ẏ > u > v > x > y.
One can show that C is a differential regular chain for the chosen ranking.
The two leftmost equations of C corresponds to the classical Lotka-Volterra
equations, and the two rightmost ones encode the logarithms of x(t) and y(t) in
a polynomial way. A call to findAllFirstIntegrals with the monomials of degree at
most 1 built over x, y, u, v yields [1,−avd −

cu
d + by

d +x] which corresponds to the
usual first integral −a ln(y(t))− c ln(x(t) + by(t) + dx(t).

Remark 2. The choice of the degree bounds and the candidate monomials in the
first integrals is left to the user, through the use of the iterator J . This makes
our algorithm very flexible especially if the user has some extra knowledge on
the first integrals or is looking for specific ones. Finally, this avoids the difficult
problem of estimating degree bounds, which can be quite high. Indeed, the simple
system ẋ = x, ẏ = −ny, where n is any positive integer, admits xny as a first
integral, which is minimal in terms of degrees.

4.6 Complexity

The complexity for the linear algebra part of Algorithm findAllFirstIntegrals is the
same as for Algorithm findFirstDependence: it is O(e3), where e is the cardinal of
the iterator J , if one uses the LU-decomposition variant. However, e can be quite
large in practice. For example, if one considers the monomials of total degree at
most d involving s derivatives, then e is equal to

(
s+d
s

)
.

References

1. Boulier, F.: The BLAD libraries. http://cristal.univ-lille.fr/˜boulier/BLAD (2004)
2. Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains.

Mathematics in Computer Science 4(2-3) (2010) 185–201
3. Boulier, F.: Efficient computation of regular differential systems by change of

rankings using Kähler differentials. Technical report, Université Lille I, 59655,
Villeneuve d’Ascq, France (November 1999) Ref. LIFL 1999–14, presented at the
MEGA 2000 conference. http://hal.archives-ouvertes.fr/hal-00139738.

4. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for
radicals of finitely generated differential ideals. Applicable Algebra in Engineering,
Communication and Computing 20(1) (2009) 73–121 (1997 Techrep. IT306 of the
LIFL).

5. Boulier, F., Lemaire, F.: A computer scientist point of view on Hilbert’s differential
theorem of zeros. Submitted to Applicable Algebra in Engineering, Communication
and Computing (2007)

6. Boulier, F., Lemaire, F., Sedoglavic, A.: On the Regularity Property of Differ-
ential Polynomials Modulo Regular Differential Chains. In: Proceedings of Com-
puter Algebra in Scientific Computing, LNCS 6885, Kassel, Germany (2011) 61–72
http://hal.archives-ouvertes.fr/hal-00599440.

7. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation 28(125) (1974) 231–236

8. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of Gröbner
bases by change of orderings. Journal of Symbolic Computation 16 (1993) 329–344

9. Gathen, J.v.z., Gerhard, J.: Modern Computer Algebra. 3rd edn. Cambridge
University Press, New York, NY, USA (2013)

10. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New
York (1973)

11. Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1950)
12. Stoutemyer, D.R.: Multivariate partial fraction expansion. ACM Commun. Com-

put. Algebra 42(4) (February 2009) 206–210

