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The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative
Korteweg–de Vries–Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and
increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time
for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear
instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of
constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton
breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude
and the time of breaking are both testable in an existing experimental facility.
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Introduction. Experimental, theoretical, and numerical
studies in the mechanisms of transfer of energy from wind to
surface water waves are a classical matter of investigation in
fluid dynamics. From a theoretical point of view the pioneering
works are those of Jeffreys [1,2], Phillips [3], and Miles [4,5].

Jeffreys’ theory supposes both the water as well as the
air to be inviscid, incompressible, and obeying linearized
equations of motion. The Jeffreys’ theory allows us to compute
the linear wave growth of wind-generated normal Fourier
modes of wave number k. The physical mechanism behind
this is antidissipation. Energy passes continuously from the
air to the surface wave. Consequently the wave amplitude
η(x,t,k) (x space and t time) grows exponentially in time;
i.e., η(x,t,k) ∼ exp (γJ t) more or less quickly according to
the coefficient γJ , which depends on the wind speed and the
water depth h.

Once the linear and dispersionless approximation breaks
down, nonlinear and dispersive processes begin to play a role.
So the issue addressed here is, “How does one describe the
evolution in time of a normal mode k, under the competing
actions of (weak) nonlinearity, dispersion, and antidissipa-
tion?” Nonlinearity is likely to balance dispersive effects, or
to stop exponential decay or growth of wave amplitude in
time due to dissipation or antidissipation. Equilibrium between
nonlinearity and dispersion can evolve in time to form solitary
waves like in the Korteweg–de Vries equation [6,7]. Balance
between dissipation or antidissipation and nonlinearity creates
shock structures like in the Burgers equation [6].

The standard equation describing competition between
weak nonlinearity, dispersion, and dissipation is the Korteweg–
de Vries–Burgers (KdV-B) equation. It arises from many
and various physical contexts (see Benney [8], Johnson [9],
Grad and Hu [10], Hu [11], Wadati [12], and Karahara [13]).
However in this work and in order to study simultaneous com-
peting effects of nonlinearity, dispersion, and antidissipation
we derive a KdV-B type equation with dissipation turned into
antidissipation.

The antidiffusive KdV-B equation. Let us consider a
quasilinear air-water system with the air dynamics linearized

and the water dynamics considered nonlinear and irrotational.
The system is (2 + 1) dimensional (x,z,t) with x and z the
vertical and the horizonal space coordinates. The aerodynamic
air pressure Pa(x,z,t) evaluated at the free surface z = η(x,t)
has a component in phase and a component in quadrature
with the water elevation. For an energy flux to occur from the
wind to the water waves there must be a phase shift between
the fluctuating pressure and the interface. Hence, the energy
transfer is only due to the component in quadrature with the
water surface, or in other words in phase with the slope. To
simplify the problem we consider, following Refs. [2,4,14],
only the pressure component in phase with the slope on the
interface; i.e.,

Pa = ερa�
2ηx with � = [(κU1/

√
C10) − c], (1)

where ε < 1 is the sheltering coefficient, c = √
g/k tanh(kh),

U1 = u∗/κ with u∗ the friction velocity, κ ∼ 0.41 the von
Kármán constant, C10 the wind-stress coefficient, and g

the gravitational acceleration. In order to adimensional-
ize the equations of motion we introduce dimensionless
primed variables: x = lx ′,z = hz′,t = lt ′/c0,η = aη′,φ =
glaφ′/c0,U1 = c0U

′
1 with φ the velocity potential and a and

l typical wave amplitude and wavelength and c0 = √
gh.

We define two dimensionless parameters ν = a/h < 1 and
δ = h/l < 1. So with this assumption the complete irrotational
Euler equations and boundary conditions are (dropping the
primes)

δ2φxx + φzz = 0, − 1 � z � νη, (2)

φz = 0, z = −1, (3)

ηt + νφxηx − 1

δ2
φz = 0, z = νη, (4)

φt + ν

2
φ2

x + ν

2δ2
φ2

z + η + δεs�2ηx = 0, z = νη, (5)

where s = ρa/ρw ∼ 10−3 with ρa (ρw) the air (water) density.
We solve the Laplace equation and its boundary conditions
with an expansion in powers of (z + 1), φ = ∑m=∞

m=0 (z +
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1)mδmqm(x,t). Substituting in Eq. (2) and using Eq. (3) we ob-
tain φ = ∑m=∞

m=0 (−1)m (z+1)2m

(2m)! δ2mq0,2mx . Using the kinematic
and dynamics boundary conditions Eq. (4) and Eq. (5) and
disregarding terms in O(νδ2) and O(δ4) we find, with r = q0,x ,
the system

ηt + {(1 + νη)r}x − 1
6δ2rxxx = 0, (6)

ηx + rt + νrrx − 1
2δ2rxxt + δεs�2ηxx = 0. (7)

The linear wave solution of (6) and (7) moving to the right
is r(ξ ) = η(ξ ), ξ = x − t , with η (or r) an arbitrary function
of ξ . Now we look for a solution with nonlinear corrections to
the orders O(ν), O(sδ), and O(δ2). Following the procedure
in Whitham [6] we obtain

r = η − 1

4
η2ν + ε

2
�2ηxsδ + 1

3
ηxxδ

2 + O(νδ2,s2δ2,δ4).

(8)
Substituting (8) in (6) and (7) we obtain an anti-dissipative
KdV-B equation

ηt + ηx + 3

2
νηηx + 1

6
δ2ηxxx + s

2
δε�2ηxx = 0. (9)

For traveling wave solutions, the action of dissipation
or antidissipation in KdV-B is not of great matter except
for the sign of the slope [15]. But soliton solutions under
antidissipation exhibit a blow-up and breaking in finite time.

Blow-up and breaking of solitary waves in finite time. In
the usual KdV-B equation the effect of (weak) dissipation
through bottom friction for instance is to decrease slowly the
amplitude and to increase slowly the width of the solitary
wave solution, eventually flattening it in an infinite time. In
our case antidiffusion increases the soliton amplitude and
decreases the width of the solitary wave solution. Contrary
to the diffusive KdV-B equation which dissipates energy in
time, here the wave energy grows in time. Multiplying (9)
by η(x,t), assuming the limit η(±∞,t) = 0, and integrating
over all x we obtain ∂

∂t

∫ ∞
−∞ η2dx = (s/4)δε�2

∫ ∞
−∞(ηx)2dx.

As the right-hand side is positive definite, the wave energy
E = ∫ ∞

−∞ η2dx monotonically increases in time.
In KdV we must have balance between nonlinearity and

dispersion; i.e., O(ν) ∼ O(δ2). We assume the dissipative
effects to be weaker than the dispersive and nonlinear ones, so
we chose (s/2)δε�2 ∼ O(δ3). The validity of this hypothesis
is checked by evaluating typical values of � for reasonable
wind speeds, not higher than 20 m/s. With this scaling and
after a Galilean transform in order to eliminate the term ηx , an
approximate solution of Eq. (9) is given by (see Ref. [16] for
the dissipative case)

η = a(t) cosh−2

{
αa(t)

1
2

[
x − t − ν

2

∫ t

a(t ′)dt ′
]}

, (10)

with α2 = 3ν/4δ2 and a(t) the time-dependent amplitude
given by

a(t) = (1 − t/tb)−1, (11)

where tb is the blow-up time which can be explicated in terms
of the system parameters as

tb = 5δ/(2sε�2ν). (12)

The phase θ (x,t) is local in x and t :

θ (x,t) = α

(
1

1 − t
tb

) 1
2
[
x − t + νtb

2
ln

(
1 − t

tb

)]
. (13)

As t approaches tb, η goes to zero ∀x except for x going
to +∞ as limt→tb [t − (νtb/2) ln(1 − t/tb)]. So at x(tb) →
+∞ the model presents an asymptotic, in space, finite time
blow-up. This is a nonlinear, dispersive, and antidissipative
instability analogous to the linear, antidissipative instability
in the Jeffreys theory: the solitary wind wave replaces the
sinusoidal wave and the blow-up for x(tb) → +∞ in finite
time t = tb replaces the local wave-amplitude divergence in
infinite time.

For t = tb obviously the model breaks down. But well
before blow-up the amplitude is such that the solitary wind
wave breaks. Consequently before t = tb the model gives
an accurate kinematic and dynamic description of the route
towards breaking of solitary wind waves.

For large enough t , of course some nonlinear, dispersive,
and dissipative higher-order effects will appear. However, our
derived model (9) is of order 3 in δ; hence the longest allowed
time τ has to be τ = δ3t , which is of order unity when t is
large, such as tb ∝ δ−3. Hence, in order to keep the model
valid, we checked that the derivatives of η in (9) stayed of
order unity when t < tb.

Wave-breaking criteria. The soliton blow-up being ob-
viously impossible to probe experimentally, an interesting
approach is to evaluate when the solitary wave breaks under
this specific wind forcing, which will be before the blow-up.
The breaking time td , and more generally breaking conditions,
are subject to many discussions. A plethora of effective
criteria exist in the literature to determine breaking. Hence,
we studied three of the most widely known effective breaking
criteria in order to compare td with tb as given by (12). The
first one is the McCowan criterion [17]. It is reached for a
limiting ratio between the maximum wave height amax and
the water depth h given by amax/h ≈ 0.78. The second is the
Miche criterion [18]. It concerns the limiting wave slope a/λ.
Breaking is reached for ( a

λ
)max = 1

7 tanh( 2πh
λ

). For the soliton
solution λ is interpreted as an effective wavelength, and is
time-dependent. In laboratory variables, it depends only on
the wave height a and water depth h, as λ = 2π

√
4h3

3a
. Of

course, a depends on time as of (11).
The third type of criterion we chose is the wave horizontal

velocity criterion (velocity criterion for short); see Shemer [19]
and references therein for instance. When the horizontal
speed r exceeds the one of the phase plane at the crest, matter
starts to be ejected from the wave, and breaking can occur. r

is obtained from (8) and compared to the phase speed at the
crest. This criterion depends directly on kinematics concerns,
and is exempt from the empirical aspect of the two other laws.
Hence, we have obtained the corresponding breaking time
perturbatively for the velocity criterion and it reads

td = tb
5

4
ν + O(ν3/2). (14)

Each criterion gives a different breaking time td , which is
plotted in order to be compared to tb. We took ranges of
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FIG. 1. (Color online) Comparison of velocity (red triangles),
Miche (green circles), and McCowan (blue squares) criteria. Plotted
are the trends for the allowed values of td ,tb for the parameter range,
with ν = 1/10. The breaking time, always inferior to the blow-up
time, is extremely close to it in the case of the McCowan criterion.
The Miche and velocity criteria yield breaking time values of similar
order of magnitude.

parameter values such that U10 ∈ [4; 22] m/s for the wind,
and h ∈ [0.1; 4] m. The results are shown in Fig. 1 and Fig. 2.

For ν = 1/10 the McCowan criterion gives the highest
values of td , the Miche criterion has a too big spread depending
on the input parameters to be accurate, and we can see the
velocity criterion yields the shortest time breaking values. In
Fig. 2, we took a parameter value ν = 1

3 . We checked that

FIG. 2. (Color online) Same as in Fig. 1 with ν = 1/3, with the
wave velocity criterion in red triangles, Miche in green circles, and
McCowan above, in blue squares. The higher amplitude yields shorter
breaking times for McCowan and Miche, as well as a wider range of
allowed values for the parameter range. There is a higher scatter in
the Miche criterion values.

the orders in ν and δ in (9) were the same. But we cannot
change the value of s, which is the air to water density ratio.
In order to keep the balance between terms in (9), we have
to consider higher �. This yields strong wind values up to
U10 ≈ 20 (m/s) at 10 m. In this framework, there is no drop
of the drag coefficient [20], hence no foam formation, and the
derived KdV-B equation is still valid. In this case the McCowan
criterion gives lower values for the breaking time td and an
even larger spread is obtained for the Miche criterion. We can
see the velocity criterion gives values of td analogous to those
in the ν = 1/10 case. The kinematic criterion is more stable
than the others with regards to parameter variations, and we
consider it to be the most relevant for this study.

Kinematics description of wind solitary wave breaking. θ

defines a local wave number k = ∂θ/∂x and a local frequency
ω = −∂θ/∂t , so the local phase velocity is

c(x,t) = ω(x,t)

k(x,t)
= 1 + ν

2
a(t) − θ (x,t)a(t)

1
2

2αtb
. (15)

We also have a local phase acceleration

γ (x,t) = 3νa(t)2

4tb
+ a(t)

2tb
− a(t)

3
2 θ (x,t)

2αt2
b

. (16)

The planes of constant phases θ (x,t) = θ0 are moving with
velocities c(θ0,t) and accelerations γ (θ0,t). In particular, two
planes θ1 and θ2 around a given θ0, i.e., θ1 < θ0 < θ2 (for
example the soliton maximun) have speeds and accelerations
such that c(θ1,t) > c(θ2,t) and γ (θ1,t) > γ (θ2,t). This kine-
matics disequilibrium of velocities and accelerations between
two adjacent planes destroys the soliton symmetry and brings
to the formation of a breaking for t → td .

FIG. 3. (Color online) In a 40-m-long wind tunnel, this shows at
what point and which time t a certain augmentation rate is attained. In
red circles, we have t < 10 s, and on the upper part in green crosses
we have t � 10 s. The values are computed for different constant
depths between 0.7 and 1.0 m, a reference wind speed U10 < 15 m/s,
and a wave steepness ka > 0.23. We see that with these conditions,
the augmentation can be above 6%.
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FIG. 4. (Color online) Same as in Fig. 3 with the ranges of wind
and depth changed to 0.3 m � h � 0.7 m, the reference wind speed
15 m/s < U10 < 20 m/s, and the same wave steepness ka > 0.23.
In red circles, t < 10 s, in green crosses t � 10 s. These conditions
allow for a much greater energy transfer, hence a significantly faster
growth. The amplitude increases by up to 15% within the tunnel
length.

Prospect of an experimental test. In this last section we are
going to show that the theoretical growth in amplitude and the

time of breaking are both testable in the existing experimental
facility.

The Jeffreys mechanism acts only on waves steep enough
to shelter the front side from the wind. Typically, a steepness
parameter such as ka > 0.3 is necessary (see Montalvo
et al. [21,22] and references therein). However, at t = 0, we
can see that (10) is too smooth to allow sheltering. In order
to have a steep enough soliton, setting the ν parameter to 1

3
is necessary. Now, with this set we define tn the time taken
by the maximum soliton amplitude to grow of n%. We have
then tn = n

n+1 tb. We suppose that the soliton is created in a
40-m-long wind tunnel which can be filled up to 1 m of
water depth. This configuration is close to the IRPHE wind
tunnel in Luminy, France. It allows us then to evaluate what
is the augmentation of the soliton in those given constraints.
The results are shown in Figs. 3 and 4. These results show
that, given this particular type of wind-wave tank, a fair
augmentation of the soliton amplitude can be measured before
the end of the tunnel is reached. This shows that our model can
indeed be tested, as confronting the measured augmentation
time with the theoretical one is possible.
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