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Abstract. We prove that there exist some 1-counter Büchi automata An for

which some elementary properties are independent of theories like Tn =: ZFC

+ “There exist (at least) n inaccessible cardinals”, for integers n ≥ 1. In particu-

lar, if Tn is consistent, then “L(An) is Borel”, “L(An) is arithmetical”, “L(An)
is ω-regular”, “L(An) is deterministic”, and “L(An) is unambiguous” are prov-

able from ZFC + “There exist (at least) n+1 inaccessible cardinals” but not from

ZFC + “There exist (at least) n inaccessible cardinals”. We prove similar results

for infinitary rational relations accepted by 2-tape Büchi automata.

Keywords: Automata and formal languages; logic in computer science; infinite words; 1-counter

Büchi automaton; 2-tape Büchi automaton; models of set theory; incompleteness Theorems; large

cardinals; inaccessible cardinals; independence from the axiomatic system “ZFC + there exist n

inaccessible cardinals”.

1 Introduction

The theory of automata reading infinite words, which is closely related to infinite

games, is now a rich theory which is used for the specification and verification of non-

terminating systems, see [GTW02,PP04].

As noticed in [Fin11], some connections between Automata Theory and Set Theory

had arosen in the study of monadic theories of well orders, but this was related to

automata reading much longer transfinite words than words of length ω or even than

words of length a countable ordinal.

Then one usually thought that the finite or infinite computations appearing in Com-

puter Science are “well defined” in the axiomatic framework of mathematics, and thus

that a property on automata is either true or false and that one has not to take care of

the different models of Set Theory (except perhaps for the Continuum Hypothesis CH

which is known to be independent from ZFC). And the connections between Automata

Theory and Set Theory seemed very far from the practical aspects of Computer Science.

In [Fin09] we recently proved a surprising result: the topological complexity of an

ω-language accepted by a 1-counter Büchi automaton, or of an infinitary rational rela-

tion accepted by a 2-tape Büchi automaton, is not determined by the axiomatic system

ZFC. In particular, there is a 1-counter Büchi automatonA (respectively, a 2-tape Büchi



automaton B) and two models V1 and V2 of ZFC such that the ω-language L(A) (re-

spectively, the infinitary rational relation L(B)) is Borel in V1 but not in V2. We have

proved in [Fin11] other independence results, showing that some basic cardinality ques-

tions on automata reading infinite words actually depend on the models of ZFC (see

also [Fin10] for similar results for Büchi-recognizable languages of infinite pictures).

The next step in this research project was to determine which properties of automata

actually depend on the models of ZFC, and to achieve a more complete investigation

of these properties.

We obtain in this paper some more independence results which are more general

and are related to the consistency of theories which are recursive extensions of the

theory ZFC (while in the two papers [Fin09,Fin11] the independence results depended

on the value of the ordinal ωL
1 which plays the role of the first uncountable ordinal in

the constructible universe L).

Recall that a large cardinal in a model of set theory is a cardinal which is in some

sense much larger than the smaller ones. This may be seen as a generalization of the fact

that ω is much larger than all finite cardinals. The inaccessible cardinals are the simplest

such large cardinals. Notice that it cannot be proved in ZFC that there exists an inacces-

sible cardinal, but one usually believes that the existence of such cardinals is consistent

with the axiomatic theory ZFC. The assumed existence of large cardinals have many

consequences in Set Theory as well as in many other branches of Mathematics like

Algebra, Topology or Analysis, see [Jec02].

We prove that there exist some 1-counter Büchi automata An for which some ele-

mentary properties are independent of theories like Tn =: ZFC + “There exist (at least)

n inaccessible cardinals”, for integers n ≥ 1. We first prove that “L(An) is Borel”,

“L(An) is arithmetical”, “L(An) is ω-regular”, “L(An) is deterministic”, and “L(An)
is unambiguous” are equivalent to the consistency of the theory Tn. This implies that,

if Tn is consistent, all these statements are provable from ZFC + “There exist (at least)

n+ 1 inaccessible cardinals” but not from ZFC + “There exist (at least) n inaccessible

cardinals”. We prove similar results for infinitary rational relations accepted by 2-tape

Büchi automata. Notice that the same reults can be proved for other large cardinals

like hyperinaccessible or Mahlo cardinals, see [Jec02] for a precise definition of these

cardinals.

The paper is organized as follows. We recall the notion of counter automata in Sec-

tion 2. We expose some results of Set Theory in Section 3, and we prove our main

results about 1-counter ω-languages in Section 4. We prove similar results for infinitary

rational relations in Section 5. Concluding remarks are given in Section 6.

2 Counter Automata

We assume the reader to be familiar with the theory of formal (ω-)languages

[Tho90,Sta97]. We recall the usual notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence x =
a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k,

denoted by |x|. The empty word has no letter and is denoted by λ; its length is 0. Σ⋆ is

the set of finite words (including the empty word) over Σ.



The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over Σ, we

write σ(n) = an, σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The usual concatenation product of two finite words u and v is denoted u.v (and

sometimes just uv). This product is extended to the product of a finite word u and an

ω-word v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language V over

an alphabet Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted V −.

Let k be an integer ≥ 1. A k-counter machine has k counters, each of which con-

taining a non-negative integer. The machine can test whether the content of a given

counter is zero or not. And transitions depend on the letter read by the machine, the

current state of the finite control, and the tests about the values of the counters. Notice

that in this model some λ-transitions are allowed.

Formally a k-counter machine is a 4-tuple M=(K,Σ, ∆, q0), where K is a finite

set of states, Σ is a finite input alphabet, q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪
{λ})×{0, 1}k ×K ×{0, 1,−1}k is the transition relation. The k-counter machine M
is said to be real time iff: ∆ ⊆ K × Σ × {0, 1}k ×K × {0, 1,−1}k, i.e. iff there are

no λ-transitions.

If the machine M is in state q and ci ∈ N is the content of the ith counter Ci then

the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).
For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ N

k such that cj = 0 for j ∈ E ⊆
{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ where ij = 0
for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy:

if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k} then

jm = 0 or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations

r = (qi, c
i
1, . . . c

i
k)i≥1 is called a run of M on σ, iff:

(1) (q1, c
1
1, . . . c

1
k) = (q0, 0, . . . , 0)

(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) and such that a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run r, In(r) is the set of all states entered infinitely often during r.

Definition 1. A Büchi k-counter automaton is a 5-tuple M=(K,Σ,∆, q0, F ), where

M′=(K,Σ,∆, q0) is a k-counter machine and F ⊆ K is the set of accepting states.

The ω-language accepted by M is:

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

The class ofω-languages accepted by Büchi k-counter automata is denotedBCL(k)ω .

The class of ω-languages accepted by real time Büchi k-counter automata will be de-

noted r-BCL(k)ω .

We now recall the definition of classes of the arithmetical hierarchy of ω-languages,

see [Sta97]. Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class

Σn if and only if there exists a recursive relation RL ⊆ (N)n−1 ×X⋆ such that:



L = {σ ∈ Xω | ∃a1 . . .Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL},
where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An

ω-language L ⊆ Xω belongs to the class Πn if and only if its complement Xω − L
belongs to the class Σn. The class Σ1

1 is the class of effective analytic sets which are

obtained by projection of arithmetical sets. An ω-language L ⊆ Xω belongs to the

class Σ1
1 if and only if there exists a recursive relation RL ⊆ N × {0, 1}⋆ ×X⋆ such

that: L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}.
Then an ω-language L ⊆ Xω is in the class Σ1

1 iff it is the projection of an ω-

language over the alphabet X × {0, 1} which is in the class Π2. The class Π1
1 of

effective co-analytic sets is simply the class of complements of effective analytic sets.

Recall that a Büchi Turing machine is just a Turing machine working on infinite in-

puts with a Büchi-like acceptance condition, and that the class of ω-languages accepted

by Büchi Turing machines is the class Σ1
1 of effective analytic sets [Sta97]. On the oher

hand, one can construct, using a classical construction (see for instance [HMU01]),

from a Büchi Turing machine T , a 2-counter Büchi automaton A accepting the same

ω-language. Thus one can state the following proposition.

Proposition 2. An ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted by a non

deterministic Büchi Turing machine, hence iff it is in the class BCL(2)ω.

3 Some Results of Set Theory

We now recall some basic notions of set theory which will be useful in the sequel,

and which are exposed in any textbook on set theory, like [Kun80,Jec02].

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom

of choice AC. The axioms of ZFC express some natural facts that we consider to hold

in the universe of sets. For instance a natural fact is that two sets x and y are equal iff

they have the same elements. This is expressed by the Axiom of Extensionality:

∀x∀y [ x = y ↔ ∀z(z ∈ x ↔ z ∈ y) ].

Another natural axiom is the Pairing Axiom which states that for all sets x and y there

exists a set z = {x, y} whose elements are x and y:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))]

Similarly the Powerset Axiom states the existence of the set P(x) of subsets of a set x.

Notice that these axioms are first-order sentences in the usual logical language of set

theory whose only non logical symbol is the membership binary relation symbol ∈. We

refer the reader to any textbook on set theory for an exposition of the other axioms of

ZFC.

A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets, equipped

with the membership relation ∈, where “x ∈ y” means that the set x is an element of

the set y, which satisfies the axioms of A. We often say “ the model V” instead of “ the

model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection from A
onto B and we denote this by A ≈ B. The relation ≈ is an equivalence relation. Using



the axiom of choice AC, one can prove that any set A can be well-ordered so there is

an ordinal γ such that A ≈ γ. In set theory the cardinal of the set A is then formally

defined as the smallest such ordinal γ.

The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The cardinal

ℵα is also denoted by ωα, when it is considered as an ordinal. The first infinite ordinal

is ω and it is the smallest ordinal which is countably infinite so ℵ0 = ω (which could

be written ω0). The first uncountable ordinal is ω1, and formally ℵ1 = ω1.

Let ON be the class of all ordinals. Recall that an ordinal α is said to be a successor

ordinal iff there exists an ordinal β such that α = β+1; otherwise the ordinal α is said

to be a limit ordinal and in this case α = sup{β ∈ ON | β < α}.

We recall now the notions of cofinality of an ordinal and of regular cardinal which

may be found for instance in [Jec02]. Let α be a limit ordinal, the cofinality of α, de-

noted cof(α), is the least ordinal β such that there exists a strictly increasing sequence

of ordinals (αi)i<β , of length β, such that ∀i < β αi < α and supi<β αi =
α. This definition is usually extended to 0 and to the successor ordinals: cof(0) =
0 and cof(α + 1) = 1 for every ordinal α. The cofinality of a limit ordinal is always

a limit ordinal satisfying: ω ≤ cof(α) ≤ α. Moreover cof(α) is in fact a cardinal. A

cardinal κ is said to be regular iff cof(κ) = κ. Otherwise cof(κ) < κ and the cardinal

κ is said to be singular.

A cardinal κ is said to be a (strongly) inaccessible cardinal iff κ > ω, κ is regular,

and for all cardinals λ < κ it holds that 2λ < κ, where 2λ is the cardinal of P(λ).

Recall that the class of sets in a model V of ZF may be stratified in a transfinite

hierarchy, called the Cumulative Hierarchy, which is defined by V =
⋃

α∈ON
Vα,

where the sets Vα are constructed by induction as follows:

(1). V0 = ∅

(2). Vα+1 = P(Vα) is the set of subsets of Vα, and

(3). Vα =
⋃

β<α Vβ , for α a limit ordinal.

It is well known that if V is a model of ZFC and κ is an inaccessible cardinal in V

then Vκ is also a model of ZFC. If there exist in V at least n inaccessible cardinals,

where n ≥ 1 is an integer, and if κ is the n-th inaccessible cardinal, then Vκ is also

a model of ZFC + “There exist exactly n − 1 inaccessible cardinals” . This implies

that one cannot prove in ZFC that there exists an inaccessible cardinal, because if κ
is the first inaccessible cardinal in V then Vκ is a model of ZFC + “There exist no

inaccessible cardinals” .

We assume the reader to be familiar with basic notions of topology which may be

found in [Mos80,LT94,Sta97,PP04]. There is a natural metric on the set Σω of infinite

words over a finite alphabet Σ containing at least two letters which is called the prefix

metric and is defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v)

where lpref(u,v) is the first integer n such that the (n+ 1)st letter of u is different from

the (n+1)st letter of v. This metric induces on Σω the usual Cantor topology in which

the open subsets of Σω are of the form W.Σω, for W ⊆ Σ⋆.

Define now the Borel Hierarchy of subsets of Σω:



Definition 3. For a non-null countable ordinal α, the classes Σ0
α and Π

0
α of the Borel

Hierarchy on the topological space Σω are defined as follows:

Σ
0
1 is the class of open subsets of Σω, Π0

1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:

Σ
0
α is the class of countable unions of subsets of Σω in

⋃
γ<α Π

0
γ .

Π
0
α is the class of countable intersections of subsets of Σω in

⋃
γ<αΣ

0
γ .

The class of Borel sets is ∆1
1 :=

⋃
ξ<ω1

Σ
0
ξ=

⋃
ξ<ω1

Π
0
ξ , where ω1 is the first uncount-

able ordinal. The class of Borel subsets of Σω is strictly included into the class Σ1
1 of

analytic sets which are obtained by projection of Borel sets.

We now define completeness with regard to reduction by continuous functions. For

a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ
0
α (respectively, Π0

α, Σ1
1)-

complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ
0
α (respectively,

E ∈ Π
0
α, E ∈ Σ

1
1) iff there exists a continuous function f : Y ω → Σω such that

E = f−1(F ).

4 Incompleteness results for 1-counter ω-languages

We first recall that a (first-order) theory T in the language of set theory is a set of (first-

order) sentences, called the axioms of the theory. If T is a theory and ϕ is a sentence

then we write T ⊢ ϕ iff there is a formal proof of ϕ from T ; this means that there is a

finite sequence of sentences ϕj , 1 ≤ j ≤ n, such that ϕ1 ⊢ ϕ2 ⊢ . . . ϕn, where ϕn is

the sentence ϕ and for each j ∈ [1, n], either ϕj is in T or ϕj is a logical axiom or ϕj

follows from ϕ1, ϕ2, . . . ϕj−1 by usual rules of inference which can be defined purely

syntactically. A theory is said to be consistent iff for no (first-order) sentence ϕ does

T ⊢ ϕ and T ⊢ ¬ϕ. If T is inconsistent, then for every sentence ϕ it holds that T ⊢ ϕ.

We shall denote Cons(T) the sentence “the theory T is consistent”.

Recall that one can code in a recursive manner the sentences in the language of

set theory by finite sequences over a finite alphabet, and then simply over the alphabet

{0, 1}, by using a classical Gödel numbering of the sentences. We say that the theory

T is recursive iff the set of codes of axioms in T is a recursive set of words over {0, 1}.

In that case one can also code formal proofs from axioms of a recursive theory T and

then Cons(T) is an arithmetical statement.

The theory ZFC is recursive and so are the theories Tn =: ZFC + “There exist (at

least) n inaccessible cardinals”, for any integer n ≥ 1.

We now recall Gödel’s Second Incompleteness Theorem.

Theorem 4 (Gödel 1931). Let T be a consistent recursive extension of ZF. Then T 0

Cons(T ).

We now state the following lemmas.

Lemma 5. Let T be a recursive theory in the language of set theory. Then there ex-

ists a Büchi Turing machine MT , reading words over a finite alphabet Σ, such that

L(MT ) = Σω iff T is consistent and L(MT ) = ∅ iff T is inconsistent. And there

exists a Büchi Turing machine M′
T , reading words over the finite alphabet Σ, such that

L(M′
T ) = Σω iff T is inconsistent and L(M′

T ) = ∅ iff T is consistent.



Proof. We first describe informally the behaviour of the machine MT . The machine

reads the input word but this does not affect the acceptance or non-acceptance of the

word. Essentially the machine works as a program which enumerates all the formal

proofs from T and enters each time in an accepting state iff the last sentence of the

proof is not the sentence “∃x(x 6= x)”. If the theory T is consistent the machine will

enter infinitely often in an accepting state qf and thus the input ω-word will be accepted

since the Büchi acceptance condition will be fulfilled. But if the theory is inconsistent

then at some point of the computation the machine sees a proof whose last sentence

is actually “∃x(x 6= x)”. In that case the machine enters in a rejecting state and stays

forever in that state, and thus the input ω-word will be rejected.

The machine M′
T also works as a program which enumerates all the formal proofs

from T . But this time it enters in an accepting state only when it sees a formal proof

whose last sentence is actually “∃x(x 6= x)”, and then the machine M′
T stays in this

accepting state forever. Thus the machine accepts all ω-words if the theory T is incon-

sistent and accepts not any ω-word if the theory T is consistent. �

Lemma 6. Let T be a recursive theory in the language of set theory. Then there ex-

ists a Büchi Turing machine MT , reading words over a finite alphabet Σ, such that

L(MT ) = Σω iff T is consistent and L(MT ) is Σ
1
1-complete iff T is inconsistent.

And there exists a Büchi Turing machine M′
T , reading words over the finite alphabet

Σ, such that L(M′
T ) = Σω iff T is inconsistent and L(M′

T ) is Σ1
1-complete iff T is

consistent.

Proof. This follows from the above Lemma 5, from the fact that there exists a Σ
1
1-

complete ω-language accepted by a Büchi Turing machine (and even by a 1-counter

Büchi automaton, see [Fin03]), and from the closure under finite union of the class of

ω-languages accepted by non-deterministic Büchi Turing machines. �

We now state the following result.

Theorem 7. Let T be a recursive theory in the language of set theory. Then there exists

a real-time 1-counter Büchi automatonAT reading words over a finite alphabet Γ such

that L(AT ) = Γω iff T is consistent and L(AT ) is Σ1
1-complete iff T is inconsistent.

And there exists a real-time 1-counter Büchi automaton A′
T reading words over the

finite alphabet Γ , such that L(A′
T ) = Γω iff T is inconsistent and L(A′

T ) is Σ
1
1-

complete iff T is consistent.

Proof. Let T be a recursive theory in the language of set theory, and MT be the Büchi

Turing machine, reading words over a finite alphabet Σ, which is given by Lemma 6.

There exists a 2-counter Büchi automaton CT , such that L(MT ) = L(CT ), and which

can be effectively constructed from the machine MT .

We now use some constructions which were used in a previous paper [Fin06a] to

study the topological properties of context-free ω-languages.

Let E be a new letter not in Σ, S be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω

be the function defined, for all x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .
We proved in [Fin06a] that if L ⊆ Σω is an ω-language in the class BCL(2)ω and

k = cardinal(Σ) + 2, S = (3k)3, then one can effectively construct from a Büchi



2-counter automaton CT accepting L a real time Büchi 8-counter automaton DT such

that L(DT ) = θS(L).

On the other hand, it is easy to see that θS(Σ
ω)− = (Σ ∪ {E})ω − θS(Σ

ω) is

accepted by a real time Büchi 1-counter automaton. The class r-BCL(8)ω is closed

under finite union in an effective way and thus θS(L) ∪ θS(Σ
ω)− is accepted by a real

time Büchi 8-counter automaton ET which can be effectively constructed from DT .

Let now K = 2×3×5×7×11×13×17×19 = 9699690 be the product of the eight

first prime numbers. Let Γ ′ = Σ ∪{E}. An ω-word x ∈ (Γ ′)ω is coded by the ω-word

hK(x) = A.CK .x(1).B.CK2

.A.CK2

.x(2).B . . . B.CKn

.A.CKn

.x(n).B . . .

over the alphabet Γ ′′ = Γ ′∪{A,B,C}, where A,B,C are letters not in Γ ′. We proved

in [Fin06a] that, from a real time Büchi 8-counter automaton ET accepting L(ET ) ⊆
(Γ ′)ω , one can effectively construct a Büchi 1-counter automaton GT accepting the

ω-language hK(L(ET ))∪hK((Γ ′)ω)−.

Consider now the mappingφK : (Γ ′∪{A,B,C})ω → (Γ ′∪{A,B,C, F})ω which

is defined by: for all x ∈ (Γ ′ ∪ {A,B,C})ω,

φK(x) = FK−1.x(1).FK−1.x(2) . . . FK−1.x(n).FK−1.x(n+ 1).FK−1 . . .

Then the ω-language φK(L(GT )) = φK(hK(L(ET ))∪hK((Γ ′)ω)−) is accepted by a

real time Büchi 1-counter automaton HT which can be effectively constructed from the

Büchi 1-counter automaton GT , [Fin06a]. And we set Γ = Γ ′ ∪ {A,B,C, F}.

On the other hand, the ω-language (Γ ′∪{A,B,C, F})ω−φK((Γ ′∪{A,B,C})ω)
is ω-regular and we can construct a (1-counter) Büchi automaton accepting it. Then one

can effectively construct from HT a real time Büchi 1-counter automatonAT accepting

the ω-language φK(hK(L(ET ))∪hK((Γ ′)ω)−) ∪ φK((Γ ∪ {A,B,C})ω)−.

It suffices now to see that we have the two following cases:

If L(MT ) = L(CT ) = Σω, then we have successively the following equalities:

L(ET ) = (Σ ∪ {E})ω = (Γ ′)ω , L(GT ) = (Γ ′ ∪ {A,B,C})ω, L(AT ) = (Γ ′ ∪
{A,B,C, F})ω = Γω,

And if L(MT ) = L(CT ) is Σ
1
1-complete, then L(AT ) is also Σ

1
1-complete. This

follows from the fact that the mapping Ψ : Σω → (Γ ′ ∪ {A,B,C, F})ω defined by

Ψ(x) = φK(hK(θS(x))) is continuous and satisfies:

∀x ∈ Σω [ x ∈ L(MT ) ⇐⇒ Ψ(x) ∈ L(AT ) ]

Finally the construction of the automaton A′
T is very similar except we start from

the machine M′
T instead of the machine MT . �

We now briefly recall a few definitions and facts about automata and ω-languages

they accept.

An ω-language L ⊆ Γω in BCL(1)ω is said to be unambiguous iff there exists a

1-counter Büchi automaton A such that L = L(A) and every ω-word x ∈ Γω has at

most one accepting run by A. In the other case the ω-language is said to be inherently

ambiguous. An ω-language L accepted by a 1-counter Büchi automaton (respectively, a

Büchi Turing machine) is said to have the maximum degree of ambiguity if for every 1-

counter Büchi automaton (respectively, Büchi Turing machine) A such that L = L(A)
there exist 2ℵ0 ω-words having 2ℵ0 accepting runs by A. Notice that this notion may

depend on the accepting device which is used.



An ω-language accepted by a deterministic 1-counter Büchi (respectively, Muller)

automaton is a Borel Π0
2-set (respectively, ∆0

3-set); the Muller acceptance condition is

stronger than the Büchi acceptance condition. The same result is true for any kinds of

automata and in particular for Turing machines, see [Tho90,Sta97,PP04].

We now state the following result.

Theorem 8. Let T be a recursive theory in the language of set theory. Then there ex-

ist two real-time 1-counter Büchi automata AT and A′
T , reading words over a finite

alphabet Γ , such that Cons(T ) is equivalent to each of the following items:

(1) L(AT ) = Γω; (2) L(AT ) is ω-regular; (3) L(AT ) is deterministic;

(4) L(AT ) is Borel; (5) L(AT ) is in the Borel class Σ0
α (for a non-null countable

ordinal α); (6) L(AT ) is in the Borel class Π0
α (for a non-null countable ordinal α);

(7) L(AT ) is unambiguous; (8) L(AT ) is an arithmetical set; (9) L(AT ) is an

hyperarithmetical set, i.e. an effective ∆1
1-set; (10) L(AT ) is in the arithmetical class

Σn (for n ≥ 1); (11) L(AT ) is in the arithmetical class Πn (for n ≥ 1);

and also to each of the following items:

(1’) L(A′
T ) 6= Γω; (2’) L(A′

T ) is not ω-regular; (3’) L(A′
T ) is not

deterministic; (4’) L(A′
T ) is Σ1

1-complete; (5’) L(A′
T ) is not Borel; (6’) L(A′

T )
is not in the Borel class Σ0

α (for a non-null countable ordinal α); (7’) L(A′
T ) is not

in the Borel class Π0
α (for a non-null countable ordinal α); (8’) L(A′

T ) is inherently

ambiguous; (9’) L(A′
T ) has the maximum degree of ambiguity (for acceptance by

1-counter automata or by Turing machines); (10’) L(A′
T ) is not an arithmetical set;

(11’) L(A′
T ) is not an hyperarithmetical set; (12’) L(A′

T ) is not in the arithmetical

class Σn (for n ≥ 1); (13’) L(A′
T ) is not in the arithmetical class Πn (for n ≥ 1);

Proof. The real-time 1-counter Büchi automata AT and A′
T are constructed in the proof

of the preceding Theorem 7. It is straightforward to check that the ω-language Γω is

ω-regular, and even accepted by a deterministic Büchi automaton. Moreover it is in

every Borel class and in every arithmetical class. It is also clearly unambiguous since

it is deterministic. On the other hand a Σ
1
1-complete ω-language is not arithmetical,

not hyperarithmetical, and not Borel. It cannot be ω-regular since ω-regular languages

are Borel ∆0
3-sets. Similarly it is not deterministic since it is not a ∆

0
3-set. Moreover

any Σ
1
1-complete ω-language accepted by a 1-counter Büchi automaton (respectively,

a Büchi Turing machine) has the maximum degree of ambiguity, see [Fin14]. �

Recall that we denote Tn the theory ZFC + “There exist (at least) n inaccessible

cardinals”, for an integer n ≥ 0. We can apply the preceding theorem to the theories

Tn which are recursive, and get the real-time 1-counter Büchi automata ATn
and A′

Tn
,

which will be simply denoted An and A′
n in the sequel.

Theorem 9. For every integer n ≥ 0, there exist two real-time 1-counter Büchi au-

tomata An and A′
n, reading words over a finite alphabet Γ , such that Cons(Tn) is

equivalent to each of the items (1)-(11) and (1’)-(13’) of the preceding theorem where

AT and A′
T are replaced by An and A′

n. In particular, if ZFC + “There exist (at least)



n inaccessible cardinals” is consistent, then each of the properties of An and A′
n given

by these items (1)-(11) and (1’)-(13’) is provable from ZFC + “There exist (at least)

n+ 1 inaccessible cardinals” but not from ZFC + “There exist (at least) n inaccessible

cardinals”.

Proof. The automata An and A′
n are given by the preceding theorem applied to the

theories Tn. Recall that one can prove from ZFC + “There exist (at least) n + 1 inac-

cessible cardinals” that if κ is the n+ 1-th inaccessible cardinal, then the set Vκ of the

cumulative hierarchy is also a model of ZFC + “There exist n inaccessible cardinals”.

This implies that the theory ZFC + “There exist n inaccessible cardinals” is consistent

and thus this implies also the properties of An and A′
n given by the items (1)-(11) and

(1’)-(13’). On the other hand if Tn is consistent, then these properties are not provable

from Tn. Indeed Tn is then a consistent recursive extension of ZFC and thus by Gödel’s

Second Incompleteness Theorem we know that Tn 0 Cons(Tn). �

5 Incompleteness results for infinitary rational relations

We now consider acceptance of binary relations over infinite words by 2-tape Büchi

automata, firstly considered by Gire and Nivat in [GN84]. A 2-tape automaton is an

automaton having two tapes and two reading heads, one for each tape, which can move

asynchronously, and a finite control as in the case of a (1-tape) automaton. The au-

tomaton reads a pair of (infinite) words (u, v) where u is on the first tape and v is

on the second tape, so that a 2-tape Büchi automaton B accepts an infinitary rational

relation L(B) ⊆ Σω
1 × Σω

2 , where Σ1 and Σ2 are two finite alphabets. Notice that

L(B) ⊆ Σω
1 ×Σω

2 may be seen as an ω-language over the product alphabet Σ1 ×Σ2.

We now use a coding we have defined in a previous paper [Fin06b] to study the

topological complexity of infinitary rational relations. We first recall a coding of an ω-

word over the finite alphabet Ω = Σ ∪ {A,B,C,E, F}, where 0 is assumed to be a

letter of Σ, by an ω-word over the alphabet Ω′ = Ω ∪ {D}, where D is an additionnal

letter not in Ω. For x ∈ Ωω the ω-word h(x) is defined by :

h(x) = D.0.x(1).D.02.x(2).D.03.x(3).D . . .D.0n.x(n).D.0n+1.x(n+ 1).D . . .

It is easy to see that the mapping h from Ωω into (Ω ∪ {D})ω is injective. Let now α
be the ω-word over the alphabet Ω′ which is simply defined by:

α = D.0.D.02.D.03.D.04.D . . .D.0n.D.0n+1.D . . .

The following result was proved in [Fin06b].

Proposition 10 ([Fin06b]). Let L ⊆ Ωω be in r-BCL(1)ω andL = h(L)∪(h(Ωω))−.

Then R = L× {α}
⋃

(Ω′)ω × ((Ω′)ω − {α}) is an infinitary rational relation.

Moreover one can effectively construct from a real time 1-counter Büchi automaton A
accepting L a 2-tape Büchi automaton B accepting the infinitary relation R.

Using this Proposition 10 and Theorem 7 and a very similar reasoning as in the

proofs of Theorems 8 and 9, we can now prove the following results.



Theorem 11. For every integer n ≥ 0, there exist two 2-tape Büchi automata Bn and

B′
n, reading words over a finite alphabet Ω′ × Ω′, such that Cons(Tn) is equivalent to

each of the following items (1)-(11) and (1’)-(13’)

(1) L(Bn) = (Ω′)ω × (Ω′)ω ; (2) L(Bn) is ω-regular; (3) L(Bn) is deterministic;

(4) L(Bn) is Borel; (5) L(Bn) is in the Borel class Σ0
α (for a non-null countable

ordinal α); (6) L(Bn) is in the Borel class Π0
α (for a non-null countable ordinal α);

(7) L(Bn) is unambiguous; (8) L(Bn) is an arithmetical set; (9) L(Bn) is an

hyperarithmetical set, i.e. an effective ∆1
1-set; (10) L(Bn) is in the arithmetical class

Σn (for n ≥ 1); (11) L(Bn) is in the arithmetical class Πn (for n ≥ 1);

(1’) L(B′
n) 6= (Ω′)ω × (Ω′)ω; (2’) L(B′

n) is not ω-regular; (3’) L(B′
n) is not

deterministic; (4’) L(B′
n) is Σ1

1-complete; (5’) L(B′
n) is not Borel; (6’) L(B′

n)
is not in the Borel class Σ0

α (for a non-null countable ordinal α); (7’) L(B′
n) is not

in the Borel class Π0
α (for a non-null countable ordinal α); (8’) L(B′

n) is inherently

ambiguous; (9’) L(B′
n) has the maximum degree of ambiguity (for acceptance by

2-tape automata or by Turing machines); (10’) L(B′
n) is not an arithmetical set;

(11’) L(B′
n) is not an hyperarithmetical set; (12’) L(B′

n) is not in the arithmetical

class Σn (for n ≥ 1); (13’) L(B′
n) is not in the arithmetical class Πn (for n ≥ 1);

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is consistent,

then each of the properties of Bn and B′
n given by these items (1)-(11) and (1’)-(13’) is

provable from ZFC + “There exist (at least) n+ 1 inaccessible cardinals” but not from

ZFC + “There exist (at least) n inaccessible cardinals”.

6 Concluding remarks

Using similar methods as above in this paper, we can construct, for a given theory T
in the language of set theory and a given first-order sentence Φ in the language of set

theory, a 1-counter Büchi automaton (or a 2-tape Büchi automaton) A1 (respectively,

A2, A3) such that L(A1) (respectively, L(A2), L(A3)) is Borel (and deterministic,

ω-regular, unambiguous, . . . ) if and only if the sentence Φ is provable from T , (respec-

tively, ¬Φ is provable from T , Φ is independent from T ).

As an example recall that a famous open problem in Complexity Theory is the

following question: “ Is P equal to NP?” , see [HMU01]. Notice that “P= NP” can

be expressed by a first-order sentence Ψ in the language of set theory. Thus one can

construct a 2-tape Büchi automaton A1 (respectively, A2, A3) such that L(A1) (re-

spectively, L(A2), L(A3)) is Borel if and only if the sentence Ψ is provable from T ,

(respectively, ¬Ψ is provable from T , Ψ is independent from T ). Since the “P= NP?”

problem is one of the millennium problems for the solution of which one million dollars

is offered by the Clay Institute, this is the sum one can win by proving that the infinitary

rational relation L(A1) (or L(A2) or L(A3)) is Borel !

On the other hand, the results of this paper are true for other large cardinals than

inaccessible ones. For instance we can replace inaccessible cardinals by hyperinacces-

sible, Mahlo, hyperMahlo, measurable, . . . (see [Jec02]) and still other ones and obtain

similar results.



Finally we mention that in an extended version of this paper we prove similar inde-

pendence results for timed automata reading timed words.
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