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Classical and Quantum Parts

of the Quantum Dynamics:

the Discrete-Time Case

Ivan Bardet

Abstract. In the study of open quantum systems modeled by
a unitary evolution of a bipartite Hilbert space, we address the
question of which parts of the environment can be said to have
a "classical action" on the system, in the sense of acting as
a classical stochastic process. Our method relies on the defi-
nition of the Environment Algebra, a relevant von Neumann
algebra of the environment. With this algebra we define the
classical parts of the environment and prove a decomposition
between a maximal classical part and a quantum part. Then
we investigate what other information can be obtained via this
algebra, which leads us to define a more pertinent algebra: the
Environment Action Algebra. This second algebra is linked to
the minimal Stinespring representations induced by the unitary
evolution on the system. Finally in finite dimension we give a
characterization of both algebras in terms of the spectrum of
a certain completely positive map acting on the states of the
environment.

1. Introduction

In the Markovian interpretation of open quantum systems, the equa-
tion describing the evolution of a system is the sum of an Hamilton-
ian term and additional terms representing the noises introduced by
the environment. In some cases it is possible to model the action of
the environment on the system by a classical noise. This way the
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evolution of the system become the average over the noise of some
unitary evolutions. In a more mathematical language, the evolution
of the system is given by the average evolution of a Markov process
taking value in the unitary group of the system.
For instance, the master equation describing the evolution of the
state of the system can be written as a Schrödinger equation per-
turbed by some classical noises [19]. Such a model can be fruitful
as it allows to borrow powerful tools from stochastic calculus to the
study of open quantum systems. This approach has already been suc-
cessfully used in the study of some two-levels systems [1] and classical
reducing [17].
For such equations, Kümmerer and Maassen show in [12] that the
evolution can be dilated as a unitary evolution on the system and its
environment, such that the environment appears as a Markov pro-
cess. They called such dilations essentially commutative. More par-
ticularly, they show that the three following assertions are equivalent
when the system has a finite number of degree of liberty:

1. There exists a convolution semigroup of probability measures
on the group of automorphisms of the set of linear map on the
system, such that the evolution is given by the expectation of
the convolution semigroup.

2. There exists an essentially commutative dilation of the Quan-
tum Markov Semigroup.

3. The operator algebra generated by the evolution on the envi-
ronment is commutative.

In this article we have a different point of view, as we start di-
rectly from a unitary evolution between the system and its environ-
ment. More particularly we focus on the case of a one-step evolution,
that is, when the evolution is given by a unitary operator on a ten-
sor product of the system and the environment (a bipartite Hilbert
space).
In this situation the equivalence between points 1. and 2. has al-
ready been proven by Attal and al. Indeed in [3] they show which
unitary operators can be written in terms of classical noises emerg-
ing from the environment and characterize such noises: the obtuse
random variables. This provides a discrete analogue of an essentially
commutative dilation. As proved in [5], in this case the evolution is
equivalent to a random walk on the unitary group of the system.
The starting point of this article is the equivalence between the two
previous properties and the fact that the environment interferes with
the system via a commutative algebra, which gives a more solid def-
inition of a classical environment.
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On the other hand, some evolutions are understood to be typically
quantum or non-commutative, although there is no clear definition
of what this means. This is for instance the case for the Spontaneous
Emission, where the one-step evolution is given by the following uni-
tary operator on C

2 ⊗C
2:

Use =
⎛
⎜⎜⎜
⎝

1 0 0 0

0 cosθ − sin θ 0

0 sin θ cosθ 0

0 0 0 1

⎞
⎟⎟⎟
⎠
. (1.1)

Our goal is to properly define the two situations mentioned
above, that is, to make the distinction between a classical and a
purely quantum environment. Thus the first goal of this article is
to characterize, in terms of an operator algebraic framework, which
unitary evolutions can be said to have a classical or purely quantum
environment. Furthermore, we want to give a partial answer to the
question: How far is the environment from being classical or purely
quantum?
We answer this question by defining a relevant von Neumann algebra
of the environment, that we call the Environment Algebra. The envi-
ronment is classical, or commutative in our definition, if this algebra
is commutative. Moreover with the help of this algebra we are able
to define and identify the classical parts of the environment, that is
the parts where the dynamics reduces to an evolution with classi-
cal environment. In the same way we can say that an environment
is quantum, or far from being classical, if it has no classical part.
It naturally leads us to prove a decomposition of the environment
between a classical and a quantum part.

The environment algebra mentioned above allows to charac-
terize whenever the unitary evolution can be written with classical
noises. A natural question is then what other properties of the evolu-
tion can be obtained from it. However it appears that this algebra is
"to big" to provide finer results. For instance in some cases a purely
quantum environment can nonetheless lead to an evolution of the
system driven by classical noises: a quantum environment can have
a classical action on the system. This comes from the fact that the
system does not see evolutions occurring on the environment only.
Consequently two evolutions on the bipartite system can lead to the
same one when restricted to the system. We define the Environment
Action Algebra as the relevant algebra in this context. Two unitary
operators that have the same action on the system will have the same
Environment Action Algebra.
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Under simple hypotheses, we prove that it is always possible to find
a unitary operator on the bipartite system which leads to the same
evolution on the system, but whose Environment Action Algebra
coincide with its Environment Algebra. In this sense, it is always
possible to restrict the study to the Environment Algebra. Then, in
order to illustrate its usefulness, we show a link between the Envi-
ronment Action Algebra and minimal Stinespring representations.
Finally, we characterize both algebras in terms of the spectrum of
a completely positive map, providing a practical way to determine
both algebras.

We insist on the fact that in this article the term classical
means that we deal, at least implicitly, with a classical probability
space. Later it will become clear that the mathematical meaning of
this word is rather commutative, as in commutative algebra. In our
discussions we shall use both terms without distinction but we will
prefer the latter when stating mathematical results.
Note also that the classical noises we are talking about are different
in nature from the ones emerging in the context of quantum trajecto-
ries ([8] [16] [15]). In the latter case, classical noises appears because
of a continuous monitoring of some observable of the environment.
In our case no observation is performed and consequently the emer-
gence of classical noises has to be interpreted as a manifestation of
the classical nature of the action of the environment on the system.

This article is structured as follow. In Section 2 we focus on the
definition of the Environment Algebra and the subsequent decom-
position of the environment between a classical and quantum part.
We give some examples and we study the particular case where the
evolution is given by an explicit Hamiltonian.
In Section 3 we define the Environment Action Algebra as a more
relevant algebra of the environment and study its properties as men-
tioned above.
Notations: Throughout this paper, we make use of the following no-
tations:

● Most of the time, we consider a unitary operator U acting on
the tensored Hilbert space H ⊗ K, where H and K are sepa-
rable Hilbert space, modeling the system and the environment
respectively.
● B(H) is the Banach space of all bounded operators on H.
● TrK ∶ L1(H ⊗K) → L1(H) (where L1(H) is the space of trace-

class operators on H) stands for the partial trace over K, that
is, if ρ is a trace-class operator onH⊗K than for any X ∈ B(H),

Tr [TrK[ρ]X] = Tr [ρ (X ⊗ IK)] .
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Given a trace-class operator ω ∈ L1(K), the operation of the
partial trace is denoted by Trω ∶ B(H⊗K) → B(H).
● We will also use the Dirac notations: for any elements e, f ∈ H:

– ∣e > is the linear map from C to H, λ ∈ C ↦ λ∣e >= λe.
We most of the time identify the linear map ∣e > with the
element e of H.

– < e∣ is its dual, that is the linear map from H to C such
that g ∈ H ↦< e∣g = ⟨e, g⟩;

– and consequently ∣e⟩⟨f ∣ stands for the linear operator on
H such that g ∈ H ↦ ∣e⟩⟨f ∣g = ⟨f, g⟩e.

● If A is a subset of B(K), A′ is its commutant, that is the set

A′ = {Y ∈ B(K), [Y,A] = 0 for all A ∈ A}.
If A is a ∗-stable set, then A′ is a von Neumann algebra. In this
case, by the Bicommutant Theorem of von Neumann [22], the
von Neumann algebra generated by A is the bicommutant A′′.

2. The Environment Algebra for one-step evolution

The goal of this section is to prove a decomposition of the envi-
ronment between a classical part and a quantum part, in a sense
we shall define later. This is done by studying the proper operator
algebra of the environment, the Environment Algebra. In order to
motivate the idea behind such a definition we first recall a result of
Attal, Deschamps and Pellegrini on classical environment (see [3]).

Theorem 2.1. Suppose K ≈ Cd for some positive integer d. Let U be
a unitary operator acting on the space H ⊗ K. Then the following
assertions are equivalent:

1. There exists d unitary operators U1, ..., Ud on H and an or-
thonormal basis ψi of K such that:

U =
d

∑
i=1

Ui ⊗ ∣ψi⟩⟨ψi∣. (2.1)

2. There exists operators A,B1, ...,Bd ∈ B(H) and an obtuse ran-
dom variable X = (X1, ...,Xd) on C

d such that U can be written
in some orthonormal basis of K as

U = A⊗ IK +
d

∑
i=1

Bi ⊗MXi
; (2.2)

where MXi
is isomorphic to the multiplication operator by the

coordinate random variable Xi.
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Thus unitary operators such as in Equation (2.1) display strong clas-
sical behavior, as they are linked in a one to one way with some par-
ticular class of random variables: the obtuse random variables. As
we shall not need them in the following, we do not wish to explain
more on the matter. Instead we advise the reader to consult [4] and
[6].

Our first goal in this section is to find a characterization of
Equation (2.1) that can be generalized in infinite dimension. This
is the role of the Environment Algebra. It is based on the following
remark: U is of the form (2.4) if and only if it belongs to a von
Neumann algebra B(H) ⊗A where A is a commutative algebra on
K. Indeed, if U is of the form (2.1), then define the algebra A as:

A = { d

∑
i=1

f(i)∣ψi⟩⟨ψi∣, f ∈ L∞({1, ..., p})} .
Then clearly U ∈ B(H) ⊗A. Conversely, assume that there exists a
commutative von Neumann algebra A on K such that U ∈ B(H)⊗A.
It is well-known that this algebra takes the form:

A = {m∑
i=1

f(i)Pi, f ∈ L∞({1, ...,m})} , (2.3)

where the Pi’s are uniquely defined mutually orthogonal projections
that sums to the identity. As U ∈ B(H) ⊗ A, there exist unitary
operators V1, ..., Vm on H such that:

U =
m

∑
i=1

Vi ⊗Pi. (2.4)

We will show in Proposition 2.2 how this equation can be generalized
in any dimension. In general, we will see that the environment is
commutative if and only if the Environment Algebra is commutative.

To finish this small introduction on classical environment, let
us remark that there are still two additional classical behaviors con-
nected to these unitary operators:

● When considering several steps of the evolution, one can prove
that the resulting evolution is equivalent to a random walk on
the unitary group of H (see [5]).
● For any density matrix ω on K and any observable X ∈ B(H),

we have

Lω(X) ∶= Trω [U∗X ⊗ IKU] = d

∑
i=1

⟨ψi,wψi⟩U∗i XUi. (2.5)
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The map Lω is thus a random unitary completely positive map
(CP map), a kind of CP map which is largely study in Quantum
Information Theory (see [14] for a review on that matter).
It has been conjecture in [3] by Attal and al. that a unitary
operator that gives a random unitary CP map for all density
matrices of the environment must have the form (where ϕi is
another orthonormal basis):

U =
d

∑
i=1

Ui ⊗ ∣ϕi⟩⟨ψi∣. (2.6)

We will come back on these specific unitary operators in Section 3. In-
deed we will show as a corollary of Theorem 3.1 that they correspond
exactly to those that have a commutative Environment Right-Action
Algebra (see Definition 3.1). We will show that U has the form (2.6)
if and only if this algebra is commutative.

As we already mentioned in the introduction, the Spontaneous
Emission, whose evolution is described by the unitary operator Use

of Equation (1.1), is well-known for being a manifestation of the
quantum world. We will see later that this can be interpreted in our
framework as the fact that there does not exist a commutative al-
gebra A on K such that Use ∈ B(H)⊗A. This can be read directly
on the Environment Algebra for this evolution, as we will show that
it is the whole algebra B(K). Consequently both situations can be
integrated in the framework of the Environment Algebra.
The general case stands in between the classical case and the quan-
tum case, as it can occur that some subpart only of the environment
displays classical behavior. The second goal of this section is to de-
fine what is a classical part of the environment. Then, in the general
case, we want to be able to identify all the classical parts of the
environment. Once again this will be done using the Environment
Algebra.

In Subsection 2.1 below we define the Environment Algebra
A(U) as a relevant subalgebra of B(K). We then use this algebra
to properly define a commutative environment, and to characterize
unitary operators with commutative environment. In Subsection 2.2
we define the classical parts of the environment, namely the Com-
mutative Subspaces of the Environment, and we prove the existence
of a maximal commutative subspace, that contains all the others.
This provides us with a decomposition of the environment between
a classical and a quantum part. In Subsection 2.3 we study such a
decomposition on one example derived from a typical Hamiltonian.

7



2.1. Definition, first characterization and first examples

Let U be a unitary operator on H ⊗K. We will need the following
notation: for f, g ∈H, we define:

U(f, g) = Tr∣g⟩⟨f ∣[U], U∗(f, g) = Tr∣g⟩⟨f ∣[U∗]. (2.7)

Those operators can be seen as pictures of U taken from K but
with different angles.

Definition 2.1. Let U be a unitary operator on H ⊗K. We call the
Environment Algebra the von Neumann algebra A(U) generated by
the U(f, g), that is

A(U) = {U(f, g), U∗(f, g); f, g ∈ H}′′ . (2.8)

The point with this definition is that it fits with the following char-
acterization.

Proposition 2.1. Let U be a unitary operator on H⊗K. Then A(U)
is the smallest von Neumann subalgebra of B(K) such that U,U∗ ∈
B(H) ⊗A(U), i.e. if A is another von Neumann algebra such that
U,U∗ ∈ B(H) ⊗A, then A(U) ⊂ A. Furthermore, its commutant is
given by

A(U)′ = {Y ∈ B(K), [IH ⊗ Y,U] = [IH ⊗ Y,U∗] = 0} . (2.9)

Proof. First, if (ei) is an orthonormal basis of H, then U has the
matrix decomposition (see [2]):

U =∑
i,j

∣ei⟩⟨ej ∣⊗U(ei, ej),
where the sum is strongly convergent if H is infinite dimensional.
As the same decomposition holds for U∗, we obtain that U,U∗ ∈
B(H)⊗A(U). Now for all Y ∈ B(K),

[IH ⊗ Y,U] = 0⇔ Tr∣g⟩⟨f ∣ [[IH ⊗ Y,U]] = 0 for all f, g ∈H
⇔ [Y,Tr∣g⟩⟨f ∣ [U]] = 0 for all f, g ∈H
⇔ [Y,U(f, g)] = 0 for all f, g ∈H.

Similarly [IH ⊗ Y,U∗] = 0 if and only if [Y,U∗(f, g)] = 0 for all
f, g ∈ H which proves Equality (2.9).
Now suppose that U,U∗ ∈ B(H)⊗A for some von Neumann subalge-
bra A of B(K). Then for all Y ∈ A′, [IH⊗Y,U] = [IH⊗Y,U∗] = 0 so
that by the previous equality Y ∈ A(U)′. Consequently A′ ⊂ A(U)′
and then A(U) ⊂A by the Bicommutant Theorem. ◻
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We now show how those definitions apply to the two examples
mentioned in the introduction: the general situation of a commuta-
tive algebra and the particular case of the spontaneous emission.

The case of a Commutative Environment: In this paragraph we char-
acterize the unitary operators with commutative Environment Alge-
bra. The expression in the general case is of the same form as Equa-
tion (2.4), where the sum has to be replaced by an integral over a
spectral measure. Note that in general, if a von Neumann algebra
A on K is commutative, then there exist a measured space (Ω,F)
and a spectral measure ξ on (Ω,F) with values in the orthogonal
projections of K such that:

A = {∫
Ω

f(ω)ξ(dω), f ∈ L∞(Ω,F)} . (2.10)

As U ∈ B(H) ⊗A(U), the goal is to understand the nature of this
last algebra. The next proposition shows that it consists of operators
of the form (2.10) where the function f has to be replaced by a
measurable family of bounded operators on H.

Proposition 2.2. Let U be a unitary operator on H⊗K. Then A(U)
is commutative if and only if there exist:

● a measured space (Ω,F),
● a spectral measure ξ on (Ω,F) with values in the orthogonal

projections of K,
● a F-measurable family of ξ-almost surely unitary operators(V (ω))ω∈Ω on H such that:

U = ∫
Ω

V (ω)⊗ ξ(dω). (2.11)

If K is finite dimensional, then Equation (2.11) takes the simpler
form of Equation (2.4).

Proof. If A(U) is commutative then it is of the same form as in
Equation (2.10).
The first step of the proof is to construct the kind of operators that
appear in Equation (2.11). Let B(Ω) denote the set of ξ-almost
bounded families of bounded operators on H indexed by Ω. Thus
A ∈ B(Ω) is a random variable on (Ω,F) with value in B(H) and
such that there exists a constant C > 0 with ∥A∥ < C, ξ-almost surely.
We want to integrate with respect to ξ the elements of B(Ω). For
ϕ,ψ ∈ K, define the complex measure νϕ,ψ on (Ω,F) as

νϕ,ψ ∶ E ∈ F ↦ ⟨ϕ, ξ(E)ψ⟩.
9



Then for all A ∈ B(Ω) and all f, g ∈H, we have

∣∫
Ω

⟨f,A(ω)g⟩νϕ,ψ(dω)∣ ≤ ∫
Ω

∣⟨f,A(ω)g⟩∣ ∣⟨ϕ, ξ(dω)ψ⟩∣
≤ ∥A∥ ∥f∥ ∥g∥ ∥ϕ∥ ∥ψ∥ .

By Riesz representation Theorem [18] this defines a bounded opera-
tor on H ⊗K that we write ∫ΩA⊗ dξ and such that

⟨f ⊗ ϕ,(∫
Ω

A⊗ dξ) g ⊗ψ⟩ = ∫
Ω

⟨f,A(ω)g⟩νϕ,ψ(dω). (2.12)

We call B(ξ) the set of operators defined by Equation (2.12). Note
that elements of B(ξ) can also be defined as weak limits of operators
of the form

∑
j∈J

Aj ⊗ ξ(Ej), (2.13)

where J is a finite set, (Aj)j∈J is a family in B(H) and (Ej)j∈J is
a measurable partition of (Ω,F). From this remark and Equation
(2.12), it is an easy exercise to check that B(ξ) is an algebra and
that it is closed for the weak topology, so that it is a von Neumann
algebra on H ⊗K. Besides, if ∫ΩA⊗ dξ = ∫ΩB ⊗ dξ for A,B ∈ B(ξ),
then A = B, ξ-almost surely.
Note that if there exists V ∈ B(Ω) such that U = ∫Ω V ⊗ dξ, then,
from UU∗ = U∗U = IH⊗K, we get V V ∗ = V ∗V = IH, ξ-almost surely,
which shows that the V (ω) are ξ-almost surely unitary operators on
H. Consequently, as U belongs to B(H)⊗A(U), in order to complete
the proof we only have to show that

B(ξ) = B(H)⊗A(U).
We first prove that B(ξ) ⊂ B(H)⊗A(U). By the Bicommutant The-
orem, this is equivalent to IH ⊗A(U)′ ⊂ B(ξ)′. Let Y ∈ A(U)′. It is
enough to prove that IH ⊗ Y commutes with elements of the form
(2.13), which is straightforward.
To prove the other inclusion, take X ∈ B(H) and A ∈ A(U). Then
there exists a bounded measurable function f on (Ω,F) such that
A = ∫Ω fdξ. Then

X ⊗A = ∫
Ω

(f(ω)X) ξ(dω) ∈ B(ξ).
This concludes the proof as the von Neumann algebra B(H)⊗A is
the weak closure of operators of the form X ⊗A. ◻
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An example of purely quantum environment: the Spontaneous Emis-

sion: Consider the unitary operator Use given by Equation (1.1). We
suppose that θ ∉ 2πZ so that Use is not the identity operator. By
common knowledge it is a purely quantum evolution, so the cor-
responding environment algebra should not be commutative. More
particularly, as K = C2, it should be the whole algebra.
In order to check this, take an operator Y ∈ A(Use)′. Let (e0, e1) be

the canonical basis of C
2 and identify Y with the matrix (a b

c d
),

a, b, c, d ∈ C. The operator IH ⊗ Y is identified with the 4 × 4-matrix

(aIH bIH
cIH dIH

). Computing [IH ⊗ Y,Use] leads to:

[IH ⊗ Y,Use] =
⎛⎜⎜⎜⎝

0 b sin θ b(cosθ − 1) 0

c sin θ 0 (d − a) sin θ b(1 − cosθ)
c(1 − cosθ) (d − a) sin θ 0 −b sin θ

0 c(cosθ − 1) −c sin θ 0

⎞⎟⎟⎟⎠
.

Hence the condition [IH⊗Y,Use] = 0 implies that b = c = 0 and a = d,
so that Y = aIK. Thus A(Use)′ = CIK and consequently

A(Use) = B(C2).

2.2. Classical and Quantum parts of the Environment

We now focus on our main topic. We have already given some ex-
amples of the algebra A(U) and emphasized on the particular case
where it is commutative. In this subsection we state our main re-
sult for a general one-step unitary evolution: the environment can be
splited into the sum of a classical and a quantum part. First using
the algebra A(U) it is now possible to properly define what we call a
classical part, or commutative part, of the environment. For instance,
consider the following unitary operator Uex on C

2 ⊗ C
4 (α,β ∈ R,

α ≠ β), written in the canonical orthonormal basis (e1, e2, e3, e4) of
K = C4:

11



Uex =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosα − sinα 0 0 0 0 0 0

sinα cosα 0 0 0 0 0 0

0 0 cosβ − sinβ 0 0 0 0

0 0 sinβ cosβ 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 cosθ − sin θ 0

0 0 0 0 0 sin θ cosθ 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.14)
Clearly the environment is the sum of two parts Kc = Ce1 ⊕Ce2 and
Kq = Ce3 ⊕Ce4, such that H⊗Kc,q are stable by U and:

● The restriction Uc of U on H⊗Kc has a commutative environ-
ment. Indeed:

Uc =
⎛⎜⎜⎜⎝
cosα − sinα 0 0

sinα cosα 0 0

0 0 cosβ − sinβ
0 0 sinβ cosβ

⎞⎟⎟⎟⎠
= (cosα − sinα

sinα cosα
)⊗ ∣e1⟩⟨e1∣ + (cosβ − sinβ

sinβ cosβ
) ⊗ ∣e2⟩⟨e2∣,

so that A(Uc) = C∣e1⟩⟨e1∣ + C∣e2⟩⟨e2∣ = {(a 0

0 b
) , a, b ∈ C} as

α ≠ β.
● The restriction Uq of U on H⊗Kq has a quantum environment,

as Uq = Use so that A(Uq) = B(Kq).
Consequently in this example Kc is a classical subspace of the en-
vironment, which is characterized by the fact that H ⊗ Kc reduces
both U and U∗ and that A(Uc) is commutative. Furthermore the
other non-trivial parts of the environment that could be considered
as classical, that is Ce1 and Ce2, are subspaces of Kc.
This leads us to the following definition.

Definition 2.2. Let U be a unitary operator on H⊗K and let K̃ be
a subspace of K. We say that K̃ is a Commutative Subspace of the
Environment if K̃ ≠ {0} and:

● H ⊗ K̃ and H⊗ K̃⊥ are stable by U ,
● A(Ũ) is commutative, where Ũ is the restriction of U to K̃.

Our main result, Theorem 2.2, states that there exists a maxi-
mal commutative subspace Kc of the environment, in the sense that
all commutative subspaces of the environment are also subspaces of
Kc. The main ingredient of the proof is the following proposition.
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Proposition 2.3. Let A be a von Neumann subalgebra of B(K). Then
there exists a unique projection Pc ∈ A′, possibly null, such that:

1. Pc A Pc is commutative;
2. if P ∈ A′ is an orthogonal projection such that PA P is com-

mutative, then P ≤ Pc.
This proposition is not a new result on von Neumann algebras, how-
ever we could not find it stated in this particular form in the liter-
ature. It is true for any von Neumann algebra and entirely relies on
the fact that the supremum of a subclass of orthogonal projections
in a von Neumann algebra still belongs to this algebra.

Proof. Define the set Pc of orthogonal projections in A′ such that
P ∈ Pc iff PA is commutative. Take Pc = supPc the supremum
over Pc. It is again in Pc and it is easy to see that it fulfills the
proposition. ◻
Our result is a direct corollary of this proposition.

Theorem 2.2. The environment Hilbert space K is the orthogonal
direct sum of two subspaces Kc and Kq, such that either Kc = {0} or:

● Kc is a commutative subspace of the environment.
● If K̃ is any commutative subspace of the environment then K̃ is

a subspace of Kc.
● The restriction of U to H⊗Kq does not have any commutative

subspace.

Proof. We take Kc = PcK and Kq = (IK − Pc)K = K⊥c , where Pc is
defined by applying Proposition 2.3 to A(U).
Suppose that Pc ≠ 0. First we check that Kc is a commutative sub-
space of the environment. By definition Pc ∈ A(U)′ so that IH⊗Pc ∈(B(H)⊗A(U))′. As U and U∗ are elements of B(H) ⊗ A(U), this
shows that H ⊗Kc and H ⊗K⊥c are stable by U . Denote by Uc the
restriction of U to H⊗Kc. Then A(Uc) = PcA(U)Pc, which is com-
mutative by definition of Pc.
Let K̃ be a commutative subspace of U and denote by P the orthog-
onal projection on K̃ and by Ũ the restriction of U to K̃. By defini-
tion P ∈ A(U)′ and A(Ũ) = PA(U)P is commutative, so P ≤ Pc by

Proposition 2.3. Consequently K̃ is a subspace of Kc.
Now denote by Uq the restriction of U to H⊗Kq. By contradiction,
let K′ be a commutative subspace of Uq. By the same argument as
before K′ is also a commutative subspace of Uq. Consequently K′ is

a subspace of Kc, so that K̃ = {0}, which is a contradiction. ◻
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2.3. Typical Hamiltonian: the Dipole Hamiltonian

In this section, H is a N -dimensional Hilbert space and K is a(d + 1)-dimensional Hilbert space, with N,d two positive integers.
If U is a unitary operator on H ⊗ K it is always possible to write
it U = exp (−itH) for some selfadjoint operator H (which is not
unique). Then it is interesting to study the algebra A(H) instead.
It is also a first step towards understanding the continuous case, as
the Hamiltonian describes the instantaneous evolution of the system
and its environment (see [7]). We focus on the particular case of a
dipole Hamiltonian.

Let (ei)i=0,...,d be an orthonormal basis of K, starting the index
at 0. The vector e0 will play a specific role in what follows. We write
K′ = Ce⊥

0
its orthogonal subspace. We will often identify operators on

K with (d + 1)-square matrices, and operators on K′ with d-square
matrices, using this basis. We also write aij = ∣ej⟩⟨ei∣ the elementary

matrices. Writing V ij = TrH [V IH ⊗ ∣ei⟩⟨ej ∣], any element V ∈ B(H⊗
K) can then be written as a block matrix

V =
d+1

∑
i=0

V ij ⊗ aij =
⎛⎜⎜⎜⎝
V 0

0 V 1

0 ⋯ V d0
V 0

1 V 1

1 ⋯ V d1
⋮ ⋮ ⋮
V 0

d V 1

d ⋯ V dd

⎞⎟⎟⎟⎠
.

In the same way elements of B(H)⊕d can be seen as columns whose
components are operators on H.

Similarly elements of the dual (B(H)⊕d)∗ of B(H)⊕d can be seen as

rows whose components are operators on H. If L ∈ B(H)⊕d, we write

LT and L∗ the following elements of (B(H)⊕d)∗:

L =
⎛⎜⎝
L1

⋮
Ld

⎞⎟⎠ , LT = (L1 ⋯ Ld) , L∗ = (L∗1 ⋯ L∗d) .
Elements M = (mi,j)1≤i,j≤d of B(K′) act on B(H)⊕d in the following
way:

M ∶ L↦
⎛⎜⎝
m1,1IH ⋯ m1,dIH
⋮ ⋮

md,1IH ⋯ md,dIH

⎞⎟⎠
⎛⎜⎝
L1

⋮
Ld

⎞⎟⎠ .
We write this action M ⋆L, with dual action on the dual (B(H)⊕d)∗
of B(H)⊕d:

14



LT ⋆M = (L1 ⋯ Ld)⎛⎜⎝
m1,1IH ⋯ m1,dIH
⋮ ⋮

md,1IH ⋯ md,dIH

⎞⎟⎠ .
Our result makes use of the following lemma, which is straight-

forward by a simple computation on block-matrices.

Lemma 2.1. Let W be a unitary operator on K′ and write
Ð→

W =
a00 ⊕W . Thus

Ð→

W is the unitary operator on K that acts as identity
on Ce0 and as W on K′. Let V ∈ B(H⊗K). We write L0 = (V 1

0 ⋯V d0 ),
L0 = (V 0

1 ⋯V 0

d )T and L = (V ij )1≤i,j≤d, so that:

V = (V 0
0 L0

L0
L
) .

Then

(IH ⊗Ð→W ∗) V (IH ⊗Ð→W ) = ( V 0

0 L0 ⋆W
W ∗ ⋆L0 (IH ⊗W ∗)L (IH ⊗W )) .

We focus on the typical dipole Hamiltonian usually considered
in the weak coupling limit or van Hove limit [9]:

H =HS ⊗ IK + IH ⊗HE + d

∑
i=1

[Vi ⊗ a0i + V ∗i ⊗ ai0],
where HS , V1, ..., Vd ∈ B(H), HE ∈ B(K) and HS ,HE are selfadjoint

operators. To simplify the notations, we write V = (V1 ⋯ Vd)T ,
so that we have in the orthonormal basis (ei)0≤i≤d:

H =HS ⊗ IK + I ⊗HE + (0 V ∗

V 0K′
) . (2.15)

First remark that A(H)′ is the commutant of the set

{HE , d

∑
i=1

[⟨f,Vig⟩ ⊗ a0i + ⟨f,V ∗i g⟩ ⊗ ai0], f, g ∈H} .
To make it simpler, we will suppose that HE = 0 (that is, we switch
to the interaction picture of time evolution), so that

A(H)′ = {Y ∈ B(K), [IH ⊗ Y,(0 V ∗

V 0K′
)] = 0}′ . (2.16)

Here is our result.
15



Theorem 2.3. Suppose K = Cd+1, with d ≥ 1, and

H =HS ⊗ IK + (0 V ∗

V 0K′
) ,

for some V = (V1 ⋯ Vd)T ∈ B(H)⊕d. Let m be the dimension of
the subspace of B(H) generated by the Vi’s. Then we are in one of
the following situations:

● either there exist θ ∈ R, a1, ..., ad ∈ C possibly null, such that

H =HS ⊗ IK + e−iθ/2V1 ⊗
⎛⎜⎜⎜⎝

0 e−iθ/2a1 ⋯ e−iθ/2ad
eiθ/2a1 0 ⋯ 0

⋮ ⋮ ⋮
eiθ/2ad 0 ⋯ 0

⎞⎟⎟⎟⎠
. (2.17)

In this case

A(H) = alg

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
0 e−iθ/2a1 ⋯ e−iθ/2ad

eiθ/2a1 0 ⋯ 0

⋮ ⋮ ⋮
eiθ/2ad 0 ⋯ 0

⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

and consequently it is commutative.
● either K is the orthogonal sum of two subspaces K1 ≅ Cm+1 and
K2 ≅ Cd−m, such that H⊗K1 and H ⊗K2 are stable under H
and A(H) can be decomposed as

A(H) = B(K1)⊕CIK2
. (2.18)

Before giving the proof of Theorem 2.3, we introduce the following
lemma which allows to reduce the problem to the minimal number
of non-zero Vk and to assume their freeness.

Lemma 2.2. Suppose K = Cd+1, with d ≥ 1, and

H =HS ⊗ IK + (0 V ∗

V 0K′
) , (2.19)

for some V = (V1 ⋯ Vd)T ∈ B(H)⊕d. Let m be the dimension of
the subspace of B(H) generated by the Vi’s.
Then there exists an orthonormal basis (e′i)1≤i≤d of K′ such that in
the new basis (e0, e′1, ..., e′d), H has the form:

H =HS ⊗ IK + ( 0 (V ′)∗
V ′ 0K′

) , (2.20)

where V ′ = (V ′1 ⋯V ′m 0 ⋯ 0)T ∈ B(H)⊕d.
Furthermore, the V ′i ’s are linearly independent, and d − m is the
maximal number of components that can be canceled.
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Proof of Lemma 2.2. If m = 0, then V1 = ⋯ = Vd = 0 so that the result
is trivial. Suppose that m ≥ 1.
We identify Vk with the matrix (vi,j

k
)1≤i,j≤N in some orthonormal

basis of H. Our goal is to find a unitary operator W on K′ such that
only the first m components of W ∗ ⋆ V are non-zero.
Introduce the vector v⃗i,j = (vi,j1 ,⋯, vi,j

d
) of Cd. We will use the two

following spaces:

V1 = span{V1, ..., Vd} ⊂ B(H),
V2 = span{v⃗i,j , i, j = 1, ...,N} ⊂ Cd.

If W is a unitary operator on K′, we write similarly

V ′ =
⎛⎜⎝
V ′1
⋮
V ′d

⎞⎟⎠ =W
∗ ⋆ V,

where V ′k = ((v′)i,jk )1≤i,j≤N . If we write v⃗′i,j = ((v′)i,j1 ,⋯, (v′)i,j
d
), then

for all i, j = 1, ...,N
v⃗′i,j =W ∗v⃗i,j .

Consequently, canceling the last d−k components of V , for k = 1, ..., d,
is equivalent to finding W such that for all i, j = 1, ...,N :

(v′)i,j
l
≠ 0 for all l = 1, ..., k,

(v′)i,j
l
= 0 for all l = k + 1, ..., d.

The maximal number of components that we can cancel is thus d −
dimV2. Thus we have to prove that dimV2 = dimV1 = m to finish
the proof. Let A be the N2 × d-matrix whose rows are the v⃗i,j . For
λ1, ..., λd ∈ C, we have

(λ1IH ⋯ λdIH)V = 0 iff A
⎛⎜⎝
λ1
⋮
λd

⎞⎟⎠ = 0.
Consequently, the rank of A is equal to dimV1 = m. However by
definition it is equal to the dimension of the subspace spanned by its
rows, that is dimV2. Hence the result. ◻
Now we can prove Theorem 2.3.

Proof of Theorem 2.3. If m = 0, the result is trivial. Suppose that
m ≥ 1.
Using Lemma 2.2 we assume that only the m first Vk’s are non-
zero, and that they are independent. Our method in order to study
A(H) is the following: take Y ∈ A(H)′ and solve in Y the equation[IH ⊗ Y,H] = 0. With our assumptions on the Vk’s, it is clear that
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K′ is the orthogonal direct sum of two subspaces K1 and K2, of
dimension m and d −m respectively, such that

H =H1 ⊕ 0H⊗K2
;

A(H) = A(H1)⊕CIK2
;

whereH1 is the selfadjoint operator induced by H onH⊗(Ce0 ⊕K1).
Thus we can restrict the study to H1 only.
Take Y ∈ A(H1)′. As A(H1)′ is a ∗-algebra, we can assume without
loss of generality that Y is selfadjoint. We identify Y with the matrix(yij)0≤i,j≤m using the orthonormal basis (ei)0≤i≤m of K1. Now as
y00IK ∈ A(H1)′, taking Y − y00IK we can furthermore assume that
y00 = 0. Then, solving [IH ⊗ Y,H1] = 0, we obtain in particular the
following conditions:

∀i = 1, ...,m,
m

∑
j=1

yijVj = 0; (2.21)

∀i, j = 1, ...,m, yi0V
∗

j = y0jVi. (2.22)

As the V ′i s are non-zero, condition (2.22) implies that the complex
yi0 are all zero or all non-zero for i = 1, ...,m.

● If they are non-zero, the same condition implies that the di-
mension of the space span{V1, ..., Vm} is one, so that m = 1. In
this case, writing y01

y10
= a ∈ C, condition (2.22) is just V ∗1 = aV1

so that V1 = ∣a∣2V1 and consequently ∣a∣ = 1. We write a = eiθ
with θ ∈ R and we obtain (recall that we are in the case m = 1):

H1 =HS ⊗ IK + e−iθ/2V1 ⊗( 0 e−iθ/2

eiθ/2 0
) .

Furthermore it is straightforward that for any unitary operator
W on K′,

W ∗ ⋆
⎛⎜⎜⎜⎝
V1
0

⋮
0

⎞⎟⎟⎟⎠
=
⎛⎜⎝
⟨e1,W ∗e1⟩V1

⋮⟨ed,W ∗e1⟩V1
⎞⎟⎠ .

Writing ai = ⟨ei,W ∗e1⟩ for all i = 1, ..., d by Lemma 2.2 we
obtain that H is of the form of Equation (2.17).
● Suppose that the y0i’s are null. Then condition (2.21) and the

fact that the Vk’s are linearly independent imply that the ma-
trix (yij)1≤i,j≤m is null, and consequently that Y = 0 (we have
assume y00 = 0). It shows that in this case A(H1) = B(K1),
which conclude the proof.

◻
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3. The Environment Right-Action Algebra

If one is only interested in the evolution of the observables of the
system, then the algebra A(U) may not be the most relevant. For
instance, consider the unitary operators U and V on H⊗C2, written
as block-matrices in the canonical basis of C2:

U = ( 0 U2

U1 0
) , V = (U1 0

0 U2

) , (3.1)

where U1 and U2 are two unitary operators on H. If U1 and U2 are
not collinear, then it is not difficult to compute that A(U) = B(K)
and A(V ) = {(a 0

0 b
) , a, b ∈ C} which is a commutative algebra.

However, computing the corresponding evolution of an observable of
the system X ∈ B(H) in the Heisenberg picture leads to:

U∗ (X ⊗ IK)U = V ∗ (X ⊗ IK)V.
Thus, from the point of view of the system, U and V have the same
action. Consequently U leads to a classical action of the environment
in the sense of [3], a fact which was not captured by the algebraA(U).
Remark however that U and V are linked by the relation

U = [IH ⊗ (0 1

1 0
)]V. (3.2)

We will come back on this remark and generalize it in Subsec-
tion 3.2.

In Subsection 3.1 we introduce the Environment Right-Action
Algebra and give a first characterization of it. In Subsection 3.3, we
emphasize a link between this algebra and minimal Stinespring rep-
resentations of CP maps. Finally in Subsection 3.4 we give a charac-
terization of the Environment Algebra and the Environment Right-
Action Algebra in term of the spectrum of a CP map, which provide
an operational way to compute those two algebras.

3.1. Definition and first examples

To capture the idea of the action of the environment on the system
we introduce the following algebra.

Definition 3.1. Let U be a unitary operator on H⊗K. Then we call the
Environment Right-Action Algebra the von Neumann algebra Ar(U)
defined by

Ar(U) = {U∗(f1, g1)U(f2, g2); f1, f2, g1, g2 ∈ H}′′ . (3.3)
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In the same way we could have introduced the Environment Left-
Action Algebra, in order to describe the relevant part of the environ-
ment for the evolution UX ⊗ IKU∗. Most of the results that follow
have their counterpart for this algebra, yet we prefer to focus on the
Environment Right-Action Algebra as it corresponds to the physical
situation of the Heisenberg picture of time evolution.

As for the Environment Algebra, the Environment Right-Action
Algebra is easily characterized.

Proposition 3.1. Let U be a unitary operator on H⊗K. Then Ar(U)
is the smallest von Neumann subalgebra of B(K) such that

U∗ (X ⊗ IK)U ∈ B(H)⊗Ar(U) for all X ∈ B(H), (3.4)

i.e. if A is an other von Neumann subalgebra of B(K) such that
Equation (3.4) holds, then Ar(U) ⊂ A. Furthermore its commutant
is given by

Ar(U)′ = {Y ∈ B(K), [I ⊗ Y,U∗ (X ⊗ IK)U] = 0 for all X ∈ B(H)} .
(3.5)

Proof. The proof is the same as Proposition 2.1. First we prove
Equality (3.5) by a direct computation. Then, if A is an other von
Neumann algebra such that Equation (3.4) holds, one verifies imme-
diately that A′ ⊂ Ar(U)′, so that the result follows by the Bicom-
mutant Theorem. ◻
Corollary 3.1. Let U be a unitary operator on H⊗K. Then Ar(U)
is a subalgebra of A(U).
Proof. As B(H)⊗ IK ⊂ B(H)⊗A(U) and U,U∗ ∈ B(H)⊗A(U), we
have U∗ (B(H)⊗ IK)U ⊂ B(H)⊗ A(U). By the characterization of
Ar(U), the corollary holds. ◻

As in the case of the Environment Algebra, commutative Right-
Action Algebras and the Spontaneous Emission are the two main
examples. The commutative case will be studied as a corollary of
Theorem 3.1, so that we only treat the case of the Spontaneous
Emission here.

Example of the Spontaneous Emission: Consider again the unitary
operator Use given by Equation (1.1), with θ ∉ 2πZ. We show that
Ar(U) = A(U) = B(C2), so that the Environment Right-Action is
also purely quantum.
To check this, we show that there exists a pure state ∣Ω⟩⟨Ω∣ of K such
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that L∣Ω⟩⟨Ω∣ is not of the form (2.6). If it were the case, Lω would be

trace-preserving. Let (e0, e1) be the canonical basis of C2. Then

L∣e0⟩⟨e0 ∣(∣e0⟩⟨e0∣) = (1 0

0 cosθ
) ∣e0⟩⟨e0∣ (1 0

0 cosθ
)

+ ( 0 0

sin θ 0
) ∣e0⟩⟨e0∣ (0 sin θ

0 0
)

= (1 0

0 sin2 θ
) .

It is clear that whenever θ ∉ 2πZ, Tr [L∣e0⟩⟨e0 ∣(∣e0⟩⟨e0∣)] ≠ 1.
Consequently, we obtain the announced result:

Ar(Use) = B(C2). (3.6)

Note that with this method we also directly prove that A(Use) =
B(C2), as by corollary 3.1 Ar(U) ⊂A(U).
3.2. Link between A(U) and Ar(U)
As we remarked before, there is a relation between two unitary op-
erators that have the same action on the system. This point is em-
phasized in the following lemma (which is originally from [10]).

Lemma 3.1. Let U and V be two unitary operators on H⊗K. Suppose
that for all X ∈ B(H),

V ∗ (X ⊗ IK)V = U∗ (X ⊗ IK)U (3.7)

Then there exists a unitary operator W on K such that

V = (IH ⊗W )U. (3.8)

Proof. From Equation (3.7) we obtain that for all X ∈ B(H), X ⊗
IK = (V U∗)∗ (X ⊗ IK) (V U∗) and then [V U∗,X ⊗ IK] = 0. This in
turn implies the existence of a unitary operator W on K such that
V U∗ = IH ⊗W . Clearly W is unitary. ◻
We call Rr(U) the class of U for this relation, that is, V ∈ Rr(U)
if and only if Equality (3.7) holds. It is straightforward that it is
an equivalence relation and, because of Proposition 2.1, that every
element in this class share the same Environment Right-Action Alge-
bra. That is, for all V ∈Rr(U), we have Ar(V ) =Ar(U). Moreover,
because of Corollary 3.1 for all V ∈ Rr(U) one has Ar(U) ⊂ A(V ).
Consequently,

Ar(U) ⊂ ⋂
V ∈Rr(U)

A(V ).
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A natural question now is whether the equality holds. To answer
this question we show under some hypotheses the following: there
exists an element in the class Rr(U) whose Environment Algebra
and Environment Right-Action Algebra coincide. This result also
implies that we can reduce the study of Ar(U) to the one of A(V )
for a specific V ∈ Rr(U).
Theorem 3.1. Suppose that H is finite dimensional and that Ar(U)
is a type I von Neumann algebra. Then:

1. there exists a unitary operator V ∈Rr(U) such that:

V ∈ B(H) ⊗Ar(U) (3.9)

and consequently

A(V ) = Ar(V ) =Ar(U). (3.10)

2. If V1, V2 ∈ Rr(U) both satisfy Equation (3.10), then V1V
∗
2 ∈

IH ⊗Ar(U).
At least when K is finite dimensional, for all f, g ∈ H, one can

write the polar decomposition of the operator U(f, g) as

U(f, g) =W√U(f, g)∗U(f, g), (3.11)

where W is a unitary operator on K that depends on f and g. If it
were the case, (IH ⊗W )U would be the wanted element of the class.
Theorem 3.1 can thus be interpreted as a kind of polar decomposi-
tion of the operator U with respect to the environment, where the

operator
√
U(f, g)∗U(f, g) is replaced by an element of Ar(U). A

similar result can be found in [10].

Proof. The proof is based on the central decomposition of Ar(U) as a
type I von Neumann algebra [21]. The space K has a direct integral

representation K = ∫ ⊕A Kα P(dα) in the sense that there exists a
family of Hilbert space (Kα)α∈A and for any ψ ∈ K there exists a
map α ∈ A↦ ψα such that

⟨ψ,φ⟩ = ∫ ⊕

A
⟨ψα, φα⟩P(dα).

The von Neumann algebra Ar(U) has a central decomposition

Ar(U) = ∫ ⊕

A
B(Kα)P(dα)

in the sense that for any Y ∈ Ar(U) there exists a map α ∈ A ↦
Yα ∈ B(Kα) such that (Y ψ)α = Yαψα for almost all α. Then for all
X ∈ B(H),

U∗ (X ⊗ IK)U = ∫
α∈A

Tα(X)P(dα),
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where Tα are linear maps from B(H) to B(H)⊗B(Kα). We will ignore
for simplicity all issues related with measurability in the following
constructions. Let us fix α ∈ A. It is a simple computation to show
that Tα is a ∗-morphism that preserves unity: it is a representation
of B(H) into B(H)⊗B(Kα), which furthermore is normal. The goal
is to write it in the form Tα(X) = V ∗α (X ⊗ IKα

)Vα for some unitary
operator Vα on H ⊗Kα.
As it is a normal representation of H on H ⊗ Kα, H ⊗ Kα can be
decomposed as the direct sum of some orthogonal spaces Kα,β such
that (see [2] or [11] for instance)

Tα(X) = ∑
β∈B

Vα,βXV
∗

α,β,

where the Vα,β ’s are unitary operators from H into Kα,β and B is
a finite or countable set. As H is finite dimensional, so are the Kα,β
and they have the same dimension than H. It implies that either B
is a finite set with dimKα elements if Kα is finite dimensional, either
B is a countable infinite set if Kα is infinite dimensional.
Either cases, let (eβ)β∈B be an orthonormal basis of Kα and define
the operator Vα in B(H⊗Kα) by the formula

V ∗α (f ⊗ eβ) = Vα,βf, for all f ∈H and β ∈ B.
Then one has

V ∗α Vα = ∑
β∈B

V ∗α (IH ⊗ ∣eβ⟩⟨eβ ∣)Vα
= ∑
β∈B

Vα,βIHV
∗
α,β

= ∑
β∈B

IH⊗Kα,β
= IH⊗Kα

.

Similarly VαV
∗
α = IH⊗Kα

, so that Vα is a unitary operator. Moreover,
for all f, g ∈H,

V ∗α (∣f⟩⟨g∣ ⊗ IKα
)Vα = ∑

β∈B

Vα,β ∣f⟩⟨g∣V ∗α,β
= Tα(∣f⟩⟨g∣).

This formula extends to all B(H) by strong continuity.
Now write V = ∫α∈A VαP(dα). By construction it is a unitary operator
in B(H) ⊗Ar(U) and for all X ∈ B(H),

U∗ (X ⊗ IK)U = V ∗ (X ⊗ IK)V.
Now by Lemma 2.1, we have Ar(V ) = Ar(U) and, as V ∈ Ar(V ),
we have A(V ) ⊂ Ar(V ) by Proposition 2.1. Consequently Ar(V ) =
A(V ), so point 1) in the Theorem is proved. Let us prove point 2). If
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V1 and V2 both satisfy Equation (3.10), then, again by Lemma 2.1,
there exists a unitary operator W on K such that V1 = IH ⊗WV2.
Then V1V

∗
2 = IH ⊗W , so that V1V

∗
2 ∈ IH⊗B(K). As V1, V2 ∈ B(H)⊗

Ar(U), necessarily W ∈ Ar(U) and the result follows. ◻
We obtain the following characterization for commutative Envi-

ronment Right-Action Algebra for a finite dimensional environment:

Corollary 3.2. Suppose that H and K are finite dimensional, with di-
mension N and d respectively. Let U be a unitary operator on H⊗K.
Then Ar(U) is commutative if and only if there exist two orthonor-
mal basis (ϕi) and (ψi) of K and unitary operators U1, ..., Ud on H
such that

U =
d

∑
i=1

Ui ⊗ ∣ϕi⟩⟨ψi∣. (3.12)

Proof. We first show that (i)⇒ (ii). Because of Theorem 3.1 there
exists a unitary operator W on K such that
A (IH ⊗W U) = Ar(U). Consequently, as Ar(U) is commutative,
there exist an orthonormal basis (ψi) of K and unitary operators
U1, ..., Ud on H such that

IH ⊗WU =
d

∑
i=1

Ui ⊗ ∣ψi⟩⟨ψi∣.
Write ϕi = W ∗ψi for all i. Then (ϕi) is an orthonormal basis of K
and Equation (3.12) holds. ◻
3.3. Minimal Stinespring representation

There is a link between the structure of Ar(U) and dilation of CP
maps obtained via U . In particular we obtain a sufficient condition
so that Ar(U) = B(K). First we recall some definitions.

Definition 3.2. Let L be a normal CP map on H, and V be an isom-
etry from H to H ⊗K, such that, for all X ∈ B(H), we have:

L(X) = V ∗ (X ⊗ IK)V.
The couple (H ⊗ K, V ) is called a Stinespring representation of L.
Furthermore, this representation is defined to be minimal if the set

V = {(X ⊗ I)Uf ⊗ ψ, X ∈ B(H), f ∈ H} (3.13)

is total in H⊗K.
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By Stinespring Theorem ([20]) every normal CP map has a minimal
Stinespring representation of this form (see [2] and [11]). Further-
more, if (H⊗K1, V1) and (H⊗K2, V2) are two minimal Stinespring
representations of L, then there exists a unitary operator W from
K1 to K2 such that for all X ∈ B(H):

(IH ⊗W )V1 = V2.
Now we come back to the case of a unitary operator U on the bi-
partite space H ⊗K. For every pure state ψ ∈ K define the isometry
Uψ ∶H →H ⊗K by

Uψ ∶ f ↦ Uf ⊗ ψ. (3.14)

We remark that the couple (H⊗K, Uψ) is a Stinespring representa-
tion of the CP map L∣ψ⟩⟨ψ∣ defined by

L∣ψ⟩⟨ψ∣ ∶ X ∈ B(H)→ Tr∣ψ⟩⟨ψ∣ [U∗X ⊗ IKU] . (3.15)

A direct application of Lemma 3.1 is that V ∈ Rr(U) if and only if
Tr∣ψ⟩⟨ψ∣ [V ∗ ⋅ ⊗IKV ] = L∣ψ⟩⟨ψ∣(⋅) for all pure state ψ ∈ K (which was
the initial Lemma in [10]). The following proposition completes this
statement.

Proposition 3.2. The property for (H ⊗ K, Uψ) to give a minimal
Stinespring representation of L∣ψ⟩⟨ψ∣ is a property of the class Rr(U),
i.e. if (H⊗K, Uψ) is minimal, then for all V ∈Rr(U), the Stinespring
representation (H⊗K, Vψ) is also minimal.

Proof. Let ψ ∈ K be a pure state. For all unitary operators V on K,
we write

Vψ(V ) = {(X ⊗ I)V f ⊗ ψ, X ∈ B(H), f ∈ H} .
Suppose that (H⊗K, Uψ) is a minimal Stinespring representation of
L∣ψ⟩⟨ψ∣. By definition it means that Vψ(U) is total in H ⊗ K. Take
V ∈ Rr(U). Because of Lemma 3.1, there exists a unitary operator
W on K such that V = (IH ⊗W )U . Let x be an element of Vψ(V )⊥.
Then for all X ∈ B(H) and f ∈H:

0 = ⟨x, (X ⊗W )U (f ⊗ψ)⟩ = ⟨(I ⊗W ∗)x, (X ⊗ I)U (f ⊗ ψ)⟩.
As Vψ(U) is total in H ⊗ K, this implies that (I ⊗W ∗)x = 0, and
consequently x = 0. ◻

Let A be a von Neumann subalgebra of B(K). We recall that a

vector ψ ∈ K is cyclic for A if Aψ = K. There does not always exist
a cyclic vector. For example, a commutative algebra A has a cyclic
vector if and only if A =A′ ([18]).
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We now suppose that H is finite dimensional and that Ar(U)
is a type I von Neumann algebra in order to be in position to apply
Theorem 3.1

Proposition 3.3. If (H ⊗K, Uψ) is a minimal Stinespring represen-
tation of L∣ψ⟩⟨ψ∣, then ψ is a cyclic vector for Ar(U).
Proof. First, by Theorem 3.1, there exists V ∈ Rr(U) such thatA(V ) = Ar(U). Recall that A(V ) is generated by the elements
V (f, g) defined by Equation (2.7), f, g ∈ H. Consequently the subset
of K Kψ(V ) = {V (f, g)ψ, f, g ∈H} ,
is a subset of Ar(U)ψ. Now if (H⊗K, Uψ) is a minimal Stinespring
representation of L∣ψ⟩⟨ψ∣, it is also the case for (H⊗K, Vψ) by Propo-
sition 3.2, so that Vψ(V ) is a total set. Let us show that Kψ(V ) is
also a total set, to complete the proof. Take ϕ ∈ Kψ(V )⊥. Then for
all f, g ∈H we have:

0 = ⟨ϕ,V (f, g)ψ⟩
= Tr [∣ψ⟩⟨ϕ∣V (f, g)]
= Tr [(∣g⟩⟨f ∣⊗ ∣ψ⟩⟨ϕ∣)V ]
= ⟨f ⊗ϕ,V g ⊗ψ⟩.

Consequently, for all f ∈ H, f ⊗ ϕ ∈ V⊥ψ = {0}. Thus ϕ = 0, which
concludes the proof. ◻

The following corollary is now straightforward.

Corollary 3.3. If for all ψ ∈ K, (H⊗K, Uψ) is a minimal Stinespring
representation of L∣ψ⟩⟨ψ∣, then Ar(U) = B(K).
Proof. It just comes from the fact that if A is a subalgebra of B(K)
such that Aψ is total for all ψ ∈ K, then A = B(K). ◻

3.4. A characterization of the algebras in terms of the spectrum of

a CP map

In this Subsection, H and K are finite dimensional Hilbert spaces,
of dimension N and d respectively. We give a characterization of the
algebras A(U) and Ar(U) in terms of the spectrum of a specific CP
map L acting on B(K). This CP map describes the evolution of the
states of K, i.e. density matrices on K, whenever the state of the
system is the maximally mixed state 1

N
IH. Thus L is given by the

following formula, where X ∈ B(K):
L(X) = TrH [U ( 1

N
IH ⊗X)U∗] . (3.16)
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We will also need the adjoint of L for the Hilbert-Schmidt scalar
product on B(K) (X,Y ) ↦ Tr[X∗Y ]:

L∗(X) = TrH [U∗ ( 1
N
IH ⊗X)U] . (3.17)

Our goal is to give an explicit way to compute the algebras, by re-
lating them to some eigenspaces. Our result is the following:

Theorem 3.2. Suppose that H ≈ CN and K ≈ Cd. Then:

1) A(U)′ is the eigenspace of both L and L∗, associated to the
eigenvalue 1;

2) Ar(U)′ is the right-singularspace of L associated to the right-
eigenvalue 1.

The proof of Theorem 3.2 will make use of Lemma 3.2 below,
in which we use the notions of Shannon entropy and von Neumann
entropy. The Shannon entropy of a discrete probability measure (pi)
is defined by:

H(pi) = −∑
i

φ(pi), (3.18)

where φ is the real and operator-monotone function φ ∶ x ↦ x logx,
defined on [0,1]. The von Neumann entropy of a density matrix ω

on K is the quantity

S(ω) = −Tr[φ(ω)]. (3.19)

Lemma 3.2. For all density matrix ω on K,

S(ω) ≤ S(L(ω)), (3.20)

i.e. L is entropy increasing. Furthermore equality holds if and only
if

U ( 1
N
IH ⊗ ω)U∗ = 1

N
IH ⊗L(ω). (3.21)

Inequality (3.20) is not new. In fact L is a doubly stochastic CP
map (i.e. it is identity and trace preserving) and basic results in
majorization theory imply that a CP map verify Inequality (3.20) if
and only if it is doubly stochastic ([13]). However, as we are interested
in the equality case, it is necessary for us to prove it.

Proof of Lemma 3.2. We will use the three following properties of
Shannon entropy. Let (Pi)i∈I be a complete set of orthogonal projec-
tion on K. Let ω be a density matrix on K and write ω′ = ∑i∈I PiωPi.
Let (pi)1≤i≤m be a probability measure on {1, ...,m} for some m and
ωi be density matrices on K. Then:
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1. S(ω) ≤ S(ω′), with equality if and only if ω = ω′;
2. ∑mi=1 piS(ωi) ≤ S(∑i piωi), with equality if and only if the ωi’s

are identical;
3. S(∑i piωi) ≤ ∑i piS(ωi)+H(pi), with equality if and only if the
ωi’s have orthogonal supports.

Let (ei)1≤i≤N be an orthonormal basis ofH and write Pi = ∣ei⟩⟨ei∣⊗IK
the orthogonal projection on the subspace Cei ⊗K. The Pi’s form a
complete set of orthogonal projections on K. Define

pi = Tr [PiU ( 1
N
IH ⊗ ω)U∗] ;

ω̃i =
1

pi
PiU ( 1

N
IH ⊗ ω)U∗Pi;

ωi = TrH[ω̃i] so that ω̃i =
1

pi
∣ei⟩⟨ei∣⊗ ωi.

Remark that (pi) defines a probability measure on {1, ...,N} and that
the ω̃i’s have orthogonal supports. Furthermore, it is not difficult to
check that S(ωi) = S(ω̃i) for all i = 1, ...,N and L(ω) = ∑i piωi. We
are now ready to make the following computation:

logN + S(ω) = S( 1
N
IH ⊗ ω)

= S(U 1

N
IH ⊗ ω U∗)

≤ S( N∑
i=1

piω̃i) because of 1.

=
N∑
i=1

piS(ω̃i) +H(pi) because of 3.

=
N∑
i=1

piS(ωi) +H(pi)
≤ S( N∑

i=1

piωi) +H(pi) because of 2.

≤ S(L(ω)) + logN.
Consequently, we obtain the desired inequality:

S(ω) ≤ S(L(ω)).
The Equality case above means that all the previous inequalities are
in fact equalities. In particular:

(i) S (U ( 1

N
IH ⊗ ω)U∗) = S(∑Ni=1 piω̃i),

(ii) H(pi) = logN ,
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(iii) ∑Ni=1 piS(ωi) = S(∑Ni=1 piωi).
Consequently by 1. and 2. and the fact that H(pi) = logN if and
only if (pi) is the uniform probability measure, we get:

(i) U ( 1

N
IH ⊗ ω)U∗ = ∑i piω̃i,

(ii) pi = 1

N
for all i = 1, ...,N ,

(iii) ωi = ω′ for all i = 1, ...,N for some density matrix ω′ on K.

Using those three points, we obtain

U ( 1
N
IH ⊗ ω) U∗ =∑

i

1

N
∣ei⟩⟨ei∣⊗ ω′ = 1

N
IH ⊗ ω

′.

Taking the partial trace with respect to H, we see that ω′ = L(ω)
which end the proof. ◻

Proof of Theorem 3.2. The idea behind the proof of each part of the
theorem is the same. We start with the following computation. For
all X ∈ B(K); we have

X ∈ A′(U)⇔ [IH ⊗X,U] = 0
⇔ U ( 1

N
IH ⊗X)U∗ = 1

N
IH ⊗X

and U∗ ( 1
N
IH ⊗X)U = 1

N
IH ⊗X

⇒ L(X) =X and L∗(X) =X
⇒X is an eigeinvector of

L associated to the eigeinvalue 1.

In the same way, for all X ∈ B(K)
X ∈ A′r(U)⇔ [IH ⊗X,U∗ (Y ⊗ IK)] = 0 ∀Y ∈ B(K)

⇔ [U (IH ⊗X)U∗, Y ⊗ IK] = 0 ∀Y ∈ B(K)
⇔ there exists X ′ ∈ B(K) such that:

U ( 1
N
IH ⊗X)U∗ = 1

N
IH ⊗X

′

⇒ there exists X ′ ∈ B(K) such that:

L(X) =X ′ and L∗(X ′) =X
⇒X is a right-singularvector of

L associated to the singularvalue 1.

In order to complete the proof, we need to show the converse. We do
that for A′r(U) only, as it is the same for A(U)′.
First remark that L(IK) = L∗(IK) = IK, so that IK is always an
eigenvector of L and L∗ for the eigenvalue 1 (and consequently a
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left and right singularvector for the singularvalue 1). Furthermore, if
L(X) = X ′ and L∗(X ′) = X for some X,X ′ ∈ B(K), than L(X∗) =
X ′
∗

and L∗(X ′∗) = X∗. Consequently, the right-singularspace of L
associated to the right-eigenvalue 1 is a system operator, that is a
norm-closed ∗-stable subspace of B(K). In particular, it is generated
by its positive elements, so that we only need to prove the result for
density matrices.
In view of Lemma 3.2, we only need to prove that for all density
matrices ω such that ω = L∗ ○ L(ω),

S(ω) = S(L(ω)).
Applying again Lemma 3.2 both for U∗ and U , we get

S(L∗ ○ L(ω)) = S(ω) ≤ S(L(ω)) ≤ S(L∗ ○ L(ω)),
which shows the desired equality. ◻
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