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Abstract Saline soils are a major issue for agriculture be-
cause salt turns agronomically useful lands into unproductive
areas. The United Nations Environment Program estimates
that approximately 20 % of agricultural land and 50 % of
cropland in the world is salt-stressed. Soil salinisation is
reducing the area that can be used for agriculture by 1-2 %
every year, hitting hardest in the arid and semi-arid regions.
Salinity decreases the yield of many crops because salt inhibits
plant photosynthesis, protein synthesis and lipid metabolism.
Plant-growth-promoting rhizobacteria (PGPR), beneficial
bacteria that live in the plant root zone named the rhizosphere,
is one of the solutions to solve this issue. Indeed rhizobacteria
counteract osmotic stress and help plant growth. This article
reviews the benefits of plant-growth-promoting rhizobacteria
for plants growing in saline soils. The major points are (1)
plants treated with rhizobacteria have better root and shoot
growth, nutrient uptake, hydration, chlorophyll content, and
resistance to diseases; (2) stress tolerance can be explained by
nutrient mobilisation and biocontrol of phytopathogens in the
rhizosphere and by production of phytohormones and 1-
aminocyclopropane-1-carboxylate deaminase; (3)
rhizobacteria favour the circulation of plant nutrients in the
rhizosphere; (4) rhizobacteria favour osmolyte accumulation
in plants; (5) plants inoculated with rhizobacteria have higher
K ion concentration and, in turn, a higher K'/Na" ratio that
favour salinity tolerance; and (6) rhizobacteria induce plant
synthesis of antioxidative enzymes that degrade reactive oxy-
gen species generated upon salt shock.
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1 Introduction
Soil salinity in agriculture soils refers to the presence of high

concentration of soluble salts in the soil moisture of the root
zone. These concentrations of soluble salts through their high
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osmotic pressures affect plant growth by restricting the uptake
of water and balanced absorption of essential nutritional ions
by the roots (Tester and Davenport 2003). Salinity is one of
the most serious factors limiting the productivity of agricul-
tural crops, with adverse effects on germination, plant vigour
and crop yield (Munns and Tester 2008). In a majority of
cultivated plants, yields start declining even at relatively low
salinity in soil (electrical conductivity, ECse>1 dS/m)
(Chinnusamy et al. 2005). Some of the most produced and
widely used crops such as rice is relatively susceptible to
excessive concentration of salts (Howell 2001), and currently,
30 % of worldwide paddy fields are affected by excess salinity
(Rowell 1994).

Developing salt-tolerant crops has been a much desired
scientific goal but with little success (Munns and Tester
2008). Successful remediation of salt degraded areas for crop
production, based on sustainable management practices
evolving efficient, low cost, easily adaptable methods, is the
challenge. In addition, sustainable management practices in
agriculture is essentially important as it offers the potential to
meet our future agricultural needs, something that convention-
al agriculture will not be able to do. Recently, there has been a
great interest in eco-friendly and sustainable agriculture with
emphasis on the use of beneficial microorganisms. Indeed,
several recent studies have demonstrated that local adaptation
of plants to their environment is driven by genetic differenti-
ation in closely associated microbes (Rodriguez and Redman
2008). Rhizosphere microorganisms have been shown to en-
hance the growth of many different crops grown in a wide
range of root-zone salinities, and this approach is believed
succeed where it has proved difficult to develop salt-tolerant
germplasm.

Microorganisms that live in close association with the plant
roots play a significant role in stress alleviation in crops grown
in saline soils due to their unique properties of tolerance to
extremities, their interaction with crop plants and potential
deployment methods. About 2—5 % of rhizobacteria, when
reintroduced by plant inoculation in a soil containing compet-
itive microflora, exert a beneficial effect on plant growth and
are termed as plant-growth-promoting rhizobacteria (PGPR).
PGPR were first defined by Kloepper and Schroth (1978) to
describe soil bacteria that colonise the roots of plants follow-
ing inoculation onto seed, and they enhance plant growth.
They are involved in various biotic activities of the soil
ecosystem to make it dynamic for nutrient turn over and
sustainable for crop production (Chandler et al. 1986; Diby
et al. 2005a, b). They stimulate plant growth through
mobilising nutrients in soils, producing numerous plant
growth regulators, protecting plants from phytopathogens by
controlling or inhibiting them, improving soil structure and
bioremediating the polluted soils by sequestering toxic heavy
metal species and degrading xenobiotic compounds (Braud
et al. 2009; Hayat et al. 2010).

INRA

@ Springer

T==" SCIENCE & IMPACT

Use of these microorganisms in stressed soils can alle-
viate stresses in crop plants, thus opening a potential and
promising strategy in sustainable agriculture. Several
studies are now proving the hypothesis that PGPRs enable
agricultural plants to maintain productivity under stressed
conditions by various means, and the results are promis-
ing. These microbes also provide excellent models for
understanding the stress tolerance, adaptation and re-
sponse mechanisms that can be subsequently engineered
into crop plants to cope with climate change induced
stresses (Grover et al. 2011). Improvement in agricultural
sustainability in saline soils inevitably requires manage-
ment practices that enhance soil biological activity and
thereby build-up long-term soil productivity and crop
health.

2 Soil salinity: a global issue
2.1 The magnitude of the problem

Salinity is a significant problem affecting agriculture world-
wide and is predicted to become a larger problem in the
coming decades. Soil salinisation is reducing the area that
can be used for agriculture by 1-2 % every year, hitting
hardest in the arid and semi-arid regions (The Food and
Agriculture Organization of the United Nations (FAO)
2002). As salt levels that are harmful to plant growth affect
large terrestrial areas of the world, agricultural productivity is
severely affected by soil salinity. It has been estimated that on
a world-wide scale, the production by approximately 400
million hectares of arable land is being severely restricted by
salinity (Bot et al. 2000). According to the Food and Agricul-
ture Organization of the United Nations, Land and Plant
Nutrition Management Service, over 6 % of the world’s land
is salt-affected (Table 1). The Food and Agriculture Organi-
zation of the United Nations (FAO, 1988) estimates that, of the
250 million hectares of irrigated land in the world, approxi-
mately 50 % already show salinisation and soil saturation
problems, and 10 million hectares are abandoned annually due
to these problems. The United Nations Environment Program
estimates that approximately 20 % of agricultural land and 50 %
of cropland in the world is salt-stressed (Flowers and Yeo 1995).
Salt stress as one of the most widespread abiotic constraints
in food production may also result in the negative ecological,
social and/or economic outcomes. For instance, recent depo-
sition of toxic salt sediments and sea intrusion in tsunami-
affected areas of Maldives damaged >70 % of agriculture
land, destroyed >370,000 fruit trees and affected around
15,000 farmers (The Food and Agriculture Organization of
the United Nations (FAO) 2005). Postel (1998) estimates that
soil salinisation costs the world’s farmers $11 billion a year in
reduced income and warns that the figure is growing.
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Table 1 Salt-affected soils occur in all continents and under almost all
climatic conditions

Regions Total area  Saline soils ~ Sodic soils
Mha Mha % Mha %
Africa 1,899 39 20 34 1.8
Asia, the Pacific and Australia 3,107 195 6.3 249 8.0
Europe 2,011 7 03 73 3.6
Latin America 2,039 61 3.0 51 2.5
Near East 1,802 92 51 14 0.8
North America 1,924 5 02 15 0.8
Total 12,781 397 3.1 434 34

Their distribution, however, is relatively more extensive in the arid and
semi-arid regions compared to the humid regions. The table shows the
regional distribution of salt-affected soils, in million hectares. Source: The
Food and Agriculture Organization of the United Nations, Land and Plant
Nutrition Management Service

Coastal wet lands and coastal agricultural zones too are
seriously affected by the salinity issue. Coastal wetlands com-
prise various habitat types, including salt marshes, mangroves,
seagrasses, salt swamps, and sand dunes, because of their transi-
tional situation between sea and terrestrial ecosystems, affected
by salinity (Armstrong et al. 1985; Bharathkumar et al. 2008).
Out of about 8.1 million hectares of salinised land in India, 3.1
million are reported to be in coastal regions (Tripathi et al. 2000).

2.2 Soil salinisation: the process

Salinisation consists of an accumulation of water soluble salts
in the soil that include the ions potassium (K "), magnesium
(Mg2+), calcium (Ca"), chloride (CI)), sulfate (SO4>), car-
bonate (CO5”"), bicarbonate (HCO®") and sodium (Na®).
Depending on soils, the extracted solutions differ in the con-
tent of dissolved salts; if total salt concentration, i.e. electrical
conductivity (ECse), exceeds 20 mM (~2 dS/m), they can
be categorised as salt-affected (Abrol et al. 1988). The
salinisation processes may be primary (natural) and secondary
(anthropogenic) (Ghassemi et al. 1995). The major causes of
naturally induced salinity are salt water intrusion and wind-
born salt deposition in land. Mediterranean regions are cur-
rently experiencing increasing salt stress problems resulting
from seawater intrusion into aquifers and irrigation with
brackish water (Rana and Katerji 2000). Another major cause
for soil salinity is the deposition of oceanic salt carried in wind
and rain. Salts originate also from mineral weathering. The
anthropogenic factors include crop irrigation with salt waters
wherein soil salinisation is dramatically exacerbated and ac-
celerated. The other factors may be inorganic fertilisers, soil
amendments (e.g. gypsum, composts and manures) (Kotuby-
Amacher et al. 2000).

Although Earth abounds in water, an almost negligible
portion (~2.5 % or 35 million km®) is fresh or with low salt
concentration (<1 dS/m) (Ondrasek et al. 2010; Shiklomanov
and Rodda 2003), i.e. water that may be conditionally used for
irrigation in crop production, whereas the rest is salty and
therefore unsuitable for irrigation. However, it has been esti-
mated that irrigated agriculture consumes ~70 % (and >90 %
in many developing countries) of total water withdrawal to
produce ~36 % of global food (Howell 2001). As a conse-
quence, there is a continuous degradation of land resources
(e.g. salt-affected soils), representing a large burden to natural
ecosystems. When salt accumulates in the soil, excessive
sodium (Na") from salt destroys soil structure, deteriorates
soil hydraulic properties, raises soil pH and reduces water
infiltration and soil aeration, leading to soil compaction, in-
creasing erosion and water run-off. Furthermore, sodium is the
most pronounced destructor of secondary clay minerals by
dispersion. Dispersion occurs because of Na' replacement of
calcium (Ca®") and other coagulators like Mg** adsorbed on
the surface and/or inter-layers of soil aggregates (Ondrasek
etal. 2010). Dispersed clay particles undergo leaching through
the soil and may accumulate and block pores, especially in
fine-textured soil horizons (Burrow et al. 2002). The soil be-
comes unsuitable for proper root growth and plant development.

3 Impact of soil salinity on plant growth and development

Salinity affects plant growth and yield in many of crops in
varying degrees (Table 2). Crops such as cereals (rice and
maize), forages (clover) or horticultural crops (potatoes and
tomatoes) are relatively susceptible to excessive concentration
of salts, either dissolved in irrigation water or present in soil
(rhizosphere) solution. Soil salinity has been reported to re-
duce yields, nodulation and the total nitrogen content in
legume plants (Singleton and Bohlool 1984). El-Fouly et al.
(2001) found that the dry weight of different plant organs of
tomato was reduced in response to the increase of NaCl level
in the root growth medium.

During the onset and development of salt stress within a
plant, all the major processes such as photosynthesis, protein
synthesis and energy and lipid metabolism are affected (Parida
and Das 2005). Photosynthetic capacity is reduced, due to the
osmotic stress and partial closure of stomata (Meloni et al.
2003). Plants can also suffer from membrane destabilisation
and a general nutrient imbalance (Hasegawa et al. 2000).
Further plant responses to osmotic stress are decrease in cell
growth and development, reduced leaf area and chlorophyll
content, accelerated defoliation and senescence (Shannon and
Grieve 1999). Figure 1 shows saline patch of soil in a wheat
field (Uttar Pradesh, India) that clearly hinders plant growth.

An increase in the uptake of Na" or decrease in the uptake
of Ca*" and K" in leaves lead to nutritional imbalances.
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Table 2 Excess soil salinity causes poor and spotty stands of crops, uneven and stunted growth and poor yields, the extent depending on the degree of

salinity

Soil salinity class Conductivity of the

saturation extract (dS/m)

Effect on crop plants

Non-saline 0-2
Slightly saline 2-4
Moderately saline 4-8
Strongly saline 8-16
Very strongly saline >16

Salinity effects negligible

Yields of sensitive crops may be restricted

Yields of many crops are restricted

Only tolerant crops yield satisfactorily

Only a few very tolerant crops yield satisfactorily

As the salinity increases growth decreases until plants become chlorotic and die. Plants differ widely in their ability to tolerate salts in the soil. Salt
tolerance ratings of plants are based on yield reduction on salt-affected soils when compared with yields on similar non-saline soils. Soil salinity classes
and crop growth are listed in the table. Source: The Food and Agriculture Organization of the United Nations, Soils Bulletin

Accumulation of excess Na" may cause metabolic distur-
bances in processes where low Na* and high K* or Ca®" are
required for optimum function. Excess sodium and more
importantly chloride has the potential to affect plant enzymes
and cause cell swelling, resulting in reduced energy produc-
tion and other physiological changes (Larcher 1980). Uptake
and accumulation of CI™ disrupt photosynthetic function
through the inhibition of nitrate reductase activity (Xu et al.
2000). Under excessive Na" and CI” rhizosphere concentra-
tion, there are competitive interactions with other nutrient ions
(K", NO*" and H,PO,") for binding sites and transport pro-
teins in root cells, and thereafter for translocation, deposition
and partitioning within the plant (Tester and Davenport 2003).
Once the capacity of cells to store salts is exhausted, salts
build up in the intercellular space leading to cell dehydration
and death (White and Broadley 2001).

Fig.1 A saline patch of'soil in a wheat field clearly hinders plant growth.
The photos were taken in Varanasi, Uttar Pradesh, India. Salt causes
yellowing and death of wheat leaves. Salt-affected soil often exhibits a
white or grey salt crust on the ground and the salt interferes with the
growth of most plants
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Under saline conditions, osmotic pressure in the rhizo-
sphere solution exceeds that in root cells, influencing water
and nutrient uptake. Almost all micro- and macronutrient
contents decrease in the roots and shoots with increasing NaCl
concentration in the growth medium. Salama et al. 1996
reported limited uptake of nutrients in different organs of
wheat plants when there was high salt concentration in the
root growth medium. The plants with perturbed nutrients
relations are more susceptible to invasion of different patho-
genic microorganisms and physiological dysfunctions, whereas
their edible parts have markedly less economic and nutritional
value due to reduced fruit size and shelf life, non-uniform fruit
shape, decreased vitamin content, etc. (Romic et al. 2008).

The primary salinity effects give rise to numerous second-
ary ones such as oxidative stress, characterised by accumula-
tion of reactive oxygen species potentially harmful to
biomembranes, proteins, nucleic acids and enzymes (Porcel
et al. 2012). To protect against oxidative stress, plant cells
produce both antioxidant enzymes and non-enzymatic antiox-
idants (Hasegawa et al. 2000), and the modulation of antiox-
idant enzyme activity and concentrations are frequently used
as indicators of oxidative stress in plants (Mayak et al. 2004).

4 Impact of soil salinity on rhizospheric microbial
diversity

The microbial biomass is an important labile fraction of the
soil organic matter, functioning both as an agent of transfor-
mation and recycling of the organic matter and soil nutrients,
as also of a source of nutrients for the plants. It is well known
that the environments of plant rhizospheres are more
favourable microhabitats for microorganisms compared to
surrounding bulk soils (Bais et al. 2006), and these microbes
directly or indirectly influence plant growth and development.
In addition, as the availability of nutrients for plants is regu-
lated by the rhizospheric microbial activity, any factor affect-
ing this community and its functions influences the availabil-
ity of nutrients and growth of the plants. Enhanced microbial
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biomass and activities by rhizosphere effects are important to
ecosystem functioning and pollutant degradation in natural
ecosystems, plant health as well as in contaminated environ-
ments (Nie et al. 2009; Wenzel 2009).

Since the soil organic matter, and consequently the biomass
and microbial activity, are generally more relevant in the first
few centimetres at the surface of the soil, salinisation close to
the surface can significantly affect a series of microbiologi-
cally mediated processes. The detrimental influence of salinity
on the microbial soil communities and their activities reported
in naturally saline soils (Rietz and Haynes 2003; Sardinha
et al. 2003). Salinity has a negative impact on microbial
abundance, diversity, composition and functions (Borneman
et al. 1996). Omar et al. (1994) showed that, with an increase
in the salinity level to above 5 %, the total count of bacteria
and actinobacteria was drastically reduced. Salinity stress was
shown to reduce the attachment of Azospirillum brasilense to
maize and wheat roots (Jofre et al. 1998). In addition, increase
in salinity inhibited nitrogen fixation at the level of nifH
expression and nitrogenase activity in Azospirillum sp.
(Tripathi et al. 2002). Increased salinity in the rhizosphere
affects root exudation and decomposition of organic matter
by microorganisms (Ondrasek et al. 2010). Similar observa-
tion were reported by Li et al. (2006), who noticed significant
negative correlations between soil electrical conductivity and
total CO, emission or microbial biomass C, suggesting that
salinity had an adverse effect on microbial biomass and activity.
Therefore, naturally occurring soil organic matter decomposers
may be sensitive to salt-induced stress. This effect is always
more pronounced in the rhizosphere pursuant to increased
water uptake by the plants due to transpiration.

Nelson and Mele (2007) reported that sodium chloride is
more likely to affect rhizosphere microbial community struc-
ture indirectly through root exudates quantity and/or quality
than directly through microbial toxicity and that plant health is
a major determinant in rhizosphere microbial community
structure. For microbes, life in high salt concentrations is
bioenergetically taxing because they must maintain an osmotic
balance between their cytoplasm and the surrounding medium
while excluding sodium ions from the cell interior, and as a
result, sufficient energy is required for osmoadaptation (Jiang
et al. 2007). Depletion of potassium ions by plants reduces the
ability of rhizobacteria to use potassium ions as a primary
osmoregulator (Jofre et al. 1998). Plant use of osmolytes
under salt stress deprives rhizobacteria of osmolytes, which
finally limits the bacterial growth. Alteration of proteins,
exopolysaccharide and lipopolysaccharide composition of the
bacterial cell surface, impairment of molecular signal exchange
between bacteria and their plant host due to the alteration of
membrane glucan contents, and inhibition of bacterial mobility
and chemotaxis towards plant roots significantly affect microbial
diversity in the rhizosphere, under saline conditions. Ibekwe et al.
(2010) suggested that changes in microbial diversity may be the

first indicator of stress in salinity-affected soils. Therefore, if
stress can be detected early enough in salinity affected soils, then
some remedial action may be possible to improve soil quality and
crop performance.

5 Mechanisms of osmotolerance in rhizobacteria

Exposure of microorganisms to high-osmolality environ-
ments triggers rapid fluxes of cell water along the osmotic
gradient out of the cell, thus causing a reduction in turgor
and dehydration of the cytoplasm. Microbes have developed
various adaptations to counteract the outflow of water. The
cytoplasm is exposed to high ionic strength to achieve
osmotic equilibrium by maintaining a cytoplasmic salt con-
centration similar to that of the surrounding media. The first
response to osmotic up shifts and the resulting efflux of
cellular water is uptake of K and also cells start to accu-
mulate compatible solutes (Whatmore et al. 1990). The
organic osmolytes include sugars and derivatives, amino
acids and their derivatives, polyols and derivatives, betaines
and ectoines (Lamosa et al. 1998). Compatible solutes could
be synthesised de novo or, if present in the medium, can be
taken up by the organisms. Paul and Nair (2008) reported
that Pseudomonas fluorescens MSP-393, a PGPR strain, as
a means of salt tolerance, de novo-synthesised, the
osmolytes, alanine, glycine, glutamic acid, serine, thronine
and aspartic acid in their cytosol. In addition to their well-
studied function as osmoprotectants, compatible solutes also
have protein-stabilising properties that support the correct
folding of polypeptides under denaturing conditions both
in vitro and in vivo (Street et al. 2006).

Yet, another mechanism is by altering the cell envelope
composition resulting in changes in proteins, periplasmic
glucans and capsular, exo and lipopolysaccharides.
Pseudomonas survive under stress conditions due to the pro-
duction of exopolysaccharides, which protects them from
hydric stress and fluctuations in water potential by enhancing
water retention and regulating the diffusion of carbon sources
in microbial environment (Sandhya et al. 2009). Klein et al.
(1999) reported changes in the fatty acid composition of the
bacterial membrane under osmotic stress, by varying the
length of acyl chains, number of double bonds or branching
of acyl chains by methyl groups. Salt stress induced higher
levels of cyclopropane fatty acid (DC19:0) and lower levels of
oleic acid (C18:1) in the lipid membrane of Lactococcus lactis
(Guillot et al. 2000). A cross-linking of the peptidoglycan has
also been shown to respond to variations in the salinity stress;
NaCl stressed cells had shorter peptidoglycan inter-peptide
bridges than the unstressed cells (Piuri et al. 2005). Francius
etal. (2011) showed that the presence of loose, flexible surface
appendage around the bacteria under low electrolyte concen-
tration condition acts as a protective barrier, thereby
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attenuating the impact of changes in extracellular ionic
strength and lowering the osmotic pressure constraint.
Bacteria initiate a program of gene expression in re-
sponse to osmotic stress by high NaCl concentrations,
which are manifested as a set of proteins produced in
increased amounts in response to the stress (Volker et al.
1994). Diby et al. (2005a) demonstrated differentially
expressed salt responsive genes in the salt-tolerant PGPR,
Pseudomonas pseudoalcaligenes. Peptide mass finger-
printing analysis of P. fluorescens under salt shock con-
ditions revealed several over-expressed/repressed stress
related proteins (Paul et al. 2006). Majority of proteins
identified were homologous to stress proteins in prokary-
otes. These stress alleviation proteins is believed to play a
major role in helping the bacteria to maintain its metabo-
lism unaltered considerably, thus delivering the plant-
growth-promoting and biocontrol properties in saline soils
(Paul et al. 2006). A transcriptional profiling of a salt-
stressed soil bacterium Bacillus subtilis in the presence of
1.2 M NacCl has been shown to trigger the induction of
123 genes and led to the repression of 101 genes (Steil
et al. 2003). Use of macro-array technique in Escherichia
coli revealed that NaCl stress altered the expression of
152 genes, out which 45 were up regulated, whereas the
rest 107 were down-regulated (Weber and Jung 2002).
Several of the up-regulated genes have been shown to
be involved in the cellular processes of adaptation and
protection and in the biosynthesis, metabolism and trans-
port of amino acids. The transcriptome analysis in
Shewanella oneidensis MR-1 revealed that high salinity
caused up-regulation of genes involved in Na" eZux, K"
accumulation, glutamate biosynthesis and in aerobic as
well as anaerobic respiration (Liu et al. 2005). Among
genes potentially mediating K* transport across bacterial
membranes, the most dramatic changes in response to
NacCl stress were observed in the level of expression of
the K" uptake protein kup/trkD (Shabala 2009). Very
recently, it has been reported that the non-coding RNA
named Yfrl might be involved in salt sensing (Georg
et al. 2009). The mechanisms of salt-tress adaptions in
rhizobacteria have been recently reviewed by Paul (2013).

6 Mitigation of salt stress in crops by PGPRs

6.1 PGPRs as effective candidates in salt stress amelioration
in plants

Salinity adversely affects the growth and yield of several crop
plants, and soil aggregate stability is one of the most important
properties controlling the growth of plants in semi-arid envi-
ronments. Therefore, the improvement of soil structural sta-
bility is of great importance. The contribution of microbial
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populations, either as free-living organisms or associated with
plant roots, and their activities to soil aggregate stability are
proved to be highly beneficial (Jastrow and Miller 1991) in
terms of rendering saline soils suitable for agriculture. Exten-
sive research has been carried out on occurrence and func-
tional diversity of agriculturally important microbes in
stressed environments and their role in soil remediation, as
reviewed by several authors (Graham 1992; Zahran 1999;
Paul 2013). The occurrence of several of beneficial
rhizobacteria like Rhizobium, Bradyrhizobium, Azotobacter,
Azospirillum, Pseudomonas, Bacillus, etc. have been reported
from stressed environments like desert ecosystems, acid soils,
saline and alkaline areas and highly eroded hill slopes
(Selvakumar et al. 2009; Upadhyay et al. 2009), and these
are assumed to be involved in natural reclamation process of
the soil.

Apart from developing mechanisms for own stress toler-
ance, PGPRs can also impart some degree of tolerance to
plants, towards abiotic stresses like salinity. Interaction of
PGPR with several crops in saline conditions reduced the
extent of poor growth and thus helps plants survive and
improve performance in adverse conditions (Dimkpa et al.
2009). Many studies have been published on beneficial effects
of bacterial inoculation on plant physiology and growth under
salt stress conditions and examples are summarised in
Table Error! Reference source not found.. Some PGPR may
exert a direct stimulation on plant growth and development by
providing plants with fixed nitrogen, phytohormones, iron
that has been sequestered by bacterial siderophores, and sol-
uble phosphate (Hayat et al. 2010; Rodriguez and Fraga
1999). Others do this indirectly by protecting the plant against
soil-borne diseases, most of which are caused by pathogenic
fungi (Lugtenberg and Kamilova 2009). Soil-borne pseudo-
monads have received particular attention because of their
catabolic versatility, excellent root-colonising ability and ca-
pacity to produce a wide range of enzymes and metabolites
that help the plant withstand varied biotic and abiotic stress
conditions (Vessey 2003). Various attributes of PGPRs in
amelioration of salt stress in crops are summarised in Fig. 2.

6.2 PGPR-mediated plant root proliferation and plant vigour

PGPRs colonise the rhizosphere of plants and promote growth
of the plants through various means. Paul and Sarma (2006)
demonstrated using GS Root® software (PP systems,
Winterstreet, USA) that the PGPR strain, P. fluorescens
IISR-6, significantly enhanced the root biomass of black
pepper vines. Rhizobacteria-mediated root proliferation has
been well proved and it also works in stressed soils (Diby et al.
2005a). Hence, a fruitful strategy to alleviate negative effects
of salt stress in plants might be the co-inoculation of seeds
with different PGPR species. Inoculation of various plant
species with PGPRs has also reported to lead to enhanced
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Table 3 Rhizobacteria impart some degree of tolerance to plants, towards salinity stress

Rhizobacteria

Plant

Reference

Bacillus safensis, Ochrobactrum pseudogregnonense

Pseudomonas putida, Enterobacter cloacae, Serratia ficaria and
P, fluorescens
Alcaligenes faecalis, Bacillus pumilus, Ochrobactrum sp.

P. pseudoalcaligenes, B. pumilus

B. subtilis, Arthrobacter sp.

Azospirillum sp.

Streptomyces sp.

Pseudomonas sp., Bacillus sp., Variovorax sp.
Azotobacter chroococcum

P. pseudoalcaligenes, P. putida

Brachybacterium saurashtrense, Brevibacterium casei,
Haererohalobacter sp.
P. extremorientalis, P. chlororaphis

Bacillus, Burkholderia, Enterobacter, Microbacterium,
Paenibacillus
P. fluorescens, P. aeruginosa, P. stutzeri

Pseudomonas sp.
Azospirillum sp.
P. putida

B. megaterium

Agrobacterium rubi, Burkholderia gladii, P. putida, B. subtilis,
B. megaterium
A. brasilense

P. mendocina

B. subtilis

A. brasilense

Bacillus sp., Ochrobactrum sp.

P, syringae, P. fluorescens, E. aerogenes

P, fluorescens

Azospirillum

P, fluorescence

P. pseudoalcaligenes

Achromobacter piechaudii

Aeromonas hydrophila, B. insolitus Bacillus sp.
Azospirillum

A. brasilense

A. lipoferum, A. brasilense, Azoarcus, Pseudomonas sp.

Wheat (Triticum aestivum)
Wheat (T aestivum)

Rice (Oryza sativa)

Rice (O. sativa)

Wheat (T aestivum)

Wheat (T aestivum)

Wheat (T aestivum)
Avocado (Persea gratissima)
Maize (Z. mays)

Chickpea (Cicer arietinum)

Pea nut (4Arachis hypogaea)

Common bean (Phaseolus vulgaris)
Wheat (T aestivum)

Tomato (Lycopersicon esculentum)
Eggplant (Solanum melongena)
Durum wheat (7riticum durum)
Cotton (Gossypium hirsutum)
Maize (Zea maize L.)

Radish (Raphanus sativus L.)

Barley (Hordeum vulgare)
Lettuce (L. sativa L. cv. Tafalla)
Arabidopsis thaliana

Pea (Phaseolus vulgaris)

Maize (Z. mays)

Maize (Z. mays)

Groundnut (4rachis hypogaea)

Lettuce (L. sativa)

Black pepper (Piper nigrum)
Rice (O. sativa)

Tomato (L. esculentum)
Wheat (T aestivum)

Maize (Z. mays)

Chickpeas (C. arietinum), faba beans (Vicia

faba L.)
Kallar grass Leptochloa fusca)

Chakraborty et al. (2013)
Nadeem et al. (2013)

Bal et al. (2013)

Jha et al. (2013)
Upadhyay et al. (2012)
Zarea et al. (2012)
Sadeghi et al. (2012)
Nadeem et al. (2012)
Rojas-Tapias et al. (2012)
Patel et al. (2012)

Shukla et al. (2012)

Egamberdieva (2011)
Upadhyay et al. (2011)

Tank and Saraf (2010)
Fu et al. (2010)

Nabti et al. (2010)

Yao et al. (2010)
Marulanda et al. (2010)
Kaymak et al. (2009)

Omar et al. (1994)
Kohler et al. (2009, 2010)
Zhang et al. (2008)
Dardanelli et al. (2008)
Principe et al. (2007)
Nadeem et al. (2007)

Saravanakumar and Samiyappan
(2007)

Barassi et al. (2006)
Paul and Sarma (2006)
Diby et al. (2005a)
Mayak et al. (2004)
Ashraf et al. (2004)
Hamdia et al. (2004)
Hamaoui et al. (2001)

Malik et al. (1997)

Interaction of beneficial rhizobacteria with several crops in saline conditions reduced the extent of poor growth and thus helped plants survive and
improve performance in adverse conditions. Examples of rhizobacteria mediated plant tolerance to salinity stress are listed in the table

formation of lateral roots and root hairs that can result in
enhanced tolerance to abiotic stress. Paul and Nair (2008)
reported the root colonisation potential of the salt tolerant
Pseudomonas strain was not hampered with higher salinity
in soil. Promotion of root growth results in a larger root
surface and can, therefore, have positive effects on water
acquisition and nutrient uptake (Diby et al. 2005b; Paul and

Samiyappan 2007).

Sarma, 2006) that is expected to alleviate the stress effects in
the plant. In addition, Kohler et al. (2009) observed in lettuce
that the plants inoculated with PGPRs were more hydrated
than the control plants under saline conditions. Greater hydra-
tion induced by the PGPR strain might be attributable to
increased water use efficiency (Saravanakumar and
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Fig. 2 Plant-growth-promoting rhizobacteria colonise the rhizosphere of
plants and promote growth of plants through various means and help
mitigate salt stress. Interaction of plant-growth-promoting rhizobacteria
with several crops in saline conditions reduced the extent of poor growth

Mayak et al. (2004) observed that, when tomato plants
were root bacterised with a suspension of beneficial bacteria,
the extent of growth suppression due to salt stress was de-
creased and the bacterial treated plants accumulated more
fresh and dry weights than un-treated plants. Fu et al. (2010)
reported that, with increasing salt concentration, growth of
eggplant was progressively inhibited, but when the plants
were inoculated with the PGPR Pseudomonas sp. DW1, the
extent of growth suppression was decreased and these treated
plants had greater dry weights than untreated plants,
indicating the beneficial role of rhizobacteria in alleviating
the debilitating effects of salt stress. Furthermore, PGPRs have
been reported to help seed germination in stressed soils and
Barassi et al. (2006) reported the same in Azospirillum-inoc-
ulated lettuce seeds under salt stress. Applications of bio-
priming of radish with PGPR strains significantly improved
the percentage of seed germination under saline conditions
(Kaymak et al. (2009).

Rojas-Tapias et al. (2012) observed enhanced chlorophyll
content in maize upon inoculation with Azotobacter strains,
revealing a positive effect on growth and plant development.
Also in maize and canola, the rhizobacterial treatment in-
creased the total chlorophyll contents (a, b and carotenoids)
(Glick et al. 1998; Nadeem et al. 2007). The increase in
chlorophyll content may also be the result of an increased
photosynthetic leaf area of the plant (Nadeem et al. 2007) by
rhizobacteria inoculation, compared with the un-inoculated
control where the leaf area was reduced owing to stress
(Marcelis et al. 1999). However, it has been reported that,
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and thus helps plants survive and improve performance in adverse con-
ditions. Beneficial attributes of plant-growth-promoting rhizobacteria
(PGPR) towards stress tolerance in crops grown in saline soils are
described in the figure

when pepper plants were co-inoculated with 4. brasilense and
Pantoea dispersa, there were higher plant dry matter accumu-
lation under salinity, and it was related to a higher source
activity due to higher stomatal conductance and photosynthe-
sis than non-inoculated plants, but without affecting chloro-
phyll concentration or photosystem II photochemical efficien-
cy (del Amor and Cuadra-Crespo 2012).

6.3 Bacterial production of phytohormones

It is most likely that the plant growth hormones of microbial
origin in the vicinity of plant roots could evoke a physiolog-
ical response in the host plant. Production of indole acetic
acid, gibberellins and other growth regulators produced by
PGPR is believed to support increase root length, root surface
area and number of root tips, leading to enhanced uptake of
nutrients thereby improving plant health under stress condi-
tions (Egamberdieva and Kucharova 2009). Indole acetic acid
production is a relatively common trait of PGPR, and such
bacteria is believed to counteract salinity stress in plants.
Morphological plant root changes have been observed repeat-
edly upon Azospirillum inoculation and have been attributed
to the production of plant-growth-promoting substances:
auxins, cytokinins, and gibberellins, with auxin production
being quantitatively the most important (Spaepen et al.
2008). Sadeghi et al. (2012) demonstrated that a Streptomyces
isolate increased plant growth in wheat and produced indole
acetic acid and auxin in presence of salt. Stimulation of shoot
biomass of lettuce plants grown in drying soil by the
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cytokinin-producing PGPR B. subfilis (Arkhipova et al. 2007)
implied considerable root-to-shoot cytokinin signalling. Yao
et al. (2010) showed that inoculation of P. putida Rs-198 in
seeds resulted in increased production of indole acetic acid
and inhibited production of abscisic acid, increasing growth
parameters in cotton seedlings. Indole acetic acid is a plant
growth hormone, while abscisic acid is a well-known stress-
inducible plant hormone and growth inhibitor. As phytohor-
mone production seems a relatively common trait of PGPR, it
is suggested to pay more attention in selecting microbial
inoculants with high phytohormone production to potentially
ameliorate salt stress.

6.4 PGPR act as sink for ACC

In plants grown under salt stress soils, 1-aminocyclopropane-
1-carboxylate (ACC) levels increase, resulting in high ethyl-
ene concentration that ultimately increases plant damage
(Botella et al. 2000). Chemical inhibitors of ethylene synthe-
sis, such as cobalt ions and aminoethoxyvinyle glycine, are
often used to overcome the problems associated with salt
stress. However, these chemicals are not only expensive, but
they have harmful effects on the environment (Dodd 2009).
Rhizobacteria have been reported to act as a sink for 1-
aminocyclopropane-1-carboxylate (Saleem et al. 2007), hy-
drolysing it to ammonia and a-ketobutyrate and thereby low-
ering the level of ethylene in stressed plants. In the presence of
I-aminocyclopropane-1-carboxylate deaminase producing
bacteria, plant 1-aminocyclopropane-1-carboxylate is seques-
tered and degraded by bacterial cells to supply nitrogen and
energy (Mayak et al. 2004), facilitating plant growth under the
salinity stress condition (Nadeem et al. 2010; Siddikee et al.
2010). Furthermore, by removing 1-aminocyclopropane-1-
carboxylate, the bacteria reduce the deleterious effect of
ethylene, ameliorating plant stress and promoting plant
growth (Glick et al. 2007). The effectiveness of 1-
aminocyclopropane-1-carboxylate deaminase containing
rhizobacteria for enhancing salt tolerance and consequently
improving the growth of tomato, rice and various other crops
under salt-stress conditions have been well proved (Bal et al.
2013 and Mayak et al. 2004). Siddikee et al. (2010) reported
that halotolerant strains of bacteria that belong to different
bacterial genera, i.e. Bacillus, Brevibacterium, Planococcus,
Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas,
Corynebacterium, Arthrobacter and Micrococcus that were
originally isolated from coastal soils, have a real potential to
enhance plant growth under saline stress via 1-
aminocyclopropane-1-carboxylate deaminase activity. The
enzyme 1-aminocyclopropane-1-carboxylate deaminase has
been found in a wide range of other rhizobacteria as well,
such as the genera Achromobacter, Acidovorax, Alcaligenes,
Enterobacter, Klebsiella, Methylobacterium, Pseudomonas,
Rhizobium and Variovorax (Esquivel-Cote et al. 2010).

6.5 PGPR-mediated ion homeostasis

Microbes can alter root uptake of toxic ions and nutri-
ents by altering host physiology or by directly reducing
foliar accumulation of toxic ions (Na* and CI7) while
improving the nutritional status of both macro- (N, P
and K) and micronutrients (Zn, Fe, Cu and Mn), mostly
via unknown mechanisms. Potassium plays a key role in
plant water stress tolerance and has been found to be
the cationic solute responsible for stomatal movements
in response to changes in bulk leaf water status
(Caravaca et al. 2004). Zhang et al. (2008) reported that
inoculation with B. subtilis GB03 could mediate the
level of salt tolerance in Arabidopsis thaliana through
regulation of the potassium transporter HKTI. Certain
volatiles emitted by PGPR have been shown to down
regulate HKTI expression in roots but up-regulates it in
shoots, orchestring lower Na* levels and recirculation of
Na® in the whole plant under salt conditions (Zhang
et al. 2008). These results supported the idea that bac-
teria can mediate the expression of an ion high-affinity
K" transporter (AtHKTI) in Arabidopsis under saline
condition. PGPR-inoculated plants have been demon-
strated to have increased K' concentration, which in
turn resulted in a high K'/Na® ratio leading to their
effectiveness in salinity tolerance (Kohler et al. 2009;
Nadeem et al. 2013; Rojas-Tapias et al. 2012). Ashraf
et al. (2004) found that Azospirillum could restrict Na®
influx into roots. In addition, high K/Na" ratios were
found in salt-stressed maize in which selectivity for
Na®, K¥, and Ca®" was altered in favour of the plant,
upon inoculation with Azospirillum (Hamdia et al.
2004).

Salinity not only reduces Ca>" and K" availability in plants
but also reduces Ca®" and K™ mobility and transport to the
growing parts of plants. However, Fu et al. (2010) reported
significantly increased Ca®" in shoots of eggplants inoculated
with Pseudomonas when compared to the non-inoculated
eggplant under saline conditions. Yao et al. (2010) demon-
strated that PGPRs are involved in significantly increasing the
cotton’s absorbability of Mg®" and Ca*" and decreasing the
absorption of the Na". It has also been shown that Ca®* plays a
major role as an early signalling molecule at the onset of
salinity.

Salt stress leads to damage to the plant cell membrane and
hence increase its permeability resulting in electrolyte leakage
and accumulation of it in the surrounding tissues. Inoculation
with Rhizobium and Pseudomonas in Zea mays have been
reported to lower the electrolyte leakage (Bano and Fatima
2009 and Sandhya et al. 2010). Similar observations were
made by Shukla et al. (2012) in Arachis hypogaea, suggesting
that PGPR protect the integrity of the plant cell membrane
from the detrimental effect of salt.
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6.6 Accumulation of osmolytes

Maintaining water homeostasis and the functioning of photo-
synthetic structures are essential for alleviating the impact of
salinity on plant growth and crop yield. One of the most
common stress responses in plants is overproduction of dif-
ferent types of compatible organic solutes such as proline and
glycine betaine (Serraj and Sinclair 2002). Proline accumula-
tion is a sensitive physiological index of the response of plants
to salt and other stresses (Peng et al. 2008) to maintain higher
leaf water potential during stress and to keep plants protected
against oxidative stress. PGPRs have been demonstrated to
enhance plant stress tolerance by contributing to osmolyte
accumulation in plants. Increased accumulation of proline
has been reported in soybean plants grown under saline con-
ditions upon inoculation with PGPR strains that alleviated
salinity stress and improved growth (Han and Lee 2005).
Zarea et al. (2012) also reported increased the proline accu-
mulation in wheat upon root colonisation with PGPRs.
Azospirillum could also accumulate proline (Bashan 1999;
Casanovas et al. 2003) in plants as an osmoprotectant. It is
reported that proline protects higher plants against
salt/osmotic stresses, not only by adjusting osmotic pressure
but also by stabilising many functional units such as complex
IT electron transport and enzymes such as ribulose
bisphosphate carboxylase/oxygenase (RUBISCO) (Makela
et al. 2000). Proline also helps the plant cell by stabilising
subcellular structures such as membranes and proteins, scav-
enging free radicals and buffering cellular redox potential
under salt stress to alleviate salt stress (Ashraf and Foolad
2007 and Kohler et al. 2009). Increased total soluble sugar
(TSS) content of plants under salinity stress is another
important defence strategy to cope with salinity stress, and
Upadhyay et al. (2012) showed that an increased proline and
total soluble sugar in the PGPR-treated wheat plants signifi-
cantly contributed to their osmotolerance. Similarly, trehalose
metabolism in rhizobia also seems important for improving
plant growth, yield and adaptation to abiotic stress of legumi-
nous plants (Suarez et al. 2008).

6.7 Antioxidative enzymes

Formation of reactive oxygen species upon salt shock in
plants brings about damage to lipids, protein and nucleic
acids. Reactive oxygen species production is favoured due
to over-reduction of photosynthetic electron chain by the
limiting of photosynthesis under salinity (Johnson et al.
2003; Hichem et al. 2009). Antioxidants have been reported
to have greater resistance to this oxidative damage (Spychalla
and Desborough 1990). The activities of the antioxidative
enzymes such as catalase, guaicol peroxidase and superoxide
dismutase increase under salt stress in plants and a correlation
of these enzyme levels and salt tolerance exists (Mittova et al.

@ Springer

—=" SCIENCE& IMPACT

2002, 2003). Researches with application of PGPRs have
shown significant increase in plants of several of plant-
defence-related enzymes, superoxide dismutase, peroxidase,
catalase, polyphenol oxidase, phenylalanine ammonia-lyase,
lipoxygenase and phenolics (Liang et al. 2011; Nautiyal et al.
2008; Chakraborty et al. 2013). These PGPR-induced antiox-
idative enzymes are believed to be contributing to the salt
stress tolerance in plants also by eliminating hydrogen perox-
ide from salt-stressed roots (Kim et al. 2005). However, few
data are available about the mechanisms involved in bacterial-
mediated plant antioxidative protection.

6.8 Bacterial extracellular polymeric substance in plant stress
alleviation

Extracellular polymeric substance-producing PGPR have
been reported to significantly enhance the volume of soil
macropores and the rhizosphere soil aggregation, resulting in
increased water and fertiliser availability to inoculated plants,
which in turn is believed to help plants to better manage the
salt shock. The influence of extracellular polymeric
substance-producing PGPR on the aggregation of root-
adhering soils has been well described (Upadhyay et al.
2011; Alami et al. 2000). PGPR strains that produce bacterial
extracellular polymeric substance bind cations including Na®,
and it may be envisaged that increasing the population density
of extracellular polymeric substance-producing bacteria in the
root zone would decrease the content of Na' available for
plant uptake, thus help alleviating salt stress in plants growing
in saline environments (Geddie et al. 1993). Roberson and
Firestone (1992) demonstrated that the extracellular polymeric
substance of bacteria possess unique water holding and
cementing properties, thus play a vital role in the formation
and stabilisation of soil aggregates and regulation of nutrients
and water flow across plant roots through biofilm formation.

6.9 Enhancement of plant nutrient uptake

Mineral nutritional status of plants greatly affects their ability
to adapt to adverse environmental conditions and in particular
to abiotic stress factors, impairment of which exacerbates the
adverse effects of abiotic stresses. Nutritional imbalance ham-
pers plant growth, development and also the yield. Imbalances
may result from the effect of salinity on nutrient availability,
competitive uptake, transport or partitioning within the plant
or may be caused by physiological inactivation of a given
nutrient resulting in an increase in the plant’s internal require-
ment for that essential element (Grattan and Grieve 1994).
Crop performance may be adversely affected by salinity-
induced nutritional disorders. Nitrogen, in one form or anoth-
er, accounts for about 80 % of the total mineral nutrients
absorbed by plants, and inadequate nitrogen is often a
growth-limiting nutritional stress (Marschner 1995). Studies
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indicate that salinity reduces N uptake/accumulation (Feigin
1985). In addition, it is known that salt stress causes reduction
in P accumulation in plants, which develop P-deficiency
symptoms. Salinity reduces phosphate uptake/accumulation
in crops grown in soils primarily by reducing phosphate
availability (Sharpley et al. 1992). Besides, maintenance of
adequate levels of K is essential for plant survival in saline
habitats, and sodium-induced K" deficiency has been impli-
cated in various crops (Botella et al. 1997).

PGPRs have been proved to be vital for circulation of plant
nutrients in many ways, thereby reducing the need for chem-
ical fertilisers. Apart from fixing N,, many strains of PGPR
can affect plant growth directly by solubilising inorganic
phosphate, improving nutrient uptake and mineralising organ-
ic phosphate (Dobbelaere et al. 2003; Ogut et al. 2010).
Solubilisation of phosphorus in rhizosphere is the most com-
mon mode of action implicated in PGPR that increase the
nutrient availability to the host plant (Rashid et al. 2004).
These rhizobacteria are critical for the transfer of P from
poorly available forms and are important for maintaining P
in readily available pools. Diby et al. (2005b) reported en-
hanced nutrient mobilisation in the rhizosphere of black pep-
per and significant uptake of nitrogen (N) and phosphorus (P)
in the PGPR-treated black pepper vines that resulted in root
proliferation and enhanced plant growth. Strains of
rhizobacteria that have efficient phosphorus-solubilising abil-
ity even under high saline (60 g L' NaCl) conditions have
been reported (Son et al. 2006; Upadhyay et al. 2011). The
damaging effects of NaCl on wheat seedlings were demon-
strated to be reduced by inoculation with 4. brasilense (Creus
et al. 1997). Azospirillum inoculated lettuce seeds had better
germination and vegetative growth than non-inoculated con-
trols after being exposed to NaCl (Barassi et al. 2006).
Dardanelli et al. (2008) reported as salt stress affect nodulation
during Phaseolus—Rhizobium interaction, a secondary inocu-
lation of the salt-stressed plants with Azospirillum caused an
extended exudation of plant flavonoids compared to
Rhizobium alone. This co-inoculation of plants with different
bacterial strains contributed to relieving of the abiotic stress.

6.10 PGPR-mediated disease suppression

In general, competition for nutrients, niche exclusion, induced
systemic resistance (ISR) and antifungal metabolites produc-
tion are the chief modes of biocontrol activity in PGPR
(Lugtenberg and Kamilova 2009). Many rhizobacteria have
been reported to produce antifungal metabolites like HCN,
phenazines, pyrrolnitrin, 2,4-diacetylphloroglucinol,
pyoluteorin, viscosinamide and tensin (Bhattacharyya and
Jha 2011). Several strains of PGPRs have been demonstrated
to exhibit biological control of plant pathogens even in saline
soils. Diby et al. (2005a) reported that the population of the
biocontrol agent, P. fluorescens in the saline rhizospheric soil

did not change considerably with increasing salinity in the
soil, indicating that the colonisation efficiency of the strain
was not affected by the salinity factor. Paul and Nair (2008)
ascertained that the osmotolerance mechanisms of the salt-
tolerant PGPRs effectively nullified the detrimental effects of
high osmolarity and fully serve as biocontrol agents in crops
grown in saline soils. Egamberdieva (2012) reported the re-
pression of cucumber and tomato root rot caused by F. solani
in salinated soil when the plants were treated with salt tolerant
P. chlororaphis strain. PGPR-mediated biocontrol of several
plant diseases against an array of pathogens have been report-
ed even under saline conditions (Elmer 2003; Paul and Nair
2008; Rangarajan et al. 2003; Triky-Dotan et al. 2005).

Induced systemic resistance is the enhanced defensive ca-
pacity that a plant develops against a broad spectrum of plant
pathogens after colonisation of the roots by certain strains of
microorganisms (van Loon et al. 1998). Research on these
lines has led to the identification of several species of micro-
organisms with strong activity and microbial components
such as lipopolysacharides, flagella, siderophores, cyclic
lipopeptides, 2,4-diacetylphloroglucinol, homoserine lactones
and certain volatiles (Lugtenberg and Kamilova 2009) as
elicitors of induced systemic resistance. Induced systemic
resistance in plants by rhizobacteria has been proved against
several bacterial, fungal and viral plant diseases (Leeman et al.
1995; Park et al. 2009). Induced systemic resistance involves
jasmonate and ethylene signalling within the plant, and these
hormones stimulate the host plant’s defence responses against
a variety of plant pathogens (Glick, 2012). The term induced
systemic tolerance (IST) has been proposed for PGPR-
induced physical and chemical changes that result in enhanced
tolerance to abiotic stress (Sarma et al. 2012). Induced sys-
temic tolerance to salt stress was also noted in a study with
Arabidopsis (Zhang et al. 2008) using B. subtilis GB03, a
commercial biological control agent. Some of the volatiles
organic compounds emitted from Bacillus (Ryu et al. 2004)
are believed to be bacterial determinants involved in induced
systemic tolerance.

7 Conclusion

The costs associated with soil salinity are potentially enor-
mous, and the effects of salinity may impact heavily on
agriculture, biodiversity and the environment. As the saline
areas under agriculture are increasing every year across the
globe, it is of much public concern. Salt-stressed soils are
known to suppress the growth of plants. Salinity also disturbs
the sustainability of beneficial microorganisms associated
with the plant rhizosphere. There is a growing worldwide
demand for sound, ecologically compatible and environmen-
tally friendly techniques in saline soil agriculture. Application

IN?A @ Springer

T—=" SCIENCE & IMPACT



748

D. Paul, H. Lade

of certain beneficial microorganisms, PGPRs, is an important
alternative to some of the traditional agricultural techniques,
and it is now widely in practice. PGPRs that live in association
with plant-roots offer enhanced plant growth and stress alle-
viation by various means. Salt-tolerant PGPRs have own
mechanisms for osmotolerance and could provide a signifi-
cant benefit to the plants grown in saline soils, in terms of
osmotolerance, better growth, vigour and yield. PGPRs en-
hance plant growth by several different mechanisms such as
asymbiotic N, fixation, solubilisation of mineral phosphate
and other essential nutrients, production of plant hormones
and other. Bacterial production of 1-aminocyclopropane-1-
carboxylate deaminase, induced systemic resistance, IST and
control of phytopathogenic microorganisms in the rhizosphere
are also modes of support to the plant. PGPRs mitigate salt
stress in crops by enhancing osmolyte accumulation in plants,
increasing K concentration and maintaining a high K"/Na"
ratio and scavenging ROS generated by plants with bacterial
antioxidative enzymes, etc. PGPR-mediated saline stress alle-
viation in plants have been reported in many of crops grown in
various geographical locations.

Commercial application of microbial inoculants to improve
crop growth and yield in saline environments is a potential
strategy for saline soil agriculture. There are several PGPR
inoculants currently commercialised that promote growth or
control pathogens or induce systemic resistance against path-
ogens or bring about mitigation of stress tolerance through at
least one mechanism. The potential PGPR isolates are formu-
lated using different organic and inorganic carriers either
through solid or liquid fermentation technologies. Use of
PGPR consortium with known functions that could act syner-
gistically is of interest as they offer multiple modes of action,
and temporal or spatial variability. Understanding the interac-
tion between consortium of microbial inoculants and plant
systems will pave way to harness more benefits from micro-
bial inoculants for improving plant growth and enhancing
tolerance to stress.
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