
HAL Id: hal-01234653
https://hal.science/hal-01234653v1

Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain Globalization: Using Languages to Support
Technical and Social Coordination

Julien Deantoni, Cédric Brun, Benoît Caillaud, Robert France, Gabor Karsai,
Oscar Nierstrasz, Eugene Syriani

To cite this version:
Julien Deantoni, Cédric Brun, Benoît Caillaud, Robert France, Gabor Karsai, et al.. Domain Glob-
alization: Using Languages to Support Technical and Social Coordination. International Dagstuhl
Seminar, Oct 2014, Dagstuhl, Germany. pp.70-87, �10.1007/978-3-319-26172-0_5�. �hal-01234653�

https://hal.science/hal-01234653v1
https://hal.archives-ouvertes.fr


Domain Globalization: Using Languages to
Support Technical and Social Coordination

Julien Deantoni1, Cédric Brun2, Benoit Caillaud3,
Robert B. France4, Gabor Karsai5, Oscar Nierstrasz6, and Eugene Syriani7

1 University of Nice-Sophia-Antipolis, France
2 Obeo, France

3 INRIA, Rennes, France
4 University of Colorado, CO, U.S.A.
5 Vanderbilt University, TN, U.S.A.
6 University of Bern, Switzerland
7 University of Montreal, Canada

Abstract. When a project is realized in a globalized environment, mul-
tiple stakeholders from different organizations work on the same system.
Depending on the stakeholders and their organizations, various (possi-
bly overlapping) concerns are raised in the development of the system.
In this context a Domain Specific Language (DSL) supports the work
of a group of stakeholders who are responsible for addressing a specific
set of concerns. This chapter identifies the open challenges arising from
the coordination of globalized domain-specific languages. We identify two
types of coordination: technical coordination and social coordination. Af-
ter presenting an overview of the current state of the art, we discuss first
the open challenges arising from the composition of multiple DSLs, and
then the open challenges associated to the collaboration in a globalized
environment.

Keywords: Composition, Coordination, DSL, Globalization

1 Context

In this chapter we describe the issues associated with the coordination aspects of
the globalizing languages challenge. Specifically, the focus is on how globalized
domain-specific languages (DSLs) can be used on projects with multiple stake-
holder groups, each focusing on a different engineering/development concern,
to support analysis of system properties and coordination of work across the
groups. The groups may span multiple organizations that temporarily need to
collaborate on a project, thus one needs to accommodate different collaboration
styles and engineering cultures, and manage differing trust and security proce-
dures when it comes to sharing information. The language-based coordination
mechanisms should take these into consideration.

In this context, a DSL is a software or system language that is specifically
built to support the work of a group of stakeholders that are responsible for ad-
dressing a specific set of concerns. It must therefore be supported by technologies



74

that serve the particular purposes of the stakeholders. For example, a DSL’s pur-
pose may be to support static analysis of properties, provide a description of a
system component, or it may be used to support simulation of some behavioral
aspect. Based on purpose, a DSL may be declarative, executable, prescriptive or
descriptive.

A distinguishing characteristic of a globalized framework of DSLs is its open-
ness, that is, there is no restriction on the form of languages and supporting
tools that can be added to the framework. Realizing the globalized DSL vision
thus requires consideration of how new DSLs and their toolsets are incorporated
into the language framework.

Two types of language-based coordination can be broadly identified: Techni-
cal and Social. Technical coordination is concerned with the mechanisms used to
compose heterogeneous languages to support analysis of properties that require
information captured in models expressed in different languages. Such analysis
typically requires coordinated analysis of the models expressed in the different
languages. Examples of two forms of analysis are consistency checking and com-
patibility checking. Checking consistency means to determine whether informa-
tion spread across models expressed in different languages is not contradictory.
This is easily understood when considering DSLs expressing logical or numerical
constraints where checking consistency amounts to checking the satisfiability of
the conjunction of the constraints. In system engineering, consistency usually
applies to models belonging to the various viewpoints of the same component.
Compatibility checking is concerned with determining whether two models can
be composed in a particular environment, that is, two models are compatible if
there is an environment in which two models can work together. The simplest
instance of this concept is the type compatibility of components with input and
output ports, where the output of one component should be a subtype of the in-
put of the other components. Compatibility usually applies to models of several
interacting components that form a system architecture.

To support technical coordination, correspondences between language ele-
ments should be defined at the syntactic level. Elements for identifying and
describing such correspondences needs to be supported.

Language-based social coordination is concerned with how globalized DSLs
can be used to support effective collaboration across stakeholder groups. Coordi-
nation of work through globalized software languages leads to social translucence,
where relatively autonomous groups of stakeholders are made aware of activities
performed by other groups. Groups can thus react accordingly to communicated
information and in turn notify other groups of their reactions. These interac-
tions can take place through the sending of notifications and feedback. Social
coordination can also include support for managing resources across groups. To
support social coordination the DSLs may have, for example, to be augmented
with metadata about activities and resources associated with the DSL language
elements.



75

2 State of Art

Multiple DSLs can be composed into a host environment at a variety of different
levels. The coarsest level is that of tool composition, where tools supporting a
domain modeling approach may be composed, but there is no language com-
position per se. With model composition, the underlying models can interact,
but again there is no language composition. Finally, with language composition,
individual DSLs may be integrated or coordinated, either at a syntactic level or
at a deeper semantic level.

2.1 Tool composition frameworks

Tool composition frameworks provide a means for individual tools to interact
with one another. “Tool” here can mean a model editing or model execution en-
vironment, but in practice they may include simpler tools like spreadsheets. The
tools may be domain-specific or general-purpose, and tool composition frame-
works facilitate tool interoperability. Several tool integration patterns have been
developed and used in complex toolchains [10, 29, 31, 5]. Tool chains may support
collaborative work, either directly (when a multitude of developers is assisted by
the framework, in real-time, synchronously), or indirectly (when the collabora-
tion is more asynchronous).

Some tool integration frameworks are distributed (with tools running on
different platforms), some are desktop-based, where the framework provides a
unified visual interface to a suite of the integrated tools. For the latter Eclipse8

is the most prevalent example. Commercial products are also available.9.
There also exist tool coordination frameworks whose goal is to orchestrate

the execution/simulation driven by different tools so that data can be exchanged
between them during the simulation. One of the best-known coordination frame-
work is the the functional mock-up interface [7].

2.2 Model composition frameworks

The purpose of model composition is to provide a consistent view of various mod-
els possibly expressed in different modeling languages for the purposes of analysis
and synthesis. The challenge is that the domain, the syntax, and the semantics of
modeling languages can be widely different, yet the composed model has to have
a semantics on its own that is relevant for the task at hand. Broadly speaking,
models can be composed either via a hierarchy or via side-by-side composition.
In hierarchical composition models coming from one language are embedded in
models expressed in another language, while in side-by-side composition models
at the same level of abstraction are related, usually via their interfaces. Models
can be static artifacts (i.e., passive documents) or dynamic entities (e.g., models
embedded within a simulation engine). Hence, model integration can be static or

8 http://en.wikipedia.org/wiki/Eclipse Modeling Framework
9 http://www.phoenix-int.com/software/phx-modelcenter.php



76

dynamic, yielding either a composed (static) document or an active, integrated
dynamic model executing on some platform. In all model integration frameworks,
there is some common foundation to support integration. This could be syntac-
tic, semantic, operational, or some mixture. By syntactic foundation we mean a
concrete textual or visual notation that allows model integration; by semantic
foundation we mean a common semantic domain, and by operational foundation
we mean some software infrastructure that allows the inter-operation of models.

UML Profiles provide a mechanism for defining and composing domain-
specific modeling languages in the overall UML framework. These are not new
languages, but already defined UML constructs that are specialized through
stereotyping. Stereotypes are special markers applied to specific UML model el-
ements, which gain a specific semantics through this process. Profiles often spec-
ify model patterns (built from stereotyped model elements) that have domain-
specific semantics. In this case the model integration platform is UML, and the
integration is supported by the model integration operators of UML.

Coordination languages encompass both the formalisms and the mechanisms
needed to achieve multiple parallel, possibly distributed computation. Their pur-
pose is to coordinate a number of possibly heterogeneous executable models
together, by interfacing with each of them in such a way that they can take ad-
vantage of parallel and distributed systems [25]. Examples of such languages are
Linda [12] for data-driven coordination, or Esper10 for event-driven coordina-
tion. These languages emphasize the benefits of having an explicit coordination
model to reason about the coordination of multiple executable models.

The CyPhy11 [47] modeling language was developed to facilitate model co-
ordination for the design of complex cyber-physical systems, for instance vehi-
cles. This model coordination language is built around a hierarchical component
model where components have four categories of interfaces: parametric and prop-
erties (for setting and getting parametric values), signal interfaces (for causal
interactions among electronic and software components), power interfaces (for
acausal interactions among physical components with dynamics), and structural
interfaces (for geometric 3D composition). CyPhy components contain references
for high-fidelity domain-specific models stored in external modeling tools and
model databases. CyPhy models are composed by connecting the strongly-typed
component interfaces so that the composite allows a coordinated analysis of the
entire system. Note that the analysis can cut across many different domain-
specific models.

The High-Level Architecture12 (HLA) (IEEE-1516) [34] is a run-time
framework for coordinating heterogeneous distributed simulation engines, called
federates. It provides a standard for facilitating interaction among simulations,
including message formats and the synchronization of the logical clocks of the
simulators. Each simulation preserves its own semantics for the model, but as
simulations advance in time, their clocks remain synchronized. The semantics of

10 http://www.espertech.com/esper/
11 http://cps-vo.org/group/avm/meta-overview
12 http://en.wikipedia.org/wiki/High-level architecture (simulation)



77

the federation (composed from the federates) is that of a large-scale dynamic sys-
tem where each component has its own dynamics, yet the temporal progression
of the individual engines is carefully regulated.

2.3 Language composition frameworks

Language integration frameworks enable the embedding of multiple DSLs into
a host language. This integration is commonly at a syntactic level. The compo-
sition may also be done at a deeper semantic level either by integration or by
coordination.

Syntactic integration Syntactic integration of domain-specific languages is
commonly supported by so-called language workbenches [22], environments that
define (1) a schema for an abstract syntax for a language (i.e., a grammar),
(2) one or more rich editing environments for the language, and (3) language
semantics, typically either by direct interpretation or code generation. Language
workbenches can be based on a variety of parsing technologies, such as general-
ized LR (GLR) parsing [48], generalized LL (GLL) parsing [43], term rewriting
[23], parser combinators [24], or parsing expression grammars [9].

AToMPM13 [46] is a framework for generating syntax-directed domain-
specific modeling editors, performing in-place model transformation, and man-
aging DSMs in a cloud-based web environment. Each DSL has one meta-model.
However, a model can be built that links instances from different meta-models,
therefore a model can conform to multiple meta-models. A DSL can be assigned
multiple graphical concrete syntaxes.

AToMPM follows a view-based modeling approach. A user only interacts with
a view of a model, specified in a dedicated concrete syntax, showing a sub-set
of the underlying model. Changes in one view are automatically propagated to
the model and to other overlapping views. Multiple users can collaboratively
work on the same view. Concurrent conflicting changes are handled by manual
inspection through a chatting system.

Helvetia14 [40] is a PEG-based language workbench for adding DSLs to
Smalltalk by source code transformation. The transformations are available to
the entire language toolchain, so tools like the editor and the debugger can
exploit them to accurately display the original embedded DSL source rather
than just the generated host language code.

MetaEdit+15 is a mature language workbench that supports graphical di-
agram, matrix and table representations for DSLs. Languages can be composed
by integrating individual metamodels or by creating a metamodel that includes
several integrated languages. A language definition is integrated combining ab-
stract syntax, static semantics, concrete syntax and transformations. MetaEdit+
supports collaborative language engineering allowing several persons to create

13 http://www-ens.iro.umontreal.ca/ syriani/atompm/atompm.htm
14 http://scg.unibe.ch/research/helvetia
15 http://www.metacase.com/



78

DSLs at the same time as well as it supports collaborative modeling when using
the DSLs. It is a commercial and supported environment that is used to create
hundreds of DSLs.

TXL16 [15] is a source code transformation language based on term rewriting.
TXL can be used to transform embedded DSLs to a host language, much like
Helvetia. Spoofax17 [37] is a language workbench based on term rewriting.
Spoofax offers a fine degree of control over the term rewriting traversal strategy.

MPS18 is a platform enabling the definition and integration of DSLs through
the use of language extensions and projectional editing. Rather than manipulat-
ing a program as a text, MPS stores a program as an abstract syntax tree (AST)
and edits it directly. MPS enables embedding of a language into another while
avoiding the problem of textual grammar ambiguity by not storing language
code as text at all but storing the AST and reifying the notion of Language
Extension: a set of concepts that refine those present in the base model with
their own attributes and references.

The Generic Modeling Environment (GME) [36]19 is a metaprogrammable
graphical modeling environment that enables the definition of graphical modeling
languages through metamodels. Once defined, the metamodel can immediately
be used in a domain-specific graphical model editor that enforces the use of
concepts, integration operators, and well-formedness rules (i.e., the structural
semantics) of the domain-specific modeling language defined by the metamodel.
The tool has its own meta-metamodel, and provides model access API-s, both
on the meta- (i.e., language-) level and the domain (i.e., model-) level. Meta-
models of languages are composable within the tool, allowing the integration
of domain-specific modeling languages. The most recent development in GME
(called WebGME20) provides a web-based collaborative graphical modeling en-
vironment with version control and support for distributed model editing.

Dictō [11] follows a lightweight approach to integrating architectural con-
straint checkers. Rather than integrating multiple DSLs, it offers a single, syn-
tactical framework for expressing different kinds of architectural constraints, and
allows tools for checking those constraints to be plugged into the Dictō frame-
work.

Semantic composition. When the system consists of different executable lan-
guages, it is of primary importance to understand what are the emerging behav-
iors (whether expected or not) of the global system. In such cases it is necessary
to understand how the semantics of each language can be composed. The goal
of the semantic composition is to enable simulation and/or verification activi-
ties on the global system according to (1) the semantics of each language and
(2) the behavior scattered in/specified by the heterogeneous models (i.e., the

16 http://www.txl.ca/
17 http://strategoxt.org/Spoofax/WebHome
18 http://www.jetbrains.com/mps/
19 http://www.isis.vanderbilt.edu/Projects/gme/
20 http://webgme.org/



79

models conforming to different languages). In consequence actual approaches for
semantic composition are usually ensure that the coordination of the models
conforming to these languages can be automatically obtained. There exist very
different approaches to deal with this problem.

A first kind of approach, typified by Formula21 [21] or Modelyze22 [8], pro-
vides a formal environment where you can define, based on a specific form of the
grammar, the domain-specific semantics of your language. This involves a trans-
lation of the domain-specific language into a representation suitable for formal
anchoring in the targeted tool. In these approaches, the underlying semantics of
these environment acts as a common semantic domain from which reasoning is
possible. Based on a common representation of the semantics, it is then possible
to specify how they are related. Such an approach provides very interesting for-
mal verification capabilities, but a first drawback is the need for an arbitrarily
complex transformation, which can make the semantics of the original model dif-
ficult to handle. This drawback is often pointed out in more classical approaches
using translational semantics (i.e., the translation of a semantic free language
into a common formal representation). The other drawback relies on the exis-
tence of a common semantic background that must be expressive enough to be
suitable for a wide variety of language while staying well founded for verification
and validation activities.

A second kind of approach makes explicit the notion of a Model of Compu-
tation (MoC) [18, 26, 42]. In these approaches, a MoC specifies the causalities,
timing and synchronization aspects of a language. First, making a MoC explicit
enables fine tuning of the computational semantics, and usually offers simulation
facilities. Second, it enables a clear specification of some semantic adaptations
between different MoCs so that the semantics of heterogeneous models can be
consistently coordinated. These approaches provide either the capacity to adapt
to a domain-specific language (Ptolemy [18]) or Modhel’X [26]) or the capac-
ity to drive formal refinement and reasoning on the system (Forsyde [42]), hence
forcing the designer to choose between domain adequacy and analysis power.

A third kind of approach is based on the notion of meta-languages. It provides
meta-languages for the specification of the domain-specific syntax (abstract and
concrete) but also meta-languages for the specification of the semantics and
its mapping to the syntax [14]. When using a meta-language like Ecore [45],
you benefit from the associated generative techniques like the generation of a
simple editor, its API, etc.In the same way, when using the meta-language for
behavioral semantics specification, you can draw benefits from the automated
generation of an interpreter and a explorer, making the models executable. The
same advantage is obtained when using a meta-language for behavioral semantic
composition, like BCOoL [49]. The main drawback of this approach comes from
the meta-language for behavioral semantics specification, which is not suitable
for an adequate specification of acausal models.

21 http://research.microsoft.com/en-us/projects/formula/
22 https://github.com/david-broman/modelyze



80

3 Open Challenges

The key challenge in the globalization of domain-specific languages is naturally
how to compose multiple languages, both syntactically and semantically within a
single software system. But there is another challenge related to collaboration in
a globalized environment. It includes the management of the individual artifacts
over time, environmental support for the viewpoints of multiple stakeholders,
and scalable, persistent management of diverse models in a global environment.

We will survey each of these challenges and their associated research questions
in turn.

3.1 Composition of multiple DSLs

The composition of multiple DSLs for the construction of a single software system
entails a number of fundamental questions. How are such languages composed
syntactically and semantically? Can we view DSLs as components, and, if so,
what are their interfaces? How can we determine if languages are semantically
compatible, and how can we check if the models expressed in them are consistent?
Finally, how can we integrate legacy tools tied to individual DSLs within a
common integrated system?

How do we compose languages? State of the art approaches have mainly
focused on the syntactic integration of languages. They specify operators for
merging the abstract syntaxes of different DSLs. A first challenge would be to
identify and to classify the integration operators and their impact on the prop-
erties of the composed language [13, 19]. Existing approaches seldom deal with
the behavioral semantics of the integration. Beyond the syntactic composition,
another challenge is therefore to extend the classification to cover the semantic
aspects of languages.

In many language composition approaches, the composition operators are
specified on languages but the integration (i.e., the merging) itself is applied on
models. They use the knowledge of the meta-language to specify the composi-
tion. Yet another challenge is to understand if it makes sense to adapt such an
idea to the behavioral semantics of language. In this case a directly associated
challenge would be to understand what kind of meta-languages can describe the
behavioral semantics of one language. Then, during the behavioral composition
of languages, does the composition integrate the behavioral semantics of the
languages or is it used to coordinate the behaviors of models that conform the
languages?

Can we view languages as components? If so, what are their inter-
faces? Component-Based Software Engineering was quite successful in abstract-
ing pieces of code or binary behind interfaces. Interfaces can be used to coordi-
nate multiple components without requiring any knowledge of the components’



81

internal implementation. This idea has penetrated many domain-specific lan-
guages so that models can be seen as components equipped with interfaces to
enable their coordination. The challenge now is to see the languages themselves
as components, meaning that they can be equipped with purpose-specific inter-
faces. Beyond the agreement that an interface is an abstraction of the language,
the exact nature of the interface is far from clear. For instance, if one sees a
language as a specification of a set of models describable in this language, then
an interface could offer a way to specify the subset of models supported by the
purpose the interface relates to. However, it can also be the set of operators,
together with a characterization of what it accepts from the language. It is not
clear also if the interface of a language can be used for language integration or
only for language coordination.

Many sub-questions arises from this challenge e.g., does it make sense to
provide some family of language interfaces according to some purpose at the
model level [1, 47]? Another research question is: in what language should a
language’s interface be specified? Should such a specification be reflexive at
some point?

Does a composed system have a unified semantics? Semantic compo-
sition means that one can analyze the properties of the composition of a set
of models expressed in several DSLs. This analysis can be manual, based on
experts’ knowledge, and possibly on a precise mathematical semantics of the
composition, or it can be automated. If the analysis is to be automated, then
the semantics of the composition of DSLs has to be implemented in some way.
This can range from simple type-checking rules to the composition of hetero-
geneous behavior paradigms: for instance asynchronous processes coupled with
time-triggered processes, or the coupling of discrete-time and continuous-time
dynamical systems.

How can this be achieved in practice? At a first glance, a common semantic
domain could be defined and implemented. Analysis would be performed using
the methods and tools of this unified semantic domain. Unfortunately, unified
semantic domains would become inconceivably complex when composing more
than a few DSLs. Unified semantic domains would be very expressive, and not
surprisingly, even the simplest analyses might turn out to be undecidable. The
unified semantic domain approach certainly has practical value whenever the
semantic domains to be unified are not too dissimilar.

Another approach is to avoid implementing a unified semantic domain, but
rather to provide means to coordinate the different models (e.g., by constructing
on-the-fly combined heterogeneous behavior). This is best understood when the
DSLs describe event-based discrete-time behavior, and each DSL comes with
a transition system based operational semantics. In Gemoc Studio23, behavior
synchronization is achieved on-the-fly, without recourse to an explicit, unified
semantic domain. In Ptolemy II24, programs called directors are used not only

23 http://gemoc.org/studio
24 http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm



82

to define models of computation, but also to define how low-level synchronization
between heterogeneous components is achieved.

Composing models with dissimilar semantic domains is largely an open prob-
lem. There are even semantic domains in which composability is difficult to
achieve. A striking example is that of stochastic systems: they are difficult to
compose, unless drastic stochastic independence assumptions are made.

Challenges in DSL semantic composition. Semantic composition can be
achieved using several ad-hoc techniques, depending on the semantics to be
composed. Event-based operational semantics, often used for state machines or
dataflow programs can easily be composed by synchronizing the step functions
of their concrete semantics. The same principle applies to timed extensions of
these formalisms, namely timed automata, and the network calculus. The sub-
ject is however still in its infancy and no clear methodology has been proposed to
address the composition of arbitrary semantic domains. We review below several
hard cases of semantic composition.

Composition of discrete-time and continuous-time models. How can
one co-simulate a system combining models with radically different semantics:
discrete time dynamical systems on one hand, and continuous time dynamical
systems on the other hand? The discrete time dynamics is often expressed in a
data flow or automata based language, while the continuous dynamics results
from a system of ordinary or algebraic differential equations (resp. ODEs and
DAEs). Several techniques can be used to address this problem, depending on the
overall system architecture and the assumptions that can be made on the overall
system behaviour. These techniques range from simple asymmetric co-simulation
methods, where time is handled by a unique numerical solver, to more involved
techniques combining several numerical solvers. With the Functional Mock-up
Interface25, several models mixing continuous and discrete time dynamics can
be co-simulated, with the restriction that the whole continuous-time dynamics
is handled by a unique numerical solver. Proposals have been put forward to
extend FMI, with for instance roll-back and step-size prediction mechanisms, to
support a deterministic co-simulation with several variable step-size numerical
solvers [17]. These techniques suffer from poor parallelism, and are difficult to
implement on a distributed parallel architecture, making them unusable on large
system models. Radically different techniques with good parallelism have been
explored, but for limited classes of models. For example, Waveform Relaxation
is a distributed simulation method for continuous-time dynamical systems, with
superlinear convergence properties under mild Lipschitz smoothness assump-
tions [51]. An interesting challenge would be to extend Waveform Relaxation
techniques to the hybrid systems case.

Composition of acausal models. A key challenge is the compositional-
ity of acausal continuous time models. They are often expressed using algebraic
differential equations (DAEs), where the data flow orientation of an incomplete

25 https://www.fmi-standard.org



83

model may depend on its environment. This makes the generation of simula-
tion code from a component model a difficult problem. The reason is that the
environment of a component is not known before this component instantiated
in a closed model. This problem becomes even harder when considering hybrid
systems with DAEs, found for example in the Modelica language26. The main
reason is that both the dataflow orientation and the differentiation index may
change dynamically, depending on the discrete state of the model. This has
severe consequences on the separate compilation, and the export of Modelica
components encapsulated in a FMU27. Currently, this can be done only under
the stringent assumption that the input/output orientation of variables appear-
ing at the interface of each compilation unit is fixed, and that the differentiation
index is invariant.

Composition of stochastic models. Composing stochastic models is a
true challenge. Composition operators can be easily defined, under the assump-
tion that the probability laws of the two models are independent. Unfortunately,
this assumption most often makes no sense when considering models represent-
ing viewpoints of the same component. It turns out that these probability dis-
tributions are marginal probabilities of hidden probability distributions defining
the stochastic behavior of the component. Marginal probabilities are in general
not independent. Several stochastic system theories with good composability
properties have been proposed. Unfortunately, their composition operators are
involved [27, 33, 3, 41] and none of them have been implemented in a DSL, using
the techniques developed in this book.

What is the difference between compatibility and consistency? A com-
ponent model is said to be consistent if it admits at least one correct realization.
Since components are often described according to several viewpoints, two mod-
els related to the same component are consistent if and only if there exists a
common correct realization of both models. Hence, consistency is a logical prop-
erty that applies to sets of models related to the same component.

Compatibility applies to models related to distinct interacting components.
Two models are compatible if and only if there exists an environment of both
components such that every realization of the two components can work together.
This may have many different meanings. Type compatibility is the simplest form
of compatibility. For example, the compatibility of two Interface Automata [39]
means that there exists an environment that will prevent the occurrence of
an output event whenever the peer component may not be ready to perform
the corresponding input. This notion of compatibility appears also in several
other specification formalisms, for instance Modal Interfaces [28], Sociable In-
terfaces [38] and Session Types [30]. Another fine example of compatibility is
the Eiffel programming language [4], where preconditions and postconditions at-
tached to methods are evaluated at runtime and can raise an exception whenever
a component is incorrectly used.

26 https://modelica.org
27 functional mock-up unit, https://www.fmi-standard.org



84

How do we check compatibility and consistency of a composition?
Consistency and compatibility are semantic properties of the composition of
several components that can be checked statically, or by using model-checking
techniques, or at runtime, depending on the semantic domains of the involved
DSLs. Type-checking and timing constraints are classical examples.

How can we exploit legacy tools in an integrated system? Specific do-
mains, such as mechanical engineering or control engineering, each have well-
established tool sets that allows users to perform their tasks efficiently. Glob-
alizing DSLs implies that different tools must work together. Therefore the in-
tegrated system output from the composition of DSLs must be able to exploit
existing tools without modifying them. Although tool integration is not a new
problem28, it is important to re-use and not re-invent tools for specific DSLs.
When composing DSLs, their affiliated tools must remain part of the globaliza-
tion and therefore appropriate interfacing between the different tools must be
investigated.

3.2 Collaboration in a globalized environment

Overall consistency along the lifecycle of DSL instances. Models are
used to specify and capture different aspects of a system. Although each DSL
has a specific purpose, their instance models might need to refer to elements
from other models conforming to other DSLs. As such, a model can end up
being coupled and inter-related to other models, where it is likely the referenced
model is owned by a different stakeholder.

Coordination is required when a model is updated but a given stakeholder
might not be aware how a provided model is being used by other parts of the
design. There may be few means available to assess the impact that changes may
lead to. Furthermore the client stakeholder who is consuming and referencing
elements from the other model may have no other choice than to inspect the
changes made by the provider to assess their impact on the client model. This
leads to a contradiction: both stakeholders, each having different concerns and
a dedicated language, have to understand the language of the other stakeholder
to collaborate.

In this context coordination requires many interactions among stakeholders
who are not even from the same domain. If DSLs can be processed in a unified
way, and the language engineer is the most competent person to express re-
quirements between language, shouldn’t there be the potential of reducing and
managing this coordination at the tool level? Coupling has to be considered as a
first-class citizen by the language engineer: in a globalized environment in which
language reuse and integration are no longer the exception but the general rule,
the language engineer needs to express which concepts are suitable for being
referenced or extended (probably among other possible relationships) and these
might have an impact at the model level regarding instance evolution.

28 Pheonix: http://www.phoenix-int.com/software/phx-modelcenter.php



85

The challenge is to provide a conceptual framework to the language engineer
to extend DSL definitions so that their instances can be coordinated without
requiring the different stakeholders to understand all the domains their work is
coupled to.

How to characterize a change for stakeholders. Enabling the collabo-
ration of different stakeholders through specific languages at a minimum re-
quires changes to be expressed using a language any stakeholder will understand.
Changes either need to have an obvious semantic for each stakeholder, or to be
unique so that they can be understood by all stakeholders. Changes are the
backbone of collaboration hence have to focus on three properties of socially
translucent systems: visibility, awareness, and accountability [20].

How and when does the language engineer characterize model com-
patibility. In the context of multiple DSLs each having their own semantics
we have to ask what is a “compatible” change. Is it a change that preserves the
semantics of the model? Is it a change that preserves the fact that all model
instances that were visible are still visible? Just going through several examples
of DSLs it appears that there might be different aspects exposed by a DSL, each
of them probably having its own notion of “compatibility”.

In the SERS use case, autonomous vehicles are represented in the system in
the form of a Computer Aided Design (CAD) model, parts of which are referred
to by other models: the SmartIntersection model refers to a vehicle’s position,
while Mission Command & Control use the longevity and payload characteriza-
tions of the CAD model to reach control decisions.

When a CAD model evolves in reaction to a change in the vehicle’s design or
characteristics, it is very likely that decisions captured in other models need to
be revised. On the other hand many evolutions of the CAD model will have no
effect whatsoever on the other models. Since the CAD model provides different
aspects, changes made in the CAD models might impact those aspects in a
compatible or incompatible way, and consumers will need to assess this impact.

Furthermore in the context of a global collaborative process one has to ask
when compatibility should be checked, and when consumers of models should be
notified of incompatibilities. This can have a dramatic effect on the collaborative
process: too late and much work will need to be done by the other stakeholders,
too frequent and the stakeholders will use most of their time to align their work
with the other changes. There is a need to be isolated yet informed; in this
balance resides a key factor of collaborative process efficiency.

How should the concrete syntax be impacted by the use of an external
language? The concrete DSL syntax is the primary means available to stake-
holders to adapt and change the models. When parts of models are in semantic
relationships with other elements from an external language, new aspects are
mandatory to achieve a seamless use of multiple DSLs: concrete syntaxes have



86

to be integrated (See the Syntactic Integration Chapter 2.3), and navigation
between the syntaxes has to be considered a first class citizen.

How do we define a concrete syntax so that parts of it can be reused or merged
with others, especially when the types referred to in the languages differ? We will
might need to embed parts of a textual syntax into another textual language, or
possible into a graphical language. What is the common ground to achieve these
syntactic integrations?

Besides these questions, in an open world DSLs and their concrete syntaxes
are not known beforehand and as such these issues should be adressed without
any specific operation by the end-user. The challenge is that the role of a tool
integrator doesn’t exist in such context and the DSL and concrete syntax defi-
nitions themselves will have to be adapted so that the environment can provide
such services at runtime.

Multi-view modeling shared by multiple stakeholders. The collaboration
between stakeholders requires an appropriate tool support for sharing and jointly
working on common models. There are three possible multi-view modeling sce-
narios [16]: (1) Stakeholders are working on exactly the same artifact: both of
them share the same screen. All changes made by one stakeholder are directly
reflected and perceived by the other stakeholders, such as in Google Docs. This
situation is useful when, for example, two stakeholders are manually inspecting
a model together, if one stakeholder is training the other, or in a development
process favoring pair development. In this case, the collaboration is performed
at the granularity of individual model elements and conflicting operations are
resolved per element (or group of elements) as done in AToMPM [46]. (2) Stake-
holders are working on different viewpoints of the same model. This situation
is useful when artifacts are designed incrementally. This is possible when the
language in which the artifact is described, offers a modularity mechanism that
allows one to split its instances into different parts, such as partial classes in C#
and aliases in UML diagrams. In this case, each viewpoint evolves separately,
and changes are made locally to each viewpoint. At specific moments (on save
or commit), changes from different viewpoints are merged into the underlying
model. Conflicts that arise must then be resolved one by one by an expert as
in WebGME. (3) Stakeholders with differing expertise are working on distinct
models that, together, compose the overall system. Each artifact represents a
concern of the overall system, e.g., the electrical, software, and the security con-
cerns of an automotive. This is useful when a system is designed by separating
its concerns, such as in aspect-oriented programming. This case requires trace-
ability across DSLs. The traces need to be modeled explicitly in order to specify,
at the language level, how conflicts are resolved automatically at the model level
as in eMoflon [35].

Large scale model management. A collaborative modeling environment
typically requires more storage space and more efficient model manipulation
techniques than in a single-user modeling environment. Models grow in size



87

more rapidly because multiple stakeholders are contributing and evolving them.
Furthermore, traceability links between viewpoints, models, and DSLs must be
stored. It is therefore of paramount importance to seek a suitable data model
for persistent storage. Typically, all modeling artifacts are stored centrally on a
distributed cloud server. Graph databases are of particular interest because they
are optimized for graph representations of models as opposed to relational SQL
database that have been shown to not perform as well [50]. Example candidates
are: Neo4j which supports transaction processing [2], Trinity which virtualizes
random-access memory of a cluster of computer nodes [6], and Apache Giraph
which relies on the Hadoop paradigm [32]. A starting point for comparison is
Shah et al.’s tool for benchmarking NoSQL databases to store models [44].

4 Conclusion

After presenting an overview of current work related to the composition of tools,
models and languages, this chapter compiled a list of key open challenges re-
lated to both technical coordination of domain-specific languages and to social
coordination of stakeholders in a globalized environment. While many challenges
have to be addressed before achieving the globalization of modeling languages,
the number of recent works that are currently paving the road toward this glob-
alization makes these challenges very exciting.

References

1. Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Concern-Oriented Software
Design. In Ana Moreira, Bernhard Schtz, Jeff Gray, Antonio Vallecillo, and Peter
Clarke, editors, Model-Driven Engineering Languages and Systems, volume 8107
of Lecture Notes in Computer Science, pages 604–621. Springer Berlin Heidelberg,
2013.

2. Amine Benelallam, Abel Gmez, Gerson Suny, Massimo Tisi, and David Launay.
Neo4EMF, A Scalable Persistence Layer for EMF Models. In Jordi Cabot and
Julia Rubin, editors, Modelling Foundations and Applications, volume 8569 of Lec-
ture Notes in Computer Science, pages 230–241. Springer International Publishing,
2014.

3. Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Peder-
sen, and Andrzej Wasowski. Constraint Markov Chains. Theor. Comput. Sci.,
412(34):4373–4404, 2011.

4. Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991.
5. Jean Bézivin, Hugo Brunelière, Jordi Cabot, Guillaume Doux, Frédéric Jouault,

Jean-Sébastien Sottet, et al. Model driven tool interoperability in practice. In
Proceedings of the 3rd Workshop on Model-Driven Tool & Process Integration (co-
located with ECMFA 2010), pages 62–72, 2010.

6. Bin Shao, Haixun Wang, and Yatao Li. The Trinity Graph Engine. Technical
Report MSR-TR-2012-30, March 2012.

7. Torsten Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, et al. The functional mockup
interface for tool independent exchange of simulation models. In 8th International
Modelica Conference, Dresden, pages 20–22, 2011.



88

8. David Broman and Jeremy G. Siek. Modelyze: a Gradually Typed Host Lan-
guage for Embedding Equation-Based Modeling Languages. Technical Report
UCB/EECS-2012-173, EECS Department, University of California, Berkeley, Jun
2012.

9. Bryan Ford. Parsing expression grammars: a recognition-based syntactic founda-
tion. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 111–122, New York, NY, USA,
2004. ACM.

10. Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P Wadsack, Robert
Wagner, Lothar Wendehals, and Albert Zündorf. Tool integration at the meta-
model level: the Fujaba approach. International journal on software tools for tech-
nology transfer, 6(3):203–218, 2004.

11. Andrea Caracciolo, Mircea Lungu, and Oscar Nierstrasz. A unified approach to
architecture conformance checking. In Proceedings of the 12th Working IEEE/IFIP
Conference on Software Architecture (WICSA). ACM Press, 2015.

12. N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the
Perplexed. ACM Computing Surveys, 21(3):323–357, September 1989.

13. Mickael Clavreul. Model and Metamodel Composition: Separation of Mapping and
Interpretation for Unifying Existing Model Composition Techniques. PhD thesis,
Université Rennes 1, 2011.

14. Benoit Combemale, Julien Deantoni, Matias Vara Larsen, Frédéric Mallet, Olivier
Barais, Benoit Baudry, and Robert France. Reifying Concurrency for Executable
Metamodeling. In Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors, SLE
- 6th International Conference on Software Language Engineering, volume 8225 of
Lecture Notes in Computer Science, pages 365–384, Indianapolis, IN, États-Unis,
2013. Springer. CNRS PICS Project MBSAR (http://gemoc.org/mbsar).

15. James R. Cordy. The TXL Source Transformation Language. Sci. Comput. Pro-
gram., 61(3):190–210, August 2006.

16. Jonathan Corley, Huseyin Ergin, Simon Van Mierlo, and Eugene Syriani. Modern
Software Engineering Methodologies for Mobile and Cloud Environments, chapter
Cloud-based Multi-View Modeling Environments. IGI Global, 2015.

17. David Broman, Christopher X. Brooks, Lev Greenberg, Edward A. Lee, Michael
Masin, Stavros Tripakis, and Michael Wetter. Determinate composition of FMUs
for co-simulation. In Proceedings of the International Conference on Embedded
Software, EMSOFT 2013, Montreal, QC, Canada, September 29 - Oct. 4, 2013,
pages 1–12. IEEE, 2013.

18. J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S.
Sachs, and Y. Xiong. Taming heterogeneity – The Ptolemy approach. Proc. of the
IEEE, 91(1):127–144, 2003.

19. Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language compo-
sition untangled. In Proceedings of the Twelfth Workshop on Language Descrip-
tions, Tools, and Applications, LDTA ’12, pages 7:1–7:8, New York, NY, USA,
2012. ACM.

20. Thomas Erickson and Wendy A. Kellogg. Social Translucence: An Approach to
Designing Systems That Support Social Processes. ACM Trans. Comput.-Hum.
Interact., 7(1):59–83, March 2000.

21. Ethan K. Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and Thomas
Santen. Components, platforms and possibilities: towards generic automation for
MDA. In EMSOFT, pages 39–48. ACM, 2010.

22. Martin Fowler. Language Workbenches: The Killer-App for Domain-Specific Lan-
guages, June 2005.



89

23. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

24. Richard Frost and John Launchbury. Constructing natural language interpreters
in a lazy functional language. The Computer Journal, 32(2):108–121, 1989.

25. George A. Papadopoulos and Farhad Arbab. Coordination Models and Languages.
volume 46 of Advances in Computers, pages 329 – 400. Elsevier, 1998.

26. Cécile Hardebolle and Frédéric Boulanger. ModHel’X: A component-oriented ap-
proach to multi-formalism modeling. In Models in Software Engineering, pages
247–258. Springer, 2008.

27. Igor Kozine and Lev V. Utkin. Interval-Valued Finite Markov Chains. Reliable
Computing, 8(2):97–113, 2002.

28. Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud, Axel
Legay, and Roberto Passerone. A Modal Interface Theory for Component-based
Design. Fundamenta Informaticae, 108(1-2):119–149, 2011.

29. Gabor Karsai, Andras Lang, and Sandeep Neema. Design patterns for open tool
integration. Software & Systems Modeling, 4(2):157–170, 2005.

30. Kohei Honda. Session Types and Distributed Computing. In Artur Czumaj,
Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, War-
wick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes in
Computer Science, page 23. Springer, 2012.

31. Gerhard Kramler, Gerti Kappel, Thomas Reiter, Elisabeth Kapsammer, Werner
Retschitzegger, and Wieland Schwinger. Towards a semantic infrastructure sup-
porting model-based tool integration. In Proceedings of the 2006 international
workshop on Global integrated model management, pages 43–46. ACM, 2006.

32. Christian Krause, Matthias Tichy, and Holger Giese. Implementing Graph Trans-
formations in the Bulk Synchronous Parallel Model. In Fundamental Approaches
to Software Engineering, pages 325–339. Springer, 2014.

33. Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-Checking
omega-Regular Properties of Interval Markov Chains. In Roberto M. Amadio,
editor, Foundations of Software Science and Computational Structures, 11th In-
ternational Conference, FOSSACS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29 - April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer
Science, pages 302–317. Springer, 2008.

34. Frederick Kuhl, Judith Dahmann, and Richard Weatherly. Creating computer
simulation systems: an introduction to the high level architecture. Prentice Hall
PTR Upper Saddle River, 2000.

35. Erhan Leblebici, Anthony Anjorin, and Andy Schrr. Developing eMoflon with
eMoflon. In Davide Di Ruscio and Dniel Varr, editors, Theory and Practice of
Model Transformations, volume 8568 of Lecture Notes in Computer Science, pages
138–145. Springer International Publishing, 2014.

36. Akos Ledeczi, Peter Volgyesi, and Gabor Karsai. Metamodel composition in the
generic modeling environment. In Comm. at workshop on Adaptive Object-Models
and Metamodeling Techniques, Ecoop, volume 1, 2001.

37. Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench. Rules
for Declarative Specification of Languages and IDEs. In Martin Rinard, editor,
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, October 17-
21, 2010, Reno, NV, USA, pages 444–463, 2010.



90

38. Luca de Alfaro, Leandro Dias da Silva, Marco Faella, Axel Legay, Pritam Roy,
and Maria Sorea. Sociable Interfaces. In Proc. of the 5th International Workshop
on Frontiers of Combining Systems (FroCos’05), volume 3717 of Lecture Notes in
Computer Science, pages 81–105. Springer, 2005.

39. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc. of the 9th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE’01), pages 109–120. ACM Press, 2001.

40. Lukas Renggli, Tudor Gı̂rba, and Oscar Nierstrasz. Embedding Languages Without
Breaking Tools. In Theo D’Hondt, editor, ECOOP’10: Proceedings of the 24th
European Conference on Object-Oriented Programming, volume 6183 of LNCS,
pages 380–404, Maribor, Slovenia, 2010. Springer-Verlag.

41. Samy Abbes and Albert Benveniste. True-concurrency probabilistic models:
Markov nets and a law of large numbers. Theor. Comput. Sci., 390(2-3):129–170,
2008.

42. Ingo Sander and Axel Jantsch. System modeling and transformational design re-
finement in ForSyDe [formal system design]. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 23(1):17–32, 2004.

43. Elizabeth Scott and Adrian Johnstone. GLL Parsing. Electron. Notes Theor.
Comput. Sci., 253(7):177–189, September 2010.

44. Seyyed M. Shah et al. A Framework to Benchmark NoSQL Data Stores for Large-
Scale Model Persistence. In Proceedings of MODELS’14, volume 8767 of LNCS,
pages 586–601. Springer, 2014.

45. David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2009.

46. Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Hüseyin Ergin. AToMPM: A Web-based Modeling Environment.
In MODELS’13: Invited Talks, Demos, Posters, and ACM SRC, volume 1115,
Miami FL, USA, 2013. CEUR-WS.org.

47. J. Sztipanovits, T Bapty, S. Neema, L Howard, and E Jackson. OpenMETA: A
Model and Component-Based Design Tool Chain for Cyber-Physical Systems. In
From Programs to Systems – The Systems Perspective in Computing (FPS 2014),
Grenoble, France, April 6, 2014 2014. Springer, Springer.

48. Masaru Tomita. Efficient parsing for natural language: A fast algorithm for prac-
tical systems, volume 8. Springer, 1985.

49. Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale, and Frédéric
Mallet. A Behavioral Coordination Operator Language (BCOoL). ACM/IEEE
18th International Conference on Model Driven Engineering Languages and Sys-
tems (Models), 2015.

50. Gergely Varró, Katalin Friedl, and Dániel Varró. Implementing a Graph Trans-
formation Engine in Relational Databases. Journal on Software and Systems Mod-
eling, 5(3):313–341, 2006.

51. J. White, F. Odeh, Alberto L. Sangiovanni Vincentelli, and A. Ruehli. Waveform
Relaxation: Theory and Practice. Technical Report UCB/ERL M85/65, EECS
Department, University of California, Berkeley, 1985.


