
HAL Id: hal-01234637
https://hal.science/hal-01234637v1

Preprint submitted on 27 Nov 2015 (v1), last revised 22 Jan 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vibrato and Automatic Differentiation for High Order
Derivatives and Sensitivities of Financial Options

Gilles Pagès, Olivier Pironneau, Guillaume Sall

To cite this version:
Gilles Pagès, Olivier Pironneau, Guillaume Sall. Vibrato and Automatic Differentiation for High
Order Derivatives and Sensitivities of Financial Options. 2015. �hal-01234637v1�

https://hal.science/hal-01234637v1
https://hal.archives-ouvertes.fr

Vibrato and Automatic Differentiation for High Order

Derivatives and Sensitivities of Financial Options

Gilles Pagès∗, Olivier Pironneau†, Guillaume Sall‡

November 27, 2015

Abstract

This paper deals with the computation of second or higher order greeks of financial
securities. It combines two methods, Vibrato and automatic differentiation and compares
with other methods. We show that this combined technique is faster than standard finite
difference, more stable than automatic differentiation of second order derivatives and more
general than Malliavin Calculus. We present a generic framework to compute any greeks
and present several applications on different types of financial contracts: European and
American options, multidimensional Basket Call and stochastic volatility models such as
Heston’s model. We give also an algorithm to compute derivatives for the Longstaff-Schwartz
Monte Carlo method for American options. We also extend automatic differentiation for
second order derivatives of options with non-twice differentiable payoff.

Keywords: Vibrato; Automatic Differentiation; High Order Derivative; Greeks; Monte Carlo
Method; Option Pricing; Path-Dependent Option; High Dimension; Euler Scheme.

1 Introduction

Due to BASELS III regulations, banks are requested to evaluate the sensitivities of their port-
folios every day (risk assessment). Some of these portfolios are huge and sensitivities are time
consuming to compute accurately. Faced with the problem of building a software for this task
and distrusting automatic differentiation for non-differentiable functions, we turned to an idea
developed by Mike Giles called Vibrato.

Vibrato at core is a differentiation of a combination of likelihood ratio method and pathwise
evaluation. In Giles [11], it is shown that the computing time, stability and precision are enhanced
compared with straight forward finite difference of the full Monte Carlo path.

In many cases, double sensitivities, i.e. second derivatives with respect to parameters, are
needed (e.g. gamma hedging).

Finite difference approximation of sensitivities is a very simple method but its precision is
hard to control because relies on the appropriate choice of the increment. Automatic differen-
tiation of computer programs bypass the difficulty and its computing cost is similar to finite

∗Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, UPMC, Case 188, 4 pl. de Jussieu, F-75252
Paris Cedex 5, France, E-mail: gilles.pages@upmc.fr
†Laboratoire Jacques Louis Lions, UMR 7598, Case 187, 4 pl. de Jussieu, F-75252 PAris Cedex 5, France,

E-mail: olivier.pironneau@upmc.fr
‡Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, UPMC, Case 188, 4 pl. de Jussieu, F-75252

Paris Cedex 5, France, E-mail: guillaume.sall@upmc.fr

1

gilles.pages@upmc.fr
olivier.pironneau@upmc.fr
guillaume.sall@upmc.fr

difference, if not cheaper. But in finance the payoff is not twice differentiable and so generalized
derivatives have to be used requiring approximations of Dirac functions or which the precision
is also doubtfull.

The purpose of this paper is to investigate the feasibility of Vibrato for second and higher
derivatives. We will first compare Vibrato applied twice with the analytic differentiation of
Vibrato and show that it is equivalent; as the second is easier we propose the best compromise
for second derivatives: Automatic Differentiation of Vibrato.

In [7], Capriotti has recently investigated the coupling of different mathematical methods –
namely pathwise and likelihood ratio methods – with an Automatic differentiation technique for
the computation of the second order greeks; here we follow the same idea but with Vibrato and
also for the computation for higher order derivative.

Automatic Differentiation (AD) of computer program as described by Greiwank in [17], [18]
and Hascoet [20] can be used in direct or reverse mode. In direct mode the computing cost is
similar to finite difference but with no roundoff errors on the results: the method is exact be-
cause every line of the computer program which implements the financial option is differentiated
exactly. The computing cost of a first derivative is similar to running the program twice.

Unfortunately, for many financial products the first or the second sensitivities do not exist at
some point, as for the standard Digital option at x = K; even the payofff of the a plain vanilla
european option is not twice differentiatble at x = K, yet the Gamma is well defined and that
is because it is an integral of a Dirac function, which makes sense; in short the end result is well
defined but the intermediate steps of AD are not.

We tested ADOL-C [19] and tried to compute the Hessian matrix for a standard European Call
option in the Black-Scholes model but the results were wrong. So we adapted our AD library
based on operator overloading by including approximations of Dirac functions and obtained
decent results; this is the second conclusion of the paper: AD for second sensitivities can be
made to work; it is simpler than Vibrato+AD (VAD) but it is risky and slightly more computer
intensive.

More details on AD can be found in Giles et al. [10], Pironneau [33], Capriotti [6], Homescu
[25] and the references therein.

An important constraint when designing costly softwares for risk assessment is to be compat-
ible with the history of the company which contracts the software; most of the time this rules
out the use of partial differential equations (see [1]) as most quant companies use Monte Carlo
algorithms for pricing their portfolios.

For security derivatives computed by a Monte Carlo method, the computation of their sen-
sitivities with respect to a parameter is most easily approximated by finite difference thus re-
quiring the reevaluation of the security with a incremented parameter. It is also known as the
shock method. There are two problems with this method: it is imprecise when generalized to
higher order derivatives and expensive for multidimensional dimensional problems with multiple
parameters. The nth derivative of a security with p parameters requires (n + 1)p evaluations;
furthermore the choice of the perturbation parameter is tricky.

From a semi-analytical standpoint the most natural way to compute a sensitivity is the
pathwise method described in Glasserman [13] which amounts to compute the derivative of the
payoff for each simulation path. Unfortunately, this technique happens to be inefficient for certain
types of payoffs including some often used in quantitative finance like Digitals or Barrier options.
For instance as it is not possible to obtain the Delta of a Digital Call that way (the derivative of
the expectation of a Digital payoff is not equal to the expectation of the derivative of the Digital
payoff, which in fact does not exist as a function), the pathwise method can not evaluate the
Gamma of a Call option in a standard Black-Scholes model. The pathwise derivative estimation
is also called infinitesimal perturbation and there is a large literature on this subject; see for

2

example Ho et al. [23] and in Suri et al. [36]. A general framework for some applications to
option pricing is given in Glasserman [12].

There are also two well known mathematical methods to obtain sensibilities, the so-called
likelihood ratio method and the Malliavin calculus. However, as the pathwise method, both
have their own avantage and drawback. For the former, the method consists in differentiating
the probability density of the underlying and clearly, it is not possible to compute greeks if the
probability density of the underlying is not known. Yet the method has a great advantage in that
the probability densities are generally smooth functions of their parameters even when payoff
functions are not. This method has been developed primarily in Glynn [15], Reiman et al. [34],
Rubinstein [35] and some financial applications in Broadie et al. [5] and Glasserman et al. [14].

As for the Malliavin calculus, the computation of the greeks consists in writing the expectation
of the orignal payoff function times a specific factor i.e. the Malliavin weight which is a Skorohod
integral, the adjoint operator of the Malliavin derivative. The main problem of this method is
that the computation of the Malliavin weight can be complex and/or computationally expensive
for a high dimensional problem. Several articles deal with the computation of greeks via Malliavin
calculus, Fournié et al. [9], Benhamou [2] and Gobet et al. [16] to cite a few. The precision of
the Malliavin formulae also degenerate for short maturities.

Both the likelihood ratio and the Malliavin calculus are generally faster than the pathwise
or finite difference method because once the terms in front of the payoff function (the weight is
computed analytically, the approximation of a greek in a unidimensional case is almost equivalent
to the cost of the evaluation of the pricing function). One problematic inconvenient of these
methods in industry is that they require a new analysis for each new problem.

The paper is organized as follows; in section 2 we begin by recalling the Vibrato method
for first order derivatives as in Giles [11] for the univariate and the multivariate case. We then
generalize the method for the second and higher order derivatives with respect to one or several
parameters and we describe the coupling to an analytical or Automatic differentiation method
to obtain an additional order of differentiation.

In section 3, we recall briefly the different method of Automatic differentiation. We describe
the direct and the adjoint or reverse mode to differentiate a computer program. We also explain
how it can be extended to some non differientiable functions.

Section 4 deals with several applications to different derivative securities, we show some results
of second order derivatives (Gamma, Vomma and Vanna) and third order derivatives in the case
of a standard European Call option: the sensitivity of the Gamma with respect to changes in
the underlying asset and a cross-derivatives with respect to the underlying asset, the volatility
and the interest rate. Also, we compare different technique of Automatic differentiation and we
give some details about our computer implementations.

In section 5 we study some path-dependent products; we apply the combined Vibrato plus
Automatic differentiation method to the computation of the Gamma for an American Put op-
tion computed with the Longstaff Schwartz algorithm [30]. We also illustrate the method on
a multidimensional Basket option (section 4) and on a European Call with Heston’s model in
section 6. In section 7, we study the computing time for the evaluation of the Hessian matrix of
a standard European Call Option in the Black-Scholes model. Finally, in section 8 we compare
VADs to Malliavin’s and to the likelihood ratio method in the context of short maturities.

2 Vibrato

Vibrato was introduced by Giles in [11]; it is based on a reformulation of the payoff which is
better suited to differentiation. The Monte Carlo path is split into the last time step and its

3

past. Let us explain the method on a plain vanilla multi-dimensional option.
First, let us recall the likelihood ratio method for derivatives.

Let the parameter set Θ be a subset of Rp. Let b : Θ × Rd → Rd, σ : Θ × Rd → Rd×q and let
(Wt)t≥0 be a q-dimensional standard Brownian motion defined on a probability space (Ω,A,P).

Lemma 1 (Log-likelihood ratio)

Let p(θ, y) the probability density of a random variable X(θ) which is function of θ; consider

E[V (X(θ))] =

∫
Rd
V (y)p(θ, y)dy (1)

If θ 7→ p(θ, y) is differentiable at θ0 ∈ Θ, then, under a standard domination or a uniform
integrability assumption one can interchange differentiation and integration : for i = 1, .., p,

∂

∂θi

[
E[V (X(θ))]

]
|θ=θ0

=

∫
Rd
V (y)

∂ log p

∂θi
(θ0, y)p(θ0, y)dy = E

[
V (X(θ0))

∂ log p

∂θi
(θ0, X(θ0))

]
(2)

2.1 Vibrato for a European Contract

Let X = (Xt)t∈[0,T] be a diffusion process, strong solution of the following Stochastic Differential
Equation (SDE)

dXt = b (θ,Xt) dt+ σ(θ,Xt)dWt, X0 = x. (3)

For simplicity and without loss of generality we assume that q = d; so σ is a square matrix.
Obviously Xt depends on θ; for clarity we write Xt or Xt(θ) when the context requires it.

Given n > 0, the Euler scheme with constant step h = T
n , defined below in (4), approximates Xt

at time tnk = kh , i.e. X̄n
k ≈ Xkh, recursively defined by

X̄n
k = X̄n

k−1 + b(θ, X̄n
k−1)h+ σ(θ, X̄n

k−1)
√
hZk, X̄0 = x, k = 1, . . . , n, (4)

where {Zki}i=1,..,d
k=1,..,n are independent random Gaussian N (0, Idn) vectors. The relation between

W and Z is
Wtnk

−Wtnk−1
=
√
hZk. (5)

Note that X̄n
n = µn−1(θ) + σn−1(θ)

√
hZn with

µn−1(θ) = X̄n
n−1(θ) + b(θ, X̄n

n−1(θ))h and σn−1(θ) = σ(θ, X̄n
n−1(θ)). (6)

Then for any Borel function V : Rd → R such that E|V (X̄n
n (θ))| < +∞,

E
[
V (X̄n

n (θ))
]

= E
[
E
[
V (X̄n

n (θ)) | (Wk)k=0,...,n−1

]]
= E

[
E
[
V (X̄n

n (θ)) | X̄n
n−1

]]
. (7)

This follows from the obvious fact that the Euler scheme defines a Markov chain X̄ with respect
to the filtration Vk = σ(Wtn`

, ` = 0, . . . , k).
Furthermore, by homogeneity of the chain,

E
[
V (X̄n

n (θ)) | X̄n
n−1

]
=
{
Ex
[
V (X̄n

1 (x, θ))
]}
|x=X̄nn−1

=
{
E[V (µ+ σ

√
hZ)]

}
µ = µn−1(θ)

σ = σn−1(θ)

(8)

Where X̄n
1 (x, θ) denotes the value at time tn1 of the Euler scheme with k = 1, starting at x and

where the last expectation is with respect to Z.

4

2.2 First Order Vibrato

We denote ϕ(µ, σ) = E
[
V (µ+ σ

√
hZ)

]
. From (7) and (8), for any i ∈ (1, .., p)

∂

∂θi
E[V (X̄n

n (θ))] = E

[
∂

∂θi

{
E[V (µ+ σ

√
hZ)]

}
µ = µn−1(θ)

σ = σn−1(θ)

]
= E

[
∂ϕ

∂θi
(µn−1(θ), σn−1(θ))

]
. (9)

and

∂ϕ

∂θi
(µn−1, σn−1) =

∂µn−1

∂θi
· ∂ϕ
∂µ

(µn−1, σn−1) +
∂σn−1

∂θi
:
∂ϕ

∂σ
(µn−1, σn−1) (10)

where · denotes the scalar product and : denotes the trace of the product of the matrices.

Lemma 2 The θi-tangent process to X, Yt =
∂Xt

∂θi
, is defined as the solution of the following

SDE (see Kunita [27])

dYt =
[
b′θi(θ,Xt) + b′x(θ,Xt)Yt

]
dt+

[
σ′θi(θ,Xt) + σ′x(θ,Xt)Yt

]
dWt, Y0 =

∂X0

∂θi
(11)

where the primes denote standard derivatives.

As for X̄n
k in (4) we may discretize (11) by

Ȳ nk+1 =
[
b′θi(θ, X̄

n
k) + b′x(θ, X̄n

k)Ȳ nk
]
h+

[
σ′θi(θ, X̄

n
k) + σ′x(θ, X̄n

k)Ȳ nk
]√

hZk+1 (12)

Then from (6),

∂µn−1

∂θi
= Ȳ nn−1(θ) + h

[
b′θi(θ, X̄

n
n−1(θ)) + b′x(θ, X̄n

n−1(θ))Ȳ nn−1(θ)
]

∂σn−1

∂θi
=
√
h
[
σ′θi(θ, X̄

n
n−1(θ)) + σ′x(θ, X̄n

n−1(θ))Ȳ nn−1(θ)
]
. (13)

So far we have shown the following

Lemma 3 When Xn
n (θ) is given by (4), then

∂

∂θi
E[V (X̄n

n (θ))] is given by (9) with (10), (13)

and (12).

In (4) b and σ are constant in the time interval (kh, (k + 1)h), therefore the conditional
probability of X̄n

n given X̄n
n−1 is

p(x) =
1

(
√

2π)d
√
|Σ|

e−
1
2 (x−µ)TΣ−1(x−µ) (14)

where µ and Σ = hσσT are evaluated at time (n− 1)h and given by (6). As in Dwyer et al. [8],

∂

∂µ
log p(x) = Σ−1(x− µ) ⇒ ∂

∂µ
log p(x)|x=Xnn

= σ−T
Z√
h

∂

∂Σ
log p(x) = −1

2
Σ−1 +

1

2
Σ−1(x− µ)(x− µ)TΣ−1 ⇒ ∂

∂Σ
log p(x)|x=Xnn =

1

2h
σ−T (ZZT − I)σ−1.

Finally, applying Lemma 3 and Lemma 1 gives

5

Proposition 1 (Vibrato, multidimensional first order case)

∂

∂θi
E[V (X̄n

n (θ))] = E

[
∂

∂θi

{
E[V (µ+ σ

√
hZ)]

}
µ = µn−1(θ)

σ = σn−1(θ)

]

= E
[

1√
h

∂µ

∂θi
· E
[
V (µ+ σ

√
hZ)σ−TZ

] ∣∣∣∣µ = µn−1(θ)

σ = σn−1(θ)

+
1

2h

∂Σ

∂θi
: E
[
V (µ+ σ

√
hZ)σ−T (ZZT − I)σ−1

]∣∣∣∣µ = µn−1(θ)

σ = σn−1(θ)


(15)

2.3 Antithetic Vibrato

The formula above can be improved easily by reducing the variance with an antithetic formula.
The following holds:

E
[
V (µ+ σ

√
hZ)σ−TZ

]
=

1

2
E
[(
V (µ+ σ

√
hZ)− V (µ− σ

√
hZ)

)
σ−TZ

]
(16)

similarly, using E[ZZT − I] = 0,

E
[
V (µ+ σ

√
hZ)σ−T (ZZT − I)σ−1

]
=

1

2
E
[(
V (µ+ σ

√
hZ)− 2V (µ) + V (µ− σ

√
hZ)

)
σ−T (ZZT − I)σ−1

]
(17)

Corollary 1 (One dimensional case, d=1)

∂

∂θi
E[V (X̄n

n (θ))] =
1

2
E
[
∂µ

∂θi
E
[(
V (µ+ σ

√
hZ)− V (µ− σ

√
hZ)

) Z

σ
√
h

] ∣∣∣∣µ = µn−1(θ)

σ = σn−1(θ)

+
∂σ

∂θi
E
[(
V (µ+ σ

√
hZ)− 2V (µ) + V (µ− σ

√
hZ)

) Z2 − 1

σ
√
h

]∣∣∣∣µ = µn−1(θ)

σ = σn−1(θ)

 (18)

Conceptual Algorithm In figure 1 we have illustrated the Vibrato decomposition at the path
level. To implement the above one must perform the following steps:

1. Choose the number of time step n, the number of Monte-Carlo path M for the n− 1 first
time steps, the number MZ of replication variable Z for the last time step.

2. For each Monte-Carlo path j = 1..M

• Compute {Xn
k }

n−1
k=1 , µn−1, σn−1 by (4), (6).

• Compute V (µn−1)

• Compute
∂µn−1

∂θi
and

∂σn−1

∂θi
by (11), (13) and (12)

• Replicate MZ times the last time step, i.e.

For mZ ∈ (1, ..,MZ)

– Compute V (µn−1 + σn−1

√
hZ(mZ)) and V (µn−1 − σn−1

√
hZ(mZ))

6

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.2 0.4 0.6 0.8 1

First part of the path (n-1 th terms of the Euler scheme) Last term

Figure 1: Scheme of simulation path of the Vibrato decomposition.

Average (18) over all MZ results

• Compute (18) by averaging over all M results.

Remark 1 For simple cases such as of the sensibilities of European options, a small MZ suffices;
this is because there is another average with respect to M in the outer loop.

Remark 2 For European option one may also use the Black-Scholes formula for the expected
value in (15).

2.4 Second Derivatives

Assume that X0, b and σ depend on two parameters (θ1, θ2) ∈ Θ2. There are two ways to
compute second order derivatives. Either by differentiating the Vibrato (15) while using Lemma
1 or by applying the Vibrato idea to the second derivative.

2.4.1 Second Derivatives by Differentiation of Vibrato

Let us differentiate (15) with respect to a second parameter θj :

∂2

∂θi∂θj
E[V (XT)] = E

[
1√
h

(∂2µ

∂θi∂θj
· E
[
V (µ+ σ

√
hZ)σ−TZ

]
+
∂µ

∂θi
· ∂

∂θj
E
[
V (µ+ σ

√
hZ)σ−TZ

]) ∣∣∣∣µ = µn−1(θ)

σ = σn−1(θ)

+
1

2h

(∂2Σ

∂θi∂θj
: E
[
V (µ+ σ

√
hZ)σ−T (ZZT − I)σ−1

]
+

∂Σ

∂θi
:
∂

∂θj
E
[
V (µ+ σ

√
hZ)σ−T (ZZT − I)σ−1

])∣∣∣∣
µ = µn−1(θ)

σ = σn−1(θ)


(19)

The derivatives can be expanded further; for instance in the one dimensional case one obtains:

∂2

∂θ2
E[V (XT)] = E

[
∂2µ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z

σ
√
h

]

7

+
∂µ

∂θ
E
[
∂V

∂θ
(µ+ σ

√
hZ)

Z

σ
√
h

+ V (µ+ σ
√
hZ)Z

∂

∂θ

(
1

σ
√
h

)]
+
∂σ

∂θ
E
[
∂V

∂θ
(µ+ σ

√
hZ)

Z2 − 1

σ
√
h

+ V (µ+ σ
√
hZ)(Z2 − 1)

∂

∂θ

(
1

σ
√
h

)]
+
∂2σ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z2 − 1

σ
√
h

]]
(20)

Finally E[f(Z)∂V∂θ] can be integrated by parts and with (13)and (6):

E[f(Z)
∂

∂θ
V (µ+ σ

√
hZ)] =

∫
R

f(x)

(
∂µ

∂θ
+
∂σ

∂θ
x

)
∂V

∂θ
(µ+ σ

√
hx)p(x)dx

= −
∫
R

d

dx

(
f(x)p(x)

(
∂µ

∂θ
+
∂σ

∂θ
x

))
1

σ
√
h
V (µ+ σ

√
hx)dx

= −E[f ′(Z)

(
∂µ

∂θ
+
∂σ

∂θ
Z

)
1

σ
√
h
V (µ+ σ

√
hZ)]

+E[f(Z)Z

(
∂µ

∂θ
+
∂σ

∂θ
Z

)
1

σ
√
h
V (µ+ σ

√
hZ)]

−E[f(Z)
∂σ

∂θ

1

σ
√
h
V (µ+ σ

√
hZ)] (21)

Hence, by injecting (21) in (26), we obtain the following expression:

∂2

∂θ2
E[V (XT)] =

E
[
∂2µ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z

σ
√
h

]
+
∂µ

∂θ
E
[
V (µ+ σ

√
hZ)

{(
∂µ

∂θ
+
∂σ

∂θ
Z

)(
Z2 − 1

σ2h

)
−∂σ
∂θ

(
2Z

σ2h

)}]
+
∂σ

∂θ
E
[
V (µ+ σ

√
hZ)

(
∂µ

∂θ
+
∂σ

∂θ
Z

){(
− 2Z

σ2h
+
Z(Z2 − 1)

σ2h

)
−∂σ
∂θ

(
2Z2 − 2

σ2h

)}]
+
∂2σ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z2 − 1

σ
√
h

]]
(22)

With
d

dx
p(x) = −xp(x). Hence,

Proposition 2 (Second Order by Differentiation of Vibrato)

∂2

∂θ2
E[V (XT)] =

E

[
∂2µ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z

σ
√
h

]
+

(
∂µ

∂θ

)2

E
[
V (µ+ σ

√
hZ)

Z2 − 1

σ2h

]
+

(
∂σ

∂θ

)2

E
[
V (µ+ σ

√
hZ)

Z4 − 5Z2 + 2

σ2h

]
+
∂2σ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z2 − 1

σ
√
h

]
+ 2

∂µ

∂θ

∂σ

∂θ
E
[
V (µ+ σ

√
hZ)

Z3 − 3Z

σ2h

]]
(23)

Remark 3 One can reduce the variance with antithetic variables as in section 2.3 because E[Z4−
5Z2 + 2] = 0 and E[Z3 − 3Z] = 0.

2.4.2 Second Derivatives by Second Order Vibrato

The same Vibrato strategy can be applied also directly to second derivatives.
As before the derivatives are transfered to the PDF p of XT :

∂2

∂θi∂θj
E[V (XT)] =

∫
Rd

V (x)

p(x)

∂2p

∂θi∂θj
p(x)dx =

∫
Rd
V (x)[

∂2 ln p

∂θi∂θj
+
∂ ln p

∂θi

∂ ln p

∂θj
]p(x)dx

8

= E
[
V (x)

(
∂2 ln p

∂θi∂θj
+
∂ ln p

∂θi

∂ ln p

∂θj

)]
(24)

Then

∂2

∂θ1∂θ2
E[V (X̄n

T (θ1, θ2))] =
∂2ϕ

∂θ1∂θ2
(µ, σ)

=
∂µ

∂θ1

∂µ

∂θ2

∂2ϕ

∂µ2
(µ, σ) +

∂σ

∂θ1

∂σ

∂θ2

∂2ϕ

∂σ2
(µ, σ) +

∂2µ

∂θ1∂θ2

∂ϕ

∂µ
(µ, σ)

+
∂2σ

∂θ1∂θ2

∂ϕ

∂σ
(µ, σ) +

(
∂µ

∂θ1

∂σ

∂θ2
+
∂σ

∂θ1

∂µ

∂θ2

)
∂2ϕ

∂µ∂σ
(µ, σ). (25)

We need to calculate the two new terms
∂2

∂θ1∂θ2
µn−1(θ1, θ2) and

∂2

∂θ1∂θ2
σn−1(θ1, θ2). It requires

the computation of the first derivative with respect to θi of the tangent process Yt, that we

denote Y
(2)
t (θ1, θ2).

Then (13) is differentiated and an elementary though tedious computations yields the follow-
ing proposition (see appendix A for the detailed calculation).

Proposition 3 The θi-tangent process Y
(i)
t defined above in Lemma 11 has a θj-tangent process

Y
(ij)
t defined by

dY
(ij)
t =

[
b′′θiθj (θ1, θ2, Xt) + b′′θi,x(θ1, θ2, Xt)Y

(j)
t + b′′θj ,x(θ1, θ2, Xt)Y

(i)
t

+b′′x2(θ1, θ2, Xt)Y
(i)
t Y

(j)
t + b′x(θ1, θ2, Xt)Y

(ij)
t

]
dt

+
[
σ′′θiθj (θ1, θ2, Xt) + σ′′θi,x(θ1, θ2, Xt)Y

(j)
t + σ′′θj ,x(θ1, θ2, Xt)Y

(i)
t

+σ′′x2(θ1, θ2, Xt)Y
(i)
t Y

(j)
t + σ′x(θ1, θ2, Xt)Y

(ij)
t

]
dWt.

Finally in the univariate case θ = θ1 = θ2 this gives

Proposition 4 (Second Order Vibrato)

∂2

∂θ2
E[V (XT)] =

E

[
∂2µ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z

σ
√
h

]
+

(
∂µ

∂θ

)2

E
[
V (µ+ σ

√
hZ)

Z2 − 1

σ2h

]
+

(
∂σ

∂θ

)2

E
[
V (µ+ σ

√
hZ)

Z4 − 5Z2 + 2

σ2h

]
+
∂2σ

∂θ2
E
[
V (µ+ σ

√
hZ)

Z2 − 1

σ
√
h

]
+ 2

∂µ

∂θ

∂σ

∂θ
E
[
V (µ+ σ

√
hZ)

Z3 − 3Z

σ2h

]]
(26)

Remark 4 It is equivalent to Proposition 2 hence to the direct differentiation of Vibrato.

2.5 Higher Order Vibrato

The Vibrato-AD method can be generalized to higher order of differentiation of Vibrato with
respect to the parameter θ with the help of the Faà di Bruno formula and its generalization to
a composite function with a vector argument, as given in Mishkov [31].

9

2.6 About Regularity and Variance

Starting from Vibrato ϕ(µ, σ) = E[f(µ + σ
√
hZ)] and assuming f Lipschitz continuous with

Lipschitz coefficients [f]Lip, we have

∂ϕ

∂µ
(µ, σ) = E

[
f(µ+ σ

√
hZ)

Z

σ
√
h

]
= E

[(
f(µ+ σ

√
hZ)− f(µ− σZ

√
h)
) Z

2σ
√
h

]
. (27)

Therefore the variance satisfies

Var

[(
f(µ+ σ

√
hZ)− f(µ− σ

√
hZ)

) Z

2σ
√
h

]
≤ E

[∣∣∣∣(f(µ+ σ
√
hZ)− f(µ− σ

√
hZ)

) Z

2σ
√
h

∣∣∣∣2
]

≤ [f]2LipE

[
(2σ
√
hZ)2

4σ2h
Z2

]
= [f]2LipE[Z4] = 3[f]2Lip

As E[Z] = 0, we also have

∂ϕ

∂µ
(µ, σ) = E

[(
f(µ+ σ

√
hZ)− f(µ)

) Z

σ
√
h

]
. (28)

Then,

Var

[(
f(µ+ σ

√
hZ)− f(µ)

) Z

σ
√
h

]
≤ E

[∣∣∣∣(f(µ+ σ
√
hZ)− f(µ)

) Z

σ
√
h

∣∣∣∣2
]

≤ 1

σ2h
[f]2LipE

[
(σ
√
hZ)2Z2

]
= [f]2LipE[Z4] = 3[f]2Lip

Remark 5 The variance of formulae (27) and(28) are equivalent but the latter is less expensive
to compute.

If f is differentiable and f ′ has polynomial growth, we also have

∂ϕ

∂µ
(µ, σ) = E[f ′(µ+ σ

√
hZ)]. (29)

Thus,

Var
[
f ′(µ+ σ

√
hZ)

]
≤ E

[(
f ′(µ+ σ

√
hZ)

)2]
≤ ‖f ′‖2∞

Remark 6 If f ′ is bounded, we have [f]Lip = ‖f ′‖∞ then the expression in (29) has a smaller
variance than (27) and (28).

Assume that f ′ is Lipschitz continuous with Lipschitz coefficients [f ′]Lip. We can improve the
efficiency of (29) because

Var
[
f ′(µ+ σ

√
hZ)

]
= Var

[
f ′(µ+ σ

√
hZ)− f ′(µ)

]
≤ E

[∣∣∣f ′(µ+ σ
√
hZ)− f ′(µ)

∣∣∣2] ≤ [f ′]2Liphσ
2E[Z2] ≤ [f ′]Liphσ

2

Remark 7 Assuming that f(x) = 1{x≤K}, clearly we cannot differentiate inside the expectation
and the estimation of the variance seen previously can not be applied.

10

To simplify assume that K ≤ µ, we have∣∣∣f(µ+ σ
√
hZ)− f(µ− σ

√
hZ)

∣∣∣ =

∣∣∣∣= 1{
Z≤K−µ

σ
√
h

} − 1{
Z≥µ−K

σ
√
h

}∣∣∣∣ = 1{
Z/∈

[
K−µ
σ
√
h
,µ−K
σ
√
h

]}
hence ∣∣∣∣(f(µ+ σ

√
hZ)− f(µ− σ

√
hZ)

) Z

σ
√
h

∣∣∣∣ =
1

σ
√
h
|Z|1{

Z/∈
[
K−µ
σ
√
h
,µ−K
σ
√
h

]}
For the variance, we have

Var

[(
f(µ+ σ

√
hZ)− f(µ− σ

√
hZ)

) Z

σ
√
h

]
≤ E

[∣∣∣∣(f(µ+ σ
√
hZ)− f(µ− σ

√
hZ)

) Z

σ
√
h

∣∣∣∣2
]

By Cauchy-Schwarz we can write

E

[∣∣∣∣(f(µ+ σ
√
hZ)− f(µ− σ

√
hZ)

) Z

σ
√
h

∣∣∣∣2
]

=
1

2σ2h
E
[
Z2
∣∣∣f(µ+ σ

√
hZ)− f(µ− σ

√
hZ)

∣∣∣2]
=

1

2σ2h
E
[
Z21{

Z/∈
[
K−µ
σ
√
h
,µ−K
σ
√
h

]}]
≤ 1

2σ2h

(
E[Z4]

) 1
2

(
P
(
Z /∈

[
K − µ
σ
√
h
,
µ−K
σ
√
h

])) 1
2

≤
√

3

2σ2h

(
2P
(
Z ≥ µ−K

σ
√
h

)) 1
2

Then

√
3

2σ2h

(
2P
(
Z ≥ µ−K

σ
√
h

)) 1
2

=

√
6

2σ2h

(∫ +∞

µ−K
σ
√
h

e−
u2

2
du√
2π

) 1
2

Now ∀ a > 0, P(Z ≥ a) ≤ e−
a2

2

a
√

2π
so when a→ +∞

Var

[(
f(µ+ σ

√
hZ)− f(µ− σ

√
hZ)

) Z

σ
√
h

]
≤ 1

σ2h

√
3

2

e
− (µ−K)2

4σ2h

(2π)
1
4

√
µ−K
σ
√
h

≤ 1

(2π)
1
4 σ

3
2 h

5
4

e
− (µ−K)2

4σ2h −→
σ→0

{
0 if µ 6= K

+∞ otherwise.

This demonstrates the power of the Vibrato technique for non-differentiable payoff.

3 Second Derivatives by Vibrato plus Automatic Differentiation (VAD)

The differentiation that leads to formula (26) can be derived automatically by AD; then one
has just to write a computer program that implements the formula of proposition 2.3 and apply
automatic differentiation to the computer program. We recall here the basis of AD.

3.1 Automatic Differentiation

Consider a function z = f(u) implemented in C or C++ by

double f(double u){...}

11

To find an approximation of z′u, one could call in C

double dxdu= (f(u + du)-f(u))/du

because

z′u = f ′(u) =
f(u+ du)− f(u)

du
+O(|du|).

A good precision ought to be reached by choosing du small . However truncation arithmetic
limits the précision (figure 2) and shows that it is not easy to choose du appropriately because
beyond a certain threshold, the accuracy of the finite difference formula degenerates due to an
almost zero over almost zero division. One simple remedy is to use complex imaginary increments

Figure 2: Precision (log-log plot of |dzdu −
cos(1.)| computed with the forward finite differ-
ence formula to evaluate sin′(u) at u = 1.

Figure 3: Same as Fig. 2 but with the finite
difference which uses complex increments; both
test have been done with Maple-14

because

Re
f(u+ idu)− f(u)

idu
= Re

f(u+ idu)

idu
= f ′(u)−Ref

′′′
(u+ iθdu)

du2

6

leads to f ′(u) = Re[f(u+ idu)/(idu)] where the numerator is no longer the result of a difference
of two terms and indeed tests show that the error does not detoriate when du → 0 (figure 3).
Hence one can choose du = 10−8 to render the last term with a precision O(10−16) thus obtaining
an essentially exact result.

The cost for using this formula is two evaluations of f(), and the programming requires to
redefine all double as std::complex of the Standard Template Library in C++.

3.2 AD in Direct Mode

A conceptually better idea is based on the fact that each line of a computer program is dif-
ferentiable except at switching points of branching statements like if and at zeros of the sqrt

functions etc.
Denoting by dx the differential of a variable x, the differential of a*b is da*b+a*db, the

differential of sin(x) is cos(x)dx etc. By operator overloading, this algebra can be built into a
C++ class, called ddouble here:

class ddouble {

public: double val[2];

12

ddouble(double a=0, double b=0){ val[1]=b; val[0]=a; }

ddouble operator=(const ddouble& a)

{ val[1] = a.val[1]; val[0]=a.val[0]; return *this; }

ddouble operator - (const ddouble& a, const ddouble& b)

{ return ddouble(a.val[0] - b.val[0],a.val[1] - b.val[1]); }

ddouble operator * (const ddouble& a, const ddouble& b)

{ return ddouble(a.val[0] * b.val[0], a.val[1]*b.val[0]

+ a.val[0] * b.val[1]); }

... };

So all ddouble variables have an 2-array of data: val[0] contains the value of the variable
and val[1] the value of its differential. Notice that the constructor of ddouble assigns zero by
default to val[1].

To understand how it works consider the C++ example of figure 4 which calls a function
f(u, ud) = (u − ud)2 for u = 2 and ud = 0.1. Figure 5 shows the same program where double

has been changed to ddouble and the initialization of u implies that its differential is equal to 1.
The printing statement displays now the differential of f which is also its derivative with respect
to u if all parameters have their differential initialized to 0 except u which has du = 1. Writing

double f(double u, double u_d)

{ double z = u-u_d;

return z*(u-u_d); }

int main() {

double u=2., u_d =0.1;

cout << f(u,u_d)<< endl;

return 0;

}

Figure 4: A tiny C++ program to compute
(u− ud)2 at u = 2, ud = 0.1.

ddouble f(ddouble u, ddouble u_d)

{ ddouble z = u-u_d;

return z*(u-u_d); }

int main() {

ddouble u=ddouble(2.,1.), u_d = 0.1;

cout << f(u,u_d).val[1] << endl;

return 0;

}

Figure 5: The same program now computes
d
du (u− ud)2 at u = 2, ud = 0.1.

the class double with all functions and common arithmetic operators is a little tedious but not
difficult. An example can be downloaded from www.ann.jussieu.fr/pironneau.

The method can be extended to higher order derivatives easily. For second derivatives, for
instance, a.val[4] will store a, its differentials with respected to the first and second parameter,
d1a, d2a and the second differential d12a where the two parameters can be the same. The second
differential of a*b is a ∗ d12b+ d1a ∗ d2b+ d2a ∗ d1b+ b ∗ d12a, and so on.

Notice that df
dud

can also be computed by the same program provides the first line in the
main() be replaced by ddouble u=2., u d=ddouble(0.1,1.);. However if both derivatives
df

du
,
df

dud
are needed then either the program must be run twice or the class ddouble must be

modified to handle partial derivatives. In either case the cost of computing n partial derivatives
will be approximately n times that of the original program; the reverse mode does not have this
numerical complexity and must be used when, say n > 5 if expression templates with traits are
used in the direct mode and n > 5 otherwise [33].

3.3 AD in Reverse Mode

Consider finding F ′θ where (u, θ) → F (u, θ) ∈ R and u ∈ Rd and θ ∈ Rn. Assume that u is the
solution of a well posed linear system Au = Bθ + c.

13

The direct mode differentiation applied to the C++ program which implements F will solve
the linear system n times at the cost of d2n operations at least.

The mathematical solution by calculus of variations starts with

F ′θdθ = (∂θF)dθ + (∂uF)du with Adu = Bdθ

then introduces p ∈ Rd solution of AT p = (∂uF)T and writes

(∂uF)du = (AT p)Tdu = pTBdθ ⇒ F ′θdθ = (∂θF + pTB)dθ

The linear system for p is solved once only, i.e. O(d2) operations at least. Thus, as the linear
system is usually the costliest operation, this second method is advantageous when n is large.

A C program made of assignments only can be seen as a triangular linear system for the
variables. Loops can be unrolled and seen as assignments and tests, etc. Then by the above
method the ith line of the program is multiplied by a pi and p is computed from the last line
up; but the biggest difficulty is the book-keeping of the values of the variables, at the time p is
computed.

For instance for the derivative of f=u+ud with respect to ud with u given by {u=2*ud+4;
u=3*u+ud;},u in the second line is not the same as u in the third line and the program should
be rewritten as u1=2*ud+4; u=3*u1+ud;. Then the system for p is p2=1; p1=3*p2; and the
derivative is 2*p1+p2+1=8.

In this study we have used the library adept 1.0 by R.J. Hogan described in Hogan [24].
The nice part of this library is that the programming for the reverse mode is quite similar to the
direct mode presented above; all differentiable variables have to be declared as ddouble and the
variable with respect to which things are differentiated is indicated at initialization, as above.

3.4 Non-Differentiable Functions

In finance non-differentiability is everywhere. For instance the second derivative in K of (x−K)+

does not exist at x = K, yet the second derivative of
∫∞

0
f(x)(x−K)+dx is f(K). Distribution

theory extends the notion of derivative: the Heavyside function H(x) = 1{x≥0} has the Dirac
function at zero δ(x) for derivative.

Automatic differentiation can be extended to handle this difficulty to some degree by approx-
imating the Dirac by

δa(x) =
1√
aπ
e−

x2

a

Now suppose f is discontinuous at x = z and smooth elsewhere; then

f(x) = f+(x)H(x− z) + f−(x)(1−H(x− z))

hence

f ′z(x) = (f+)′z(x)H(x− z) + (f−)′z(x)(1−H(x− z))− (f+(z)− f−(z))δ(x− z)

Unless this last term is added, the computation of the second order sensitivities in finance will
not be right.

If in the AD library the ramp function x+ is defined as xH(x) with its derivative to be H(x)
and if H is defined with its derivative equal to δa and if in the program which computes the
financial asset it is written that (x − K)+ = ramp(x − K) then the second derivative in K
computed by the AD library will be δa(x−K) and it will also compute∫ ∞

0

f(x)(x−K)+dx ≈ 1

N

∑
f(ξi)δ

a(ξi −K)

14

where ξi are the N quadrature points of the integral or the Monte-Carlo points used by the
programmer to approximate the integral.

However this trick does not solve all problems; one must be cautious; for instance writing
that (x − K)+ = (x − K)H(x − K) will not yield the right result. Moreover the precision is
rather sensitive to the value of a.

Remark 8 Notice that finite difference (FD) is not plagued by this problem, which means that
FD with complex increment is quite a decent method for first order sensitivities. For second order
sensitivities the “very small over very small” problem is present.

4 VAD and the Black-Scholes Model

In this section, we implement and test VAD and give a conceptual algorithm that describes the
implementation of this method (done automatically). Let us take the example of a standard
European Call option in the Black-Scholes model.

4.1 Conceptual algorithm for VAD

1. Generate M simulation paths with time step h = T
n of the underlying asset X and its

tangent process Y =
∂X

∂θ
with respect to a parameter θ for k = 0, . . . , n− 2

X̄n
k+1 = X̄n

k + rhX̄n
k + X̄n

k σ
√
hZk+1, X̄n

0 = X0

Ȳ nk+1 = Ȳ nk + rhȲ nk +
∂

∂θ
(rh) X̄n

k +

(
Ȳ nk σ
√
h+

∂

∂θ

(
σ
√
h
)
X̄n
k

)
Zk+1, Ȳ

n
0 =

∂X0

∂θ
(30)

2. For each simulation path

(a) Generate MZ last time steps (X̄T = X̄n
n)

X̄n
n = X̄n

n−1(1 + rh+ σ
√
hZn) (31)

(b) Compute the first derivative with respect to θ by antithetic Vibrato (formula (18)
with σ(Xt) equal Xtσ)

∂VT
∂θ

=
∂µn−1

∂θ

1

2
(VT+

− VT−)
Zn

X̄n
n−1σ

√
h

+
∂σn−1

∂θ

1

2
(VT+

− 2VT• + VT−)
Z2
n − 1

X̄n
n−1σ

√
h

(32)

With VT±,• = (X̄T±,• −K)+ and{
X̄T± = X̄n

n−1 + rhX̄n
n−1 ± σX̄n

n−1

√
hZn

X̄T• = X̄n
n−1 + rhX̄n

n−1

(33)

and

∂µn−1

∂θ
= Ȳ nn−1(1 + rh) + X̄n

n−1

∂

∂θ
(rh)

∂σn−1

∂θ
= Ȳ nn−1σ

√
h+Xn

n−1

∂

∂θ
(σ
√
h) (34)

If θ = T or θ = r, we have to add
∂

∂θ
(e−rT)VT to the result above.

15

(c) Apply an Automatic Differentiation method on the computer program that imple-
ments step 32 to compute the second derivative with respect to θ at some θ∗.

(d) Compute the mean per path i.e. over MZ .

3. Compute the mean of the resulting vector (over the M simulation paths) and discount it.

4.2 Greeks

The Delta measures the rate of changes in the premium E[V (XT)] with respect to changes in
the spot price X0.

The Gamma measures the rate of changes of the Delta with respect to changes in the spot
price. Gamma can be important for a Delta-hedging of a portfolio:

The Vomma is the second derivative of the premium with respect to the volatility σ (also called
Vol Ga, Vega Gamma). The Vomma measures the rate of changes with respect to volatility of
the Vega which is the rate of changes in the premium with respect to changes in the volatility

The Vanna is the second derivative of the premium with respect to σ and X0. The Vanna
measures the rate of changes of the Delta with respect to changes in the spot price.

4.3 Numerical Test

For the generation of the random numbers, we chose the standard Mersenne-Twister generator
available in the version 11 of the C++ STL. We take MZ = 1 i.e. we simulate only one last time
step per path; for all the test cases except for the European Call contract in the Black-Scholes
model. In some cases we used a multi time steps in the Euler scheme with or without a Brownian
bridge.

The parameters considered in the following numerical experiments are K = 100, σ = 20%
and r = 5%, T = 1 year. The initial price of the risky asset price is varying from 1 to 200. The
Monte Carlo parameters are set to 100, 000 simulation paths and 25 time steps.

4.3.1 Preliminary Numerical Test

Here, we focus on the numerical precision of VAD on the Gamma of a standard European Call
contract with constant volatility and drift for which there is an analytical formula. Since Vibrato
of Vibrato is similar to Vibrato+AD (VAD) it is pointless to compare the two. On figure 6, the
gamma obtained with VAD versus asset price is displayed, the analytical solution is also plotted
as the reference value. We see that VAD is practically overlapping the analytical solution. The
curve looks roughed because we pick a new sample of random variables for each new set of
parameters.

Recall (Proposition 2 & 4) that it is equivalent to apply Vibrato to Vibrato or to apply
automatic differentiation to Vibrato. However the computation times are different and naturally
double Vibrato is faster.

4.3.2 Tests on Other Second Order Derivatives

We compare the analytical solution to those obtained with VAD but now for each new set of
parameters, we reuse the same sampling of the random variables.

16

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 20 40 60 80 100 120 140 160 180 200

VAD (MC)
Analytical solution

Figure 6: The gamma versus price is displayed when computed by Vibrato plus automatic dif-
ferentiation (VAD); the exact Gamma is also displayed; both curves are practically overlapping.
New samples are used for each set of parameters, hence the roughed look of the curve.

On figure 7, the Gammas are compared at X0 = 120; true value of the Gamma is Γ0 =
0.0075003. The convergence with respect to the number of path is also displayed for two values
of MZ . The method shows a good precision and fast convergence when the number of path for
the final time step is increased.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 20 40 60 80 100 120 140 160 180 200

VAD (MC)
Analytical solution

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 10000 20000 30000 40000 50000

VAD MZ=1 (MC)
VAD MZ=2 (MC)

Analytical solution

Figure 7: On the left the Gamma versus Price is displayed when computed by VAD; the analytical
exact Gamma is also displayed; both curves overlap. On the right, the convergence history at one
point X0 = 120 is displayed with respect to the number of Monte Carlo samples MW . This is
done for two values of MZ (the number of the final time step), MZ = 1 (low curve) and MZ = 2
(upper curve).

The L2-error denoted by εL2 is defined by

εL2 =
1

P

P∑
i=1

(Γ̄i − Γ0)2. (35)

On figure 8, we give the L2-errors for two VAD computations with P = 200 versus the number of
Monte Carlo replications, one by direct AD using our library the other by reverse AD using the

17

library adept 1.0 . As expected both methods give the same precision but the direct method
is 3 times faster than the reverse method, as expected, because only one partial derivative is
computed.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 20 40 60 80 100 120 140 160 180 200

VAD reverse mode (MC)
VAD direct mode (MC)

Analytical solution

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 10 100 1000 10000 100000

VAD reverse mode (MC)
VAD direct mode (MC)

Figure 8: On the left the Gamma versus Price is displayed when computed by Vibrato and
automatic differentiation; the method to compute the second order is done with two different
methods (VAD(D) direct mode, VAD(R) reverse mode). On the right, the L2-error versus the
number of simulation paths is displayed; the straight line is the analytical solution calculated at
one point X0 = 120. The results are identical for both cases.

On figure 9, we compare the results with and without variance reduction on Vibrato at the
final time step i.e. antithetic variables detailed in proposition 2.3. The convergence history
against the number of simulation paths is displayed. Results show that variance reduction is
efficient on that test case. The standard error against the number of simulation paths is also
displayed. It is clear that a reduction variance is needed. It requires almost ten times the number
of simulation paths without the reduction variance technique to obtain the same precision. The
Gamma is computed for the same set of parameters as given above.

On figures 10 and 11, we display respectively the Vanna and the Vomma of an European
Call option, still computed with the analytical solution and VAD. And again, the convergence
with respect to the number of simulation path is accelerated by more sampling of the final time
step. Note that for the Vanna (the mixed derivative), it requires a higher number of time steps
than for the Vomma and the Gamma i.e here, we pick two times the number of time steps to
obtain the same precision. As for the Gamma, the method provides a good precision for the
approximation of the Vomma and the Vanna. Both are computed at one point X0 = 120 with
the same set of parameters as given above.

4.3.3 Third Order Derivatives

For third order derivatives, we compute second derivatives by Vibrato of Vibrato 2 and differen-
tiate by AD (VVAD). The sensitivity of the Gamma with respect to changes in X0 is ∂3V/∂X3

0 .
The sensitivity of the Vanna with respect to changes in the interest rate is ∂3V/∂X0∂σ∂r. The
parameters of the European Call are the same but the Monte Carlo path number is 1, 000, 000
and 50 time steps for the discretization. The results are displayed on figure 12. The conver-
gence is slow; we could not eliminate the small difference between the analytical solution and
the approximation by augmenting the number of path.

18

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 10000 20000 30000 40000 50000

VAD w/o VR (MC)
VAD with VR (MC)
Analytical solution

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 100 1000 10000 100000 1e+06

VAD w/o VR (MC)
VAD with VR (MC)

Figure 9: On the left the Gamma versus the number of simulation paths is displayed when
computed by VAD with and without the variance reduction method on Z, the straight line is the
analytical solution at one point X0 = 120; On the right, the standard error of the two methods
versus the number of simulation paths with and without variance reduction.

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140 160 180 200

VAD (MC)
Analytical solution

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

 0 10000 20000 30000 40000 50000

VAD MZ=1 (MC)
VAD MZ=2 (MC)

Analytical solution

Figure 10: On the left the Vanna versus Price is displayed when computed by VAD; the analytical
exact Vanna is also displayed; both curves overlap. On the right, the convergence history at one
point X0 = 120 is displayed with respect to the number of Monte Carlo samples MW . This is
done for two values of MZ , MZ = 1 (low curve) and MZ = 2 (upper curve).

4.3.4 Ramp Function and High Order Derivatives

As mentioned in Section 3.4, it is possible to handle the non-differentiability of the function
(x − K)+ at x = K by using distribution theory and program the ramp function explicitly
with a second derivative equal to a Dirac function at K. We illustrate this technique with a
standard European Call option in the Black-Scholes model. We computed the Gamma and the
sixth derivative with respect to X0. For the first derivative the parameter a does not play an
important role but as we evaluate higher derivatives, the choice of the parameter a become
crucial for the quality of a good approximation and it requires more points to catch the Dirac
approximation with small a..

We took the same parameters as previously for the standard European Call option but the

19

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180 200

VAD (MC)
Analytical solution

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10000 20000 30000 40000 50000

VAD MZ=1 (MC)
VAD MZ=2 (MC)

Analytical solution

Figure 11: On the left the Vomma versus Price is displayed when computed by VAD; the analytical
exact Vomma is also displayed; both curves overlap. On the right, the convergence history at one
point X0 = 120 is displayed with respect to the number of Monte Carlo samples MW . This is
done for two values of MZ , MZ = 1 (low curve) and MZ = 2 (upper curve).

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 20 40 60 80 100 120 140 160 180 200

VVAD (MC)
Analytical solution

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 20 40 60 80 100 120 140 160 180 200

VVAD (MC)
Analytical solution

Figure 12: On the left ∂3V/∂X3
0 versus Price is displayed when computed by VVAD; the analytical

exact curve s also displayed; both curves practically overlap. On the right, the same for the Vanna
with respect to changes in interest rate (∂3V/∂X0∂σ∂r).

maturity for the Gamma is T = 5 years and T = 0.2 year for the sixth derivative with respect
to X0. The initial asset price varies from 1 to 200. The Monte Carlo parameters are also set to
100, 000 simulation paths and 25 time steps. The results are displayed on figure 13.

For the Gamma, the curves are overlapping but for the sixth derivative with respect to the
parameter X0, we cannot take a constant parameter a anymore. When we chose locally adapted
parameter a, the curves are practically overlapping.

4.4 Baskets

A Basket option is a multidimensional derivative security whose payoff depends on the value of
a weighted sum of several risky underlying assets.

As before Xt is given by (4) But now (Wt)t∈[0,T] is a d-dimensional correlated Brownian

20

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 20 40 60 80 100 120 140 160 180 200

AD (MC)
Analytical solution

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0 20 40 60 80 100 120 140 160 180 200

AD with a=5 (MC)
AD with local a (MC)

Analytical solution

Figure 13: On the left the Gamma versus Price is displayed when computed by AD with the ramp
function (with a = 1); the analytical exact Gamma is also displayed; both curves overlap. On
the right, the sixth derivative with respect to the parameter X0 is displayed when computed via
the same method; the analytical solution is also displayed. We computed the approximation with
local parameter a and with a = 5.

motion with E[dW i
t dW

j
t] = ρi,jdt.

To simplify the presentation we assume that r and σi are constants and the payoff is given
by

VT = e−rTE[(

d∑
i=1

ω ·XT −K)+] (36)

where (ωi)i=1,...,d are positive weights with
∑d
i=1 ωi = 1. Here, we choose to compare three dif-

ferent methods. The reference values coming from an approximated moment-matching dynamics
(Levy [29] and in Brigo et al. [4]), VAD and second order finite difference (FD).

4.4.1 Algorithm to compute the Gamma of a Basket option

We make use of the fact that r and σ are constant.

1. Generate M simulation paths using a one step in time Euler scheme.

X̄i
T± = Xi

T• exp

±1

2

d∑
j=1

|Σij |2T ±
d∑
j=1

Σij
√
TZj

, i = 1, . . . , d, with XT• = X0 exp (rT),

where Z denotes an N (0; Id)-distributed random vector.

2. For each simulation path, with C = ΣΣT, compute (Vibrato)

∆ =

(
∂µ

∂Xi0

)T
1

2
√
h

(VT+
−VT−)C−TZ+

1

4h
(VT+

−2VT•+VT−)
∂Σ

∂Xi0

: C−T (ZZT −Id)C−1

(37)
With VT. = (ω · X̄T. −K)+ and

3. Compute the mean of the resulting vector and discount the result.

4. Apply Automatic Differentiation to the above.

21

4.4.2 Reference Solution by Approximated moment-matching dynamics

Moment matching constructs a reduced order system by matching as many moments as possible
of the original function to the moments of the associated transfer function. The average basket

Yt = ω ·Xt (38)

is approximated by Ỹt solution of

dỸt = rỸtdt+ σ̃ỸtdWt, Ỹ0 = ω ·X0 (39)

Where σ̃ is adjusted in terms of σ, ρ and X.
Consequently

Ỹt = Y0 exp

(
(r − 1

2
σ̃2)t+ σ̃Wt

)
, E[Ȳt] = Y0e

rt, E[Ỹ 2
t] = Y 2

0 exp
(
(2r + σ̃2)t

)
(40)

On the other hand the second order moments of the basket are

E[Y 2
t] = e2rtXT

0 CtX0, where Ctij = ωiωj exp (ρi,jσiσj)t) (41)

So σ̃ is adjusted so that
E[Y 2

t] = E[Ȳ 2
t] (42)

Therefore,

σ̃2 =
1

t

(
lnXT

0 CtX0 − ln (ω ·X0)
2
)

(43)

Accordingly

V̄T = e−rTE
[
(ỸT −K)+

]
(44)

As the process (Ỹt)t∈[0,T] follows a log-normal distribution, we have an analytical expression for
(44):

V̄T = Y0Φ(dΛ̃+
)− e−rTKΦ(dΛ̃−

), with Φ(x) =
1√
2π

∫ x

−∞
e
−t2
2 dt

dΛ̃+
=

lnY0/K + (r + 1
2 σ̃

2)T

σ̃
√
T

, dΛ̃−
= dΛ̃+

− σ̃
√
T (45)

From this formula, we can compute the Delta and the Gamma with respect to Y0 and assign the
components of (Xi0)i=1,...,d from the weighted sum. For instance

∆̃Y0
= Φ(dΛ̃+

), hence ∆Xi0 = ωiΦ(dΛ̃+
), i = 1, . . . , d. (46)

For the Gamma,

Γ̃Y0Y0
=

1

Y0σ̃
√
T
φ(dΛ̃+

) hence, ΓXi0Xi0 = ωiζiφ(dΛ̃+
), i = 1, . . . , d (47)

With φ(x) = 1√
2π
e−x

2/2 and where for i = 1, . . . , d

ζi =
1

(σ̃
√
T)2

((wi
ω ·X0

+
βi
2
T

)
σ̃
√
T − βi

2
√
σ̃

√
TdΛ̃+

)
, βi =

1

T

αi (ω ·X0)
2

XT
0 CTX0

(48)

And

αi =
2(CX0)i

(ω ·X0)
2 − 2ωi

XT
0 CTX0

(ω ·X0)
3 (49)

22

4.4.3 Numerical Test

In this numerical test d = 7 and the underlying asset prices are:

X0
T = (1840, 1160, 3120, 4330.71, 9659.78, 14843.24, 10045.40) (50)

The volatility vector is:

σT = (0.146, 0.1925, 0.1712, 0.1679, 0.1688, 0.2192, 0.2068) (51)

The correlation matrix is

1.0 0.9477 0.8494 0.8548 0.8719 0.6169 0.7886
0.9477 1.0 0.7558 0.7919 0.8209 0.6277 0.7354
0.8494 0.7558 1.0 0.9820 0.9505 0.6131 0.9303
0.8548 0.7919 0.9820 1.0 0.9378 0.6400 0.8902
0.8719 0.8209 0.9505 0.9378 1.0 0.6417 0.8424
0.6169 0.6277 0.6131 0.6400 0.6417 1.0 0.5927
0.7886 0.7354 0.9303 0.8902 0.8424 0.5927 1.0


(52)

The number of simulation Monte Carlo path varies from 1 to 106 with only one time step for the
time integration. Errors are calculated with reference to a solution computed by approximate
moment matching.

On figures 14 and 15, the plot of convergence for the computation of the Gamma of a Basket
made of the first 4 assets is displayed versus the number of simulation paths Vibrato plus AD
(direct mode) and for Finite differences applied to a brute force Monte Carlo algorithm. The
convergence speed of these methods is almost the same (with a slight advantage for the Finite
difference).

0.00017

0.00018

0.00018

0.00019

0.00019

0.00020

 200000 400000 600000 800000 1e+06

FD (MC)
VAD (MC)
Ref. Value

Figure 14: Convergence of the computation of the Gamma of a Basket option where d = 4 via
Vibrato plus Automatic Differentiation on Monte Carlo and via Finite differences, versus the
number of simulation paths.

Table 1 displays results for a Basket with the 7 assets, in addition the table 2 displays the
CPU time for Vibrato plus AD (direct mode); the finite difference method is one third more
expensive. Again, the method is very accurate.

23

T
ab

le
1:

R
es

u
lt

s
fo

r
th

e
p

ri
ce

,
th

e
D

el
ta

an
d

th
e

G
a
m

m
a

o
f

a
B

a
sk

et
O

p
ti

o
n

p
ri

ce
d

w
it

h
th

e
m

o
m

en
t-

m
a
tc

h
in

g
a
p

p
ro

x
im

a
ti

o
n

(r
ef

er
en

ce
va

lu
es

),
F

in
it

e
d

iff
er

en
ce

s
on

M
on

te
C

ar
lo

a
n

d
V

ib
ra

to
p

lu
s

A
u

to
m

a
ti

c
D

iff
er

en
ti

a
ti

o
n

o
n

M
o
n
te

C
a
rl

o
.

T
h

e
se

tt
in

g
s

o
f

M
o
n
te

C
a
rl

o
al

go
ri

th
m

ar
e

1
ti

m
e

st
ep

an
d

1,
00

0
,0

00
si

m
u

la
ti

o
n

p
a
th

s.

d
T

P
ri

ce
A

M
M

P
ri

ce
(M

C
)

D
el

ta
A

M
M

D
el

ta
V

ib
ra

to
(M

C
)

D
el

ta
F

D
(M

C
)

G
a
m

m
a

A
M

M
G

a
m

m
a

V
A

D
(M

C
)

G
a
m

m
a

F
D

(M
C

)

1
0
.1

3
8
.4

2
8
5

3
7
.3

8
2
3

0
.5

5
2
2
6

0
.5

5
1
4
6

0
.5

5
4
2
3

4
.6

5
5
5
7
e-

3
4
.6

6
1
6
7
e-

3
4
.6

4
9
9
8
e-

3
2

0
.1

3
4
.4

4
0
1

3
4
.1

2
3
2

0
.2

7
4
5
2

0
.2

7
2
7
5

0
.2

8
4
6
7

1
.2

8
9
0
3
e-

3
1
.3

4
9
1
8
e-

3
1
.2

8
1
9
3
e-

3
3

0
.1

4
6
.0

7
8
0

4
5
.9

8
2
9

0
.1

8
3
1
9

0
.1

8
2
2
0

0
.1

8
6
0
8

4
.2

9
1
4
4
e-

4
4
.2

8
5
7
2
e-

4
4
.2

1
0
1
2
e-

4
4

0
.1

5
9
.6

7
4
1

5
8
.7

8
4
9

0
.1

3
7
5
0

0
.1

3
6
3
9

0
.1

4
1
4
7

1
.8

6
1
0
7
e-

4
1
.9

3
2
3
8
e-

4
1
.7

9
0
9
4
e-

4
5

0
.1

9
2
.8

4
8
1

9
0
.9

0
0
1

0
.1

0
9
7
4

0
.1

0
8
8
9

0
.1

0
9
5
6

7
.6

4
5
1
6
e-

5
7
.7

9
6
7
8
e-

5
7
.5

9
9
0
1
e-

5
6

0
.1

1
3
9
.2

3
5

1
4
1
.7

6
6

0
.0

9
1
2
8

0
.0

9
0
1
7

0
.0

9
0
4
8

3
.5

4
2
1
3
e-

5
3
.7

1
8
3
4
e-

5
3
.4

1
1
1
4
e-

5
7

0
.1

1
5
5
.4

9
2

1
5
3
.3

9
2

0
.0

7
8
2
0

0
.0

7
7
4
4

0
.0

7
7
6
6

2
.3

1
6
2
4
e-

5
2
.0

9
0
1
2
e-

5
2
.1

8
1
2
3
e-

5

1
1

1
5
5
.3

8
9

1
5
4
.7

9
7

0
.6

6
1
1
1

0
.6

6
0
3
9

0
.6

7
2
7
7

1
.3

0
8
0
7
e-

3
1
.3

0
0
3
3
e-

3
1
.3

2
8
1
2
e-

3
2

1
1
3
5
.4

4
1

1
3
3
.1

0
1

0
.3

2
5
8
3

0
.3

2
1
8
6

0
.3

2
5
4
7

3
.8

0
6
8
5
e-

4
3
.8

6
9
9
8
e-

4
3
.8

3
8
2
3
e-

4
3

1
1
8
1
.9

3
5

1
8
2
.6

4
2

0
.2

1
7
7
5

0
.2

1
4
9
7

0
.2

1
6
1
9

1
.2

6
5
4
6
e-

4
1
.3

4
4
2
3
e-

4
1
.2

4
9
2
7
e-

4
4

1
2
3
4
.9

8
5

2
3
2
.0

1
8

0
.1

6
3
0
4

0
.1

6
0
5
5

0
.0

1
6
1
0

5
.4

9
1
6
1
e-

5
5
.6

2
9
3
1
e-

5
5
.5

0
9
9
0
e-

5
5

1
3
6
4
.6

5
1

3
6
3
.3

6
3

0
.1

3
0
2
3

0
.1

2
7
8
0

0
.1

2
8
0
4

2
.2

5
8
9
2
e-

5
2
.3

8
2
7
3
e-

5
2
.1

9
2
0
3
e-

5
6

1
5
4
3
.6

2
9

5
4
0
.8

7
0

0
.1

0
7
9
4

0
.1

0
4
7
7

0
.1

0
4
8
9

1
.0

4
1
1
5
e-

5
8
.9

9
8
3
4
e-

6
1
.1

3
8
7
8
e-

5
7

1
6
0
3
.8

1
8

6
0
7
.2

3
1

0
.9

2
4
2
0

0
.0

8
9
9
5

0
.8

9
9
4
5

6
.8

7
0
6
3
e-

6
7
.7

0
3
8
8
e-

6
7
.2

2
8
4
9
e-

6

T
ab

le
2:

T
im

e
co

m
p

u
ti

n
g

(i
n

se
co

n
d

s)
fo

r
th

e
G

a
m

m
a

w
it

h
F

in
it

e
d

iff
er

en
ce

s
o
n

M
o
n
te

C
a
rl

o
a
n

d
w

it
h

V
ib

ra
to

p
lu

s
A

u
to

m
a
ti

c
D

iff
er

en
ti

at
io

n
on

M
on

te
C

ar
lo

,
d

im
en

si
on

of
th

e
p
ro

b
le

m
a
re

va
ry

in
g
.

T
h

e
se

tt
in

g
s

o
f

M
o
n
te

C
a
rl

o
a
lg

o
ri

th
m

a
re

th
e

sa
m

e
a
s

a
b

ov
e.

M
et

h
o
d

(C
o
m

p
u
ti

n
g

G
a
m

m
a
)

d
=

1
d

=
2

d
=

3
d

=
4

d
=

5
d

=
6

d
=

7

F
D

(M
C

)
0
.4

9
0
.9

5
1
.3

3
1
.8

2
2
.2

6
2
.9

1
3
.3

6
V

A
D

(M
C

)
0
.5

4
0
.7

7
0
.9

2
1
.2

1
1
.5

0
1
.8

6
2
.3

1

24

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0 200000 400000 600000 800000 1e+06

FD (MC)
VAD (MC)

Analytical solution

Figure 15: Convergence of the computation of the Gamma of a Basket option where d = 7
(bottom) via Vibrato plus Automatic Differentiation on Monte Carlo and via Finite differences,
versus the number of simulation paths.

5 American Option

Recall that an American option is like a European option which can be exercised at any time
before maturity. The value Vt of an American option requires the best exercise strategy. Let ϕ
be the payoff, then

Vt := ess sup
τ∈Ft

E[e−r(τ−t)ϕ(Xτ) | Xt] (53)

where Ft is the set of stopping times in [t, T].
Consider a time grid 0 < t1 < · · · < tn = T with time step h, i.e. tk = kh. To discretize the

problem we begin by assuming that the option can be exercised only at tk, k = 0, .., n ; its value
is defined recursively by V̄tn = e−rTϕ(XT)

V̄tk = max
0≤k≤n−1

(
e−rtkϕ(Xtk),E[V̄tk+1

| Ftk]
)
,

(54)

where Fk is the set of stopping times in {tk, . . . , tn}.

5.1 Longstaff-Schwartz Algorithm

Following Longstaff et al. [30] let the continuation value Ctk = E[e−rhVtk+1
| Ftk]. The holder

of the contract exercises only if the payoff at tk is higher than the continuation value Ctk . As X
is a Markov process,

Ctk = E[e−rhVtk+1
| Xtk]

The continuation value is represented as a linear combination of a finite set of R real basis
functions:

Ck '
R∑
i=1

αk,iψk,i(Xtk) (55)

25

Typically, the (αk,i)i=1,...,R are computed by least squares,

min
α

E

(E[e−rhVtk+1
| Xtk]−

R∑
i=1

αk,iψk,i(Xtk)

)2
 (56)

This leads to a linear system

R∑
i,j=1

αk,iE[ψk,i(Xtk)ψk,j(Xtk)] = E[E[e−rhVk+1 | Xtk]ψk,i(Xtk)] (57)

Once the optimal stopping time is known, the differentiation with respect to θ of (54) can be
done as for a European contract. The dependency of the τ∗ on θ is neglected; arguably this
dependency is second order but this point needs to be validated. So the following algorithm is
proposed.

5.2 Algorithm to compute the Gamma of an American option

1. Generate M simulation paths and for each n Euler steps with time step size h = T
n

2. Compute the terminal value of each simulation path

VT = (K − X̄T)+ (58)

3. Compute the Gamma of the terminal condition using (32) in section (4.1) for each simula-
tion path.

4. Iterate from n− 1 to 1 and perform the following at the k-th time step.

(a) Solve the linear system (57).

(b) Calculate the continuation value of each path.

Ck+1(X̄tk) =

R∑
i=1

αk,iψi(X̄
n
k) (59)

(c) Compute the Gamma by differentiating the Vibrato formula from the time step k− 1
with respect to X0

Γ̃k =
1

N

N∑
i=1

∂

∂X0

(
Ȳ nk−1 (1 + rh)

1

2
(Ṽ ik+ − Ṽ

i
k−)

Zik
X0σ
√
h

(60)

+ Ȳ nk−1σ
√
h

1

2
(Ṽ ik+ − 2Ṽ ik• + Ṽ ik−)

(Zik)2 − 1

X̄0σ
√
h

)
(61)

(d) For i = 1, . . . ,M{
V ik = Ṽ ik , Γik = Γ̃ik if Ṽ ik ≥ Ck+1(X̄n,i

k),

V ik = e−rhV ik+1, Γik = e−rhΓik+1 otherwise.
(62)

With Ṽk+1 = (K − X̄n
k+1)+ and{
X̄k± = X̄k−1 + rhX̄k−1 ± σX̄k−1

√
hZk

X̄k• = X̄k−1 + rhX̄k−1

(63)

26

5. Compute the mean of the vector V and Γ.

Remark 9 The differentiation with respect to X0 is implemented by automatic differentiation
of the computer program.

Remark 10 As for European contracts with (18), one can use the antithetic variables variance
reduction to compute the Gamma as it gives much better results.

5.2.1 Numerical Test

We consider the following value : σ = 20% or σ = 40%, S0 varying from 36 to 44, T = 1 or
T = 2 year, K = 40 and r = 6%. The Monte Carlo parameters are: 50, 000 simulation paths and
50 time steps for the time grid. The basis in the Longstaff-Scharwtz algorithm is (xn)n=0,1,2.

We compare with the solution of the Black-Scholes partial differential equation discretizes
by an implicit Euler scheme in time, finite element in space and semi-smooth Newton for the
inequalities [1]. A second order finite difference approximation is used to compute the Gamma.
A large number of grid points are used to make it a reference solution. The parameters of the
method are 10, 000 and 50 time steps per year. Convergence history for Longstaff Schwartz plus
Vibrato plus AD is shown on figure 16 with respect to the number of Monte Carlo paths (Finite
differences on Monte Carlo is also displayed).

On figure 16, we display the history of convergence for the approximation of the Gamma
of an American Put option versus the number of simulation paths for Vibrato plus Automatic
differentiation and for Finite difference applied to the American Monte Carlo, the straight line
is the reference value computed by PDE+ semi-smooth Newton. The convergence is faster for
VAD than with second order Finite difference (the perturbation parameter is taken as 1% of the
underlying asset price).

On table 3, the results are shown for different set of parameters taken from Longstaff et
al. [30]. The method provides a good precision when variance reduction (10) is used, for the
different parameters except when the underlying asset price is low with a small volatility. As for
the computation time, the method is faster than Finite difference applied to the American Monte
Carlo which necessitates three evaluation of the pricing function whereas VAD is equivalent to
two evaluations (in direct mode).

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0 10000 20000 30000 40000 50000

FD (LS-AMC)
VAD (LS-AMC)

Ref. Value

Figure 16: Convergence of the Gamma of an American option via Vibrato plus Automatic
Differentiation on the Longstaff-Schwartz algorithm and via Finite differences, versus the number
of simulation paths.

27

6 Second Derivatives of a Stochastic Volatility Model

The Heston model [21], describes the evolution of an underlying asset (Xt)t∈[0,T] with a stochastiic
volatility (Vt)t∈[0,T]:

dXt = rXtdt+
√
VtXtdW

1
t ,

dVt = κ(η − Vt)dt+ ξ
√
VtdW 2

t , t ∈ [0, T]; V0, X0 given. (64)

Here ξ is the volatility of the volatility, η denotes the long-run mean of Vt and κ the mean
reversion velocity. The standard Brownian process (W 1

t)t∈[0,T] and (W 2
t)t∈[0,T] are correlated:

E[dW 1
t W

2
t] = ρdt, ρ ∈] − 1, 1[. If 2κη > ξ2, it can be shown that Vt > 0. We consider the

evaluation of a standard European Call with payoff

VT = E[(XT −K)+] (65)

6.1 Algorithm to Compute second derivatives in the Heston Model

To compute the Gamma by Vibrato method for the first derivative coupled to automatic differ-
entiation for the second derivative one must do the following:

1. Generate M simulation paths for the underlying asset price (X̄, V̄) and its tangent process

(Ȳ , Ū) = ∂(X̄,V̄)
∂X0

using an Euler scheme with n time steps of step size h = T
n),

X̄n
k+1 = X̄n

k + rhX̄n
k +

√
V̄nk X̄

n
k

√
hZ̃1

k+1, X̄n
0 = X0

Ȳ nk+1 = Ȳ nk + rhȲ nk +
√
V̄nk Ȳ

n
k

√
hZ̃1

k+1, Ȳ n0 = 1

V̄nk+1 = V̄nk + κ(η − V̄nk)h+ ξ
√
V̄nk
√
hZ̃2

k+1, V̄n0 = V0

(66)

With (
Z̃1

Z̃2

)
=

(
1 0

ρ
√

1− ρ2

)(
Z1

Z2

)
(67)

Where (Z1
k , Z

2
k)1≤k≤n denotes a sequence of N (0; I2)-distributed random variables.

2. For each simulation path

(a) Compute the payoff
VT = (X̄n

n −K)+ (68)

(b) Compute the Delta using Vibrato at maturity with the n − 1 time steps and the
following formula

∆̄n = Ȳ nn−1 (1 + rh)
1

2
(VT+

− VT−)
Z1
n

X̄n
n−1

√
V̄nn−1

√
h

(69)

+Ȳ nn−1

√
V̄nn−1

√
h

1

2
(VT+

− 2VT• + VT−)
Z12

n − 1

X̄n
n−1

√
V̄nn−1

√
h

(70)

With  X̄T± = X̄n
n−1 + rhX̄n

n−1 ±
√
V̄nn−1X̄

n
n−1

√
hZ̃1

n,

X̄T• = X̄n
n−1 + rhX̄n

n−1.
(71)

28

(c) Apply an Automatic Differentiation method on step (2b) to compute the Gamma.

3. Compute the mean of the result and discount it.

6.1.1 Numerical Test

We have taken the following values: the underlying asset price X0 ∈ [60, 130], the strike is
K = 90, the risk-free rate r = 0.135% and the maturity o is T = 1.

The inital volatility is V0 = 2.8087%, the volatility of volatility is ξ = 1%, the mean reversion
is κ = 2.931465 and the long-run mean is ν = 0.101. The correlation between the two standard
Brownian motions is ρ = 50%.

The number of Monte Carlo path is 500, 000 with 100 time steps each.
The results are displayed on figures 17, 18 and 19.
On figure 17 we compare the results obtained by Vibrato plus Automatic differentiation

(direct mode) with second order Finite difference method applied to a standard Monte Carlo
algorithm. On figures 18 and 19, we display respectively the Vomma and the Vanna of an

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 60 70 80 90 100 110 120

FD (MC)
VAD (MC)

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

FD (MC)
VAD (MC)
Ref. Value

Figure 17: On the left the Gamma versus Price is displayed when computed by VAD; the ap-
proximated Gamma via Fintie difference is also displayed; both curves overlap. On the right, the
convergence history at one point (X0,V0) = (85, 2.8087) is displayed with respect to the number
of Monte Carlo samples.

European Call option in the Heston model. And again, the convergence with respect to the
number of simulation path. As for the Gamma, the method provides a good precision for the
approximation of the Vomma and the Vanna. Both are computed at one point (X0,V0) =
(85, 2.8087) with the same set of parameters as given above. In the case of the Vomma and the
Gamma, VAD is 30% faster. For the Vanna Finite difference requires four times the evaluation
of the pricing function so VAD is two times faster.

29

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 60 70 80 90 100 110 120 130

FD (MC)
VAD (MC)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

FD (MC)
VAD (MC)
Ref. Value

Figure 18: On the left the Vanna versus Price is displayed when computed by VAD; the ap-
proximated Vanna via Fintie difference is also displayed; both curves overlap. On the right, the
convergence history at one point (X0,V0) = (85, 2.8087) is displayed with respect to the number
of Monte Carlo samples.

-1200

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 60 70 80 90 100 110 120 130

FD (MC)
VAD (MC)

-900

-850

-800

-750

-700

-650

-600

-550

-500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

FD (MC)
VAD (MC)
Ref. Value

Figure 19: On the left the Vomma versus Price is displayed when computed by VAD; the ap-
proximated Vomma via Fintie difference is also displayed; both curves overlap. On the right, the
convergence history at one point (X0,V0) = (85, 2.8087) is displayed with respect to the number
of Monte Carlo samples.

30

T
ab

le
3:

R
es

u
lt

s
of

th
e

p
ri

ce
,

th
e

D
el

ta
an

d
th

e
G

a
m

m
a

o
f

a
n

A
m

er
ic

a
n

o
p

ti
o
n

.
T

h
e

re
fe

re
n

ce
va

lu
es

a
re

o
b

ta
in

ed
v
ia

th
e

S
em

i-
N

ew
to

n
m

et
h

o
d

p
lu

s
F

in
it

e
d

iff
er

en
ce

s,
th

ey
ar

e
co

m
p

a
re

d
to

V
ib

ra
to

p
lu

s
A

u
to

m
a
ti

c
D

iff
er

en
ti

a
ti

o
n

o
n

th
e

L
o
n

g
st

a
ff

-S
ch

w
a
rt

z
a
lg

o
ri

th
m

.
W

e
co

m
p

u
te

th
e

st
an

d
ar

d
er

ro
r

fo
r

ea
ch

A
m

er
ic

an
M

o
n
te

C
a
rl

o
re

su
lt

s.
T

h
e

se
tt

in
g
s

o
f

th
e

A
m

er
ic

a
n

M
o
n
te

C
a
rl

o
a
re

5
0

ti
m

e
st

ep
s

a
n

d
50
,0

00
si

m
u

la
ti

on
p

at
h

s.

S
σ

T
P

ri
ce

R
ef

.
V

a
lu

e
P

ri
ce

(A
M

C
)

S
ta

n
d
a
rd

E
rr

o
r

D
el

ta
R

ef
.

V
a
lu

e
D

el
ta

V
ib

ra
to

(A
M

C
)

S
ta

n
d
a
rd

E
rr

o
r

G
a
m

m
a

R
ef

.
V

a
lu

e
G

a
m

m
a

V
A

D
(A

M
C

)
S
ta

n
d
a
rd

E
rr

o
r

3
6

0
.2

1
4
.4

7
9
1
9

4
.4

6
2
8
9

0
.0

1
3

0
.6

8
5
5
9

0
.6

8
1
2
3

1
.8

2
0
e-

3
0
.0

8
7
3
2

0
.0

6
7
4
5

6
.9

4
7
e-

5
3
6

0
.2

2
4
.8

3
8
5
2

4
.8

1
5
2
3

0
.0

1
6

0
.6

1
8
6
0

0
.5

9
9
3
4

1
.8

1
3
e-

3
0
.0

7
3
8
1

0
.0

6
3
9
8

6
.8

4
6
e-

5
3
6

0
.4

1
7
.0

7
1
3
2

7
.0

7
9
8
5

0
.0

1
6

0
.5

1
0
1
9

0
.5

1
1
8
7

1
.6

7
4
e-

3
0
.0

3
3
0
5

0
.0

3
5
4
6

4
.8

5
2
e-

5
3
6

0
.4

2
8
.4

4
1
3
9

8
.4

5
6
1
2

0
.0

2
4

0
.4

4
5
2
8

0
.4

4
1
0
2

1
.4

8
8
e-

3
0
.0

2
5
1
0

0
.0

2
5
9
1

5
.0

2
3
e-

5

3
8

0
.2

1
3
.2

4
1
6
4

3
.2

3
3
2
4

0
.0

1
3

0
.5

3
7
8
1

0
.5

3
0
6
3

1
.8

2
1
e-

3
0
.0

7
3
4
9

0
.0

7
2
1
9

1
.1

9
8
e-

4
3
8

0
.2

2
3
.7

4
0
0
4

3
.7

2
7
0
5

0
.0

1
5

0
.4

8
6
1
2

0
.4

6
7
3
2

1
.6

6
9
e-

3
0
.0

5
9
0
7

0
.0

5
7
8
9

1
.1

1
1
e-

4
3
8

0
.4

1
6
.1

1
5
5
3

6
.1

1
2
0
9

0
.0

1
6

0
.4

4
7
2
6

0
.4

5
0
7
9

1
.4

5
3
e-

3
0
.0

2
9
8
9

0
.0

3
0
8
1

5
.4

6
5
e-

5
3
8

0
.4

2
7
.5

9
9
6
4

7
.6

1
0
3
1

0
.0

2
5

0
.3

9
7
8
6

0
.3

9
5
0
3

1
.9

2
2
e-

3
0
.0

2
2
3
3

0
.0

2
3
4
2

4
.8

2
7
e-

5

4
0

0
.2

1
2
.3

1
0
2
1

2
.3

0
5
6
5

0
.0

1
2

0
.4

1
1
0
6

0
.4

0
7
8
0

1
.8

8
0
e-

3
0
.0

6
0
1
4

0
.0

5
9
5
4

1
.2

1
3
e-

4
4
0

0
.2

2
2
.8

7
8
7
7

2
.8

6
0
7
2

0
.0

1
4

0
.3

8
0
1
7

0
.3

9
2
6
6

1
.7

4
7
e-

3
0
.0

4
7
1
7

0
.0

4
5
6
7

5
.1

7
5
e-

4
4
0

0
.4

1
5
.2

7
9
3
3

5
.2

8
7
4
1

0
.0

1
5

0
.3

9
0
5
1

0
.3

9
4
8
5

1
.6

2
9
e-

3
0
.0

2
6
8
9

0
.0

2
7
9
8

1
.2

4
9
e-

5
4
0

0
.4

2
6
.8

4
7
3
3

6
.8

5
8
7
3

0
.0

2
6

0
.3

5
5
6
8

0
.3

5
4
4
6

1
.4

1
6
e-

3
0
.0

1
9
8
7

0
.0

2
0
5
0

3
.9

8
9
e-

5

4
2

0
.2

1
1
.6

1
3
6
4

1
.6

0
7
8
8

0
.0

1
1

0
.3

0
6
1
4

0
.2

9
7
1
2

1
.7

3
4
e-

3
0
.0

4
7
6
4

0
.0

4
5
6
3

4
.7

9
7
e-

5
4
2

0
.2

2
2
.2

0
6
9
4

2
.1

9
0
7
9

0
.0

1
4

0
.2

9
5
7
5

0
.2

8
1
7
5

1
.6

0
1
e-

3
0
.0

3
7
4
9

0
.0

3
6
0
1

5
.5

6
0
e-

5
4
2

0
.4

1
4
.5

5
0
5
5

4
.5

7
1
9
1

0
.0

1
5

0
.3

3
9
7
3

0
.3

4
3
8
5

1
.5

1
7
e-

3
0
.0

2
3
9
1

0
.0

2
4
2
6

3
.1

9
4
e-

5
4
2

0
.4

2
6
.1

7
4
5
9

6
.1

8
4
2
4

0
.0

2
3

0
.3

1
8
1
5

0
.2

9
9
4
3

1
.3

4
7
e-

3
0
.0

1
7
6
8

0
.0

1
7
4
8

2
.9

6
1
e-

5

4
4

0
.2

1
1
.1

0
8
1
3

1
.0

9
6
4
8

0
.0

0
9

0
.2

1
3
0
2

0
.2

0
5
7
1

1
.5

0
3
e-

3
0
.0

3
6
5
3

0
.0

3
4
3
8

1
.4

8
6
e-

4
4
4

0
.2

2
1
.6

8
5
6
6

1
.6

6
9
0
3

0
.0

1
2

0
.2

2
8
8
3

0
.2

1
9
7
2

1
.4

8
7
e-

3
0
.0

2
9
6
0

0
.0

2
7
6
5

2
.3

6
3
e-

4
4
4

0
.4

1
3
.9

1
7
5
1

3
.9

0
8
3
8

0
.0

1
5

0
.2

9
4
6
6

0
.2

9
7
6
4

1
.4

0
3
e-

3
0
.0

2
1
1
6

0
.0

2
0
8
6

1
.2

7
4
e-

4
4
4

0
.4

2
5
.5

7
2
6
8

5
.5

8
2
5
2

0
.0

2
8

0
.2

8
4
7
4

0
.2

8
4
4
7

1
.3

2
5
e-

3
0
.0

1
5
7
4

0
.0

1
5
2
0

2
.1

6
2
e-

4

31

7 Vibrato plus Reverse AD (VRAD)

If several greeks are requested at once then it is better to use AD in reverse mode. To illustrate
this point we proceed to compute all second and cross derivatives i.e. the following Hessian
matrix for a standard European Call option:

∂2V

∂X2
0

∂2V

∂v∂X0

∂2V

∂r∂X0

∂2V

∂T∂X0

∂2V

∂X0∂σ

∂2V

∂σ2

∂2V

∂v∂r

∂2V

∂T∂v
∂2V

∂X0∂r

∂2V

∂v∂r

∂2V

∂r2

∂2V

∂T∂r
∂2V

∂X0∂T

∂2V

∂v∂T

∂2V

∂r∂T

∂2V

∂T 2


(72)

It is easily seen that a finite difference procedure will requires 36 (at least 33) evaluations of
the original pricing function whereas, we only call one time this function if AD is used in reverse
mode. Furthermore, we have to handle 4 different pertubation parameters.

The parameters are X0 = 90, K = 100, σ = 0.2, r = 0.05 and T = 1 year. The parameters
of Monte Carlo are set to 200, 000 simulation paths and 50 time steps. We used the library
adept 1.0 for the reverse mode. One great aspect here is that we only have one formula in the
computer program to compute all the greeks, one has just to specify which parameters are taken
as variable for differentiation.

The results are shown in the table 4, clearly the reverse automatic differentiation combined
to Vibrato is faster (almost 4 times) than the finite difference procedures.

Mode FD (MC) VRAD (MC)
Time (sec) 2.01 0.47

Table 4: CPU time (in seconds) to compute the Hessian matrix of a standard European Call
option (considering X0, σ, r, T as variables) in the Black-Scholes model.

8 Malliavin Calculus and Likelihood Ratio Method

Here, we want to point out that Malliavin calculus and LRM are excellent methods but they
have their own numerical issues especially with short maturities which may make VAD more
attractive for a general purpose software.

Let us start by recalling briefly the foundations of Malliavin calculus (further details are
available in Nualart [32], Fournié et al. [9] and in Gobet et al. [16], for instance). We recall the
Bismut-Elworthy-Li formula (see [3], for example):

Proposition 5 (Bismut-Elworthy-Li formula) Let X be a diffusion process given by (4) with
d = 1, b and σ in C1 . Let f : R → R be C1 with E[f(XT)2] and E[f ′(XT)2] bounded. Let

(Ht)t∈[0,T] be F-progressively measurable in L2([0, T] × Ω, dt ⊗ dP) with E
[∫ T

0
H2
sds
]

bounded.

Then

E

[
f(XT)

∫ T

0

HsdWs

]
= E

[
f ′(XT)YT

∫ T

0

σ(Xs)Hs

Ys
ds

]
(73)

32

where Yt =
dXt

dx
is the tangent process defined in (11).

By choosing Ht = Yt/σ(Xt) the above gives

∂

∂x
E [f(Xx

T)] = E

f(Xx
T)

1

T

∫ T

0

Ys
σ(Xx

s)
dWs︸ ︷︷ ︸

Malliavin weight

 . (74)

provided f has polynomial growth and E

[∫ T

0

(
Yt

σ(Xx
t)

)2
]

is bounded.

Second Derivative In the context of the Black-Scholes model, the Malliavin weights, πΓ, for the
Gamma is (see [2]):

πΓ =
1

X2
0σT

(
W 2
T

σT
− 1

σ
−WT

)
(75)

Hence

ΓMal = e−rTE
[
(XT −K)+ 1

X2
0σT

(
W 2
T

σT
− 1

σ
−WT

)]
(76)

The pure likelihood ratio method gives a similar formula (see Lemma 1)

ΓLR = e−rTE

[
(XT −K)+

(
Z2 − 1

X2
0σ

2T
− Z

X2
0σ
√
T

)]
(77)

LRPW is an improvement of LRM obtained by combining it with a pathwise method [13].

ΓLRPW =
∂

∂X0

(
e−rTE

[
(XT −K)+ Z

X0σ
√
T

])
= e−rT

K

X2
0σ
√
T
E[Z1{XT>K}] (78)

LRPW is much cheaper than VAD, Malliavin or LRM and it is also less singular at T = 0.
However all these methods require new analytically derivations for each new problem.

8.1 Numerical Tests

We compared VAD with LRPW and Malliavin calculus. The results are shown on Table 5

The Gamma is computed with the same parameters as in the section 4.3. The maturity is
varying from T = 1 to 10−5 year. The Monte Carlo parameters are also set to 100, 000 simulation
paths and 25 time steps.

Notice the inefficiency of LRPW, Malliavin Calculus and to a lesser degree of VAD and Finite
Difference when T is small.

9 Acknowledgment

This work has been done with the support of ANRT and Global Market Solution inc. with
special encouragements from Youssef Allaoui and Laurent Marcoux.

33

T VAD (MC) FD (MC) LRPW (MC) Malliavin (MC)
1.00e+0 3.63e-5 1.76e-4 3.40e-4 9.19e-3
5.00e-1 8.55e-5 3.11e-4 7.79e-4 1.62e-2
1.00e-1 6.64e-4 1.50e-3 4.00e-3 6.54e-2
5.00e-2 1.49e-3 2.80e-3 7.51e-3 1.21e-1
1.00e-2 8.78e-3 1.84e-2 3.76e-2 5.44e-1
5.00e-3 1.86e-2 3.95e-2 7.55e-2 1.10e+0
1.00e-3 9.62e-2 1.77e-1 3.76e-1 5.74e+0
5.00e-4 1.85e-1 3.34e-1 7.56e-1 1.07e+1
1.00e-4 1.01e+0 1.63e+0 3.77e+0 5.26e+1
5.00e-5 1.98e+0 3.46e+0 7.54e+0 1.09e+2
1.00e-5 1.03e+1 1.78e+1 3.79e+1 5.40e+2

Table 5: Variance of the Gamma of a standard European Call with short maturities in the Black-
Scholes model. Gamma is computed with VAD, FD, LRPW and Malliavin. The computation
are done on the same samples.

9.1 Note on CPU

Tests have been done on an Intel(R) Core(TM) i5-3210M Processor @ 2,50 GHz. The processor
has turbo speed of 3.1 GHz and two cores. We did not use parallelization in the code.

10 Conclusion

This article extends the work of Mike Giles and investigates the Vibrato method for higher order
derivatives in quantitative finance.

For a general purpose software Vibrato of Vibrato is too complex but we showed that it
is essentially similar to the analytical differentiation of Vibrato. Thus AD of Vibrato is both
general, simple and essentially similar to Vibrato of Vibrato of second derivatives. We have also
shown that Automatic differentiation can be enhanced to handle the singularities of the payoff
functions of finance. While AD for second derivatives is certainly the easiest solution, it is not
the safest and it requires an appropriate choice for the approximation of the Dirac mass.

Finally we compared with Malliavin calculus and LRPW.
The framework proposed is easy to implement, efficient, faster and more stable than its

competitors and does not require analytical derivations if local volatilities or payoffs are changed.
Futher developments are in progress around nested Monte Carlo and Multilevel-Multistep

Richardson-Romberg extrapolation [28].

References

[1] Y. Achdou and O. Pironneau. Computation methods for option pricing. Frontiers in Applied
Mathematics. SIAM, Philadelphia, 2005. xviii+297 pp., ISBN 0-89871-573-3.

[2] E. Benhamou. Optimal Malliavin weighting function for the computation of the greeks.
Mathematical Finance, 13:37–53, 2003.

[3] J. M. Bismut, K. D. Elworthy, and X. M. Li. Bismut type formulae for differential forms.
Probability Theory, 327:87–92, 1998.

34

[4] D. Brigo, F. Mercurio, F. Rapisarda, and R. Scotti. Approximated moment-matching dy-
namics for basket options simulation. Product and Business Development Group, Banca
IMI, 2002. Working paper.

[5] M. Broadie and P. Glasserman. Estimating security price derivatives using simulation.
Management Science, 42(2):269–285, 1996.

[6] L. Capriotti. Fast greeks by algorithmic differentiation. Journal of Computational Finance,
14(3):3–35, 2011.

[7] L. Capriotti. Likelihood ratio method and algorithmic differentiation: fast second order
greeks. Preprint SSRN:1828503, 2014.

[8] P. S. Dywer and M. S. Macphail. Symbolic matrix derivatives. The Annals of Mathematical
Statistics, 19(4):517–534, 1948.

[9] E. Fournié, J. M. Lasry, J. Lebuchoux, and P. L. Lions. Application of Malliavin calculus
to Monte Carlo methods in finance. Finance and Stochastics, 2(5):201–236, 2001.

[10] M. Giles and P. Glasserman. Smoking adjoints: fast evaluation of greeks in Monte Carlo
calculations. NA-05/15, Numerical Analysis Group, Oxford University, July 2005.

[11] M. B. Giles. Vibrato Monte Carlo sensitivities. In P. L’Ecuyer and A. Owen, editors, Monte
Carlo and Quasi-Monte Carlo Methods 2008, pages 369–382. New York, Springer edition,
2009.

[12] P. Glasserman. Gradient estimation via pertubation analysis. Kluwer Academic Publishers,
Norwell, Mass, 1991.

[13] P. Glasserman. Monte Carlo methods in financial engineering, volume 53 of Application of
Mathematics. Springer, New York, 2003. xiii+598 pp., ISBN 0-387-00451-3.

[14] P. Glasserman and X. Zhao. Fast greeks by simulation in forward LIBOR models. Journal
of Computational Finance, 3(1):5–39, 1999.

[15] P. W. Glynn. Likelihood ratio gradient estimation: an overview. In Proceedings of the
Winter Simulation Conference, pages 366–374, New York, 1987. IEEE Press.

[16] E. Gobet and R. Munos. Sensitivity analysing using Itô-Malliavin calculus and martingales:
applications to stochastic optimal control. SIAM Journal on Control and Optimization,
43(5):1676–1713, 2005.

[17] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathe-
matical Programming: Recent Developments and Applications, pages 83–108. 1989. Kluwer
Akedemic Publishern Dordrecht.

[18] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorith-
mic differentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2008. xxi+426
pp., ISBN 978-0-89871-659-7.

[19] A. Griewank and A. Walther. ADOL-C: A Package for the Automatic differentiation of
algorithm written in C/C++. University of Paderborn, Germany, 2010.

[20] L. Hascoët and V. Pascual. The Tapenade Automatic Differentiation tool: Principles,
Model, and Specification. ACM Transactions On Mathematical Software, 39(3), 2013.

35

[21] S. L. Heston. A closed-form solution for options with stochastic volatility with applications
to bond and currency options. Review of Financial Studies, 6:327–343, 1993.

[22] M. Hintermüller, K. Ito, and K. Kunish. The Primal-Dual active set strategy as a Semi-
smooth Newton method. SIAM Journal on Control and Optimization, 3(13):865–888, 2003.

[23] Y. C. Ho and X. R. Cao. Optimization and perturbation analysis of queuing networks.
Journal of Optimization Theory and Applications, 40:559–582, 1983.

[24] R. J. Hogan. Fast reverse-mode automatic differentiation using expression templates in
C++. Transactions on Mathematical Software, 40(26):1–26, 2014.

[25] C. Homescu. Adjoints and automatic (algorihmtic) differentiation in computational finance.
arXiv:1107.1831, 2011.

[26] K. Ito and K. Kunisch. Semi-smooth Newton method for variational inequalities of the first
kind. ESAIM: Mathematical Modelling and Numerical Analysis, 37(1):41–62, 2010.

[27] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge studies in
advanced mathematics. Cambridge University Press, Cambridge, 1990. xiv+361 pp., ISBN
0-521-35050-6.

[28] V. Lemaire and G. Pagès. Multistep Richardson-Romberg extrapolation. Preprint
arXiv:1401.1177, 2014.

[29] E. Levy. Pricing European average rate and currency options. Journal of International
Money and Finance, 11:474–491, 1992.

[30] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple least
squares approach. Review of Financial Studies, 14:113–148, 2001.

[31] R. L. Mishkov. Generalization of the formula of fa‘a di Bruno for a composite function
with a vector argument. Internation Journal of Mathematics and Mathematical Sciences,
24(7):481–491, 2000.

[32] D. Nualart. The Malliavin calculus and related topics. Probability and its Applications.
Springer-Verlag, Berlin, 2006. x+390 pp., ISBN 978-3-540-28328-7.

[33] O. Pironneau. Automatic differentiation for financial engineering. Université Pierre et Marie
Curie, Paris VI, 2008.

[34] M. Reiman and A. Weiss. Sensitivity analysis for simulations via likelihood ratios. Operations
Research, 37:830–844, 1989.

[35] R. Rubinstein. Sensitivity analysis and performance extrapolation for computer simulation
models. Operations Research, 37:72–81, 1989.

[36] R. Suri and M. Zazanis. Pertubation analysis gives strongly consistent sensitivity estimates
for the m/g/1 queue. Management Science, 34:39–64, 1988.

36

A Appendix: Terms in Vibrato Second Order

Computation of the terms
∂ϕ2

∂µ2
,
∂ϕ2

∂σ2
and

∂ϕ2

∂µ∂σ
. For the second derivative with respect to µ,

we start from

∂ϕ

∂µ
(µ, σ) = E

[
V (µ+ σ

√
hZ)

Z

σ
√
h

]
=

1

σ2h

[
E[V (µ+ σ

√
hZ)(µ+ σ

√
hZ)]− µE[V (µ+ σ

√
hZ)]

]
(79)

We set
Ṽ (µ+ σ

√
hZ) = V (µ+ σ

√
hZ)(µ+ σ

√
hZ) (80)

Then

∂2

∂µ2
E[V (µ+ σ

√
hZ)] =

1

σ2h

[
E
[
Ṽ (µ+ σ

√
hZ)

Z

σ
√
h

]
− E[V (µ+ σ

√
hZ)]

− µE
[
V (µ+ σ

√
hZ)

Z

σ
√
h

]]
=

1

σ2h
E
[
V (µ+ σ

√
hZ)(µ+ σ

√
hZ − µ)

Z

σ
√
h
− V (µ+ σ

√
hZ)

]
= E

[
V (µ+ σ

√
hZ)

Z2 − 1

σ2h

]
(81)

Now, for the second derivative with respect to σ, we have (with 13, 18 and 6)):

∂ϕ

∂σ
(µ, σ) = E

[
V (µ+ σ

√
hZ)

Z2 − 1

σ

]
=

1

σ3h
E[V (µ+σ

√
hZ)(u−µ)2]− 1

σ
E[V (µ+σ

√
hZ)] (82)

With
Ṽ (u) = V (u)(u− µ)2 (83)

Hence,

∂2

∂σ2
E[V (µ+ σ

√
hZ)] =

1

σ3h
E
[
Ṽ (µ+ σ

√
hZ)

(
Z2 − 1

σ
− 3

σ

)]
− 1

σ
E
[
V (µ+ σ

√
hZ)

(
Z2 − 1

σ
− 1

σ

)]
= E

[
Ṽ (µ+ σ

√
hZ)

Z2 − 4

σ2

]
− E

[
V (µ+ σ

√
hZ)

Z2 − 2

σ2

]
= E

[
V (µ+ σ

√
hZ)

Z4 − 5Z2 + 2

σ2

]
(84)

As, for the mixed derivatives with respect to µ then to σ, we have (starting from (79) and with
Ṽ (µ+ σ

√
hZ) = V (µ+ σ

√
hZ)(µ+ σ

√
hZ),13, 18 and 6)

∂2

∂σ∂µ
E[V (µ+ σ

√
hZ)] =

1

σ2h
E
[
V̄ (µ+ σ

√
hZ)

(
Z2 − 1

σ
− 2

σ

)]
− 1

σ2h
µE
[
V (µ+ σ

√
hZ)

(
Z2 − 1

σ

)]
= E

[
V (µ+ σ

√
hZ)

Z(Z2 − 1)

σ2
√
h

]
− E

[
V (µ+ σ

√
hZ)

2Z

σ2
√
h

]
= E

[
V (µ+ σ

√
hZ)

Z3 − 3Z

σ2
√
h

]
(85)

37

B Semi-Smooth Newton Method for American Option

With an semi-implicit finite difference Euler time scheme the American option problem becomes

um − um−1

∆t
− ∂

∂S
(
X2σ2

2

∂um

∂S
) + rum ≥ S(r − σ2

2
)
∂um−1

∂S
,

um(S) ≥ φ(S), S ∈ R+, t ∈ (0, T) (86)

with equality at each S on one of the two inequations, and initialized by u0(S) = φ(S), S ∈ R+.

Thus, at each time step one must solve a problem of the type

Au ≥ V, u ≥ φ in R+ (87)

where A is the strongly elliptic symmetric operator

u→ (r +
1

∆t
)u− ∂

∂S
(
X2σ2

2

∂u

∂S
) and V =

um−1

∆t
+ S(r − σ2

2
)
∂um−1

∂S

The problem is also

min
u∈H1(R+),u≥φ

{1

2
a(u, u)− (V, u)}

with

a(u, v) =

∫ ∞
0

(αuv + µ
∂u

∂S

∂v

∂S
), α = r +

1

∆t
and µ =

X2σ2

2
.

Recall that an equation like F (x) = 0 (with F : Rn → Rn) can be solved by Newton’s method:

xk+1 = xk −G(xk)−1F (xk)

with G = F ′ the jacobian of F . Hintermuller et al. [22] observed that Newton’s algorithm
converges even if F is not differentiable provided that there exists G such that

for all x lim
‖h‖→0

‖F (x+ h)− F (x)−G(x+ h)h‖ = 0

a property which is satisfied by F (x) = max{0, x} for instance with G(x) = max{0, x}/x.

Ito et al. [26] suggested to apply the idea to (87) reformulated as

a(u, v)− (λ, v) = (f, v) ∀v ∈ H1(R+), i.e.Au− λ = f
λ−min{0, λ+ c(u− φ)} = 0, (88)

The last equality is equivalent to λ ≤ 0, λ ≤ λ + c(u − φ) i.e. u ≥ φ, λ ≤ 0, with equality on
one of them for each S. This problem is equivalent to (87) for an real constant c > 0 because λ
is the Lagrange multiplier of the constraint.

B.1 Algorithm

Newton’s algorithm applied to (88) gives

1. Choose c > 0, , u0, λ0, set k = 0.

2. Determine
Ak := {S : λk(S) + c(uk(S)− φ(S)) < 0}

38

3. Set

uk+1 = arg min
u∈H1(R+)

{1

2
a(u, u)− (f, u) : u = φ on Ak}

4. Set
λk+1 = f −Auk+1

39

	Introduction
	Vibrato
	Vibrato for a European Contract
	First Order Vibrato
	Antithetic Vibrato
	Second Derivatives
	Second Derivatives by Differentiation of Vibrato
	Second Derivatives by Second Order Vibrato

	Higher Order Vibrato
	About Regularity and Variance

	Second Derivatives by Vibrato plus Automatic Differentiation (VAD)
	Automatic Differentiation
	 AD in Direct Mode
	AD in Reverse Mode
	Non-Differentiable Functions

	VAD and the Black-Scholes Model
	Conceptual algorithm for VAD
	Greeks
	Numerical Test
	Preliminary Numerical Test
	Tests on Other Second Order Derivatives
	Third Order Derivatives
	Ramp Function and High Order Derivatives

	Baskets
	Algorithm to compute the Gamma of a Basket option
	Reference Solution by Approximated moment-matching dynamics
	Numerical Test

	American Option
	Longstaff-Schwartz Algorithm
	Algorithm to compute the Gamma of an American option
	Numerical Test

	Second Derivatives of a Stochastic Volatility Model
	Algorithm to Compute second derivatives in the Heston Model
	Numerical Test

	Vibrato plus Reverse AD (VRAD)
	Malliavin Calculus and Likelihood Ratio Method
	Numerical Tests

	Acknowledgment
	Note on CPU

	Conclusion
	References
	Appendix: Terms in Vibrato Second Order
	Semi-Smooth Newton Method for American Option
	Algorithm

