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The subject of this paper is to present the application of MultiGrid (MG) methods in 3D composite mate-rial simulations through the solution of the elastic 
equations. An efficient MG solver is further developed for modeling composite structures with strong discontinuities. Different types of boundary 
conditions are imposed in the solver. The model is validated by comparing the MG numerical results with the theoretical results existing in the literature 
and Finite Element (FE) results and a good agreement is found. The potential of MG methods with respect to the homogenization process is illustrated. 
Then an ideal lami-nated structure is analyzed and a real topology is simulated for the first time by a MG model. The effect of fiber orientation, interface 
layer thickness, fiber layer thickness and the ratio of material properties on the surface displacement are investigated. MG results show the detailed local 
behavior and provide new insights into possible initiation of delamination.

1. Introduction

Composite materials have been widely used in many industrial

fields in past decades due to their excellent mechanical properties

as well as the adaptation under specific loading conditions. Many

researchers have investigated these mechanisms and improved

the performance. However, the random nature of its micro-

structure, which may consist of voids, cracks or broken fibers,

etc. makes the simulation of composite structures expensive or

impractical. One of the currently used methods is to consider the

heterogeneous material as a ‘‘homogeneous” layer and obtain the

averaged material properties of each component. This kind of

approximation is commonly referred to as the homogenization

process [1], which takes the microscopic structure into account

and is capable to predict the macroscopic mechanical behavior of

a composite.

However, despite the globally correct predictions, the homoge-

nization results lose the microscopic details related to the local

physical mechanisms. These mechanisms may induce premature

material failure, such as cracks. Meantime, this process requires

fine grids to simulate the complex structure, which usually results

in a heavy computational cost.

MultiGrid (MG) methods are numerical algorithms for solving

differential equations using a hierarchy of discretizations. The

advantage is that the cost of MG methods depends linearly on

the number of unknowns, which provides a unique potential for

solving large scale problems. Although they were first introduced

in the early 1960s, it was not until the mid-seventies that Brandt

[2,3] enriched the related theories and made them efficient in var-

ious scientific and engineering fields. Lately a number of research-

ers combined MG methods in their work. Venner and Lubrecht [4]

used the MultiLevel techniques to develop a very efficient and

stable solver for the ElastoHydrodynamic Lubrication (EHL) prob-

lems. Watremetz et al. [5] applied the MG solutions to 2D graded

materials and Boffy et al. [6,7] applied the MG solutions to 3D

heterogeneous materials problems.

The topic of this paper is to present an efficient and stable solver

for modeling composite structures. First, related MultiGrid tech-

niques and simulation details are explained. Second, the model is

validated from microscopic and macroscopic aspects in a simple

case where a homogeneous matrix contains a spherical inhomo-

geneity. Microscopic solutions are validated by comparing the local

stress fields with Eshelby’s analytic solution [8,9]. Macroscopic

solutions are validated by comparing the homogenized elastic

constants with Mori–Tanaka’s prediction [10,11]. Finally, we apply

the model to the laminated composite structure case and compare

the results with finite element results. Then we apply the model to
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the real structure to find a similar case which has perfect cylindri-

cal fibers. Comparable results are found between the real case and

the ideal case. The possible factors which may effect the delamina-

tion process are investigated as well.

2. Theory

The constitutive equations to be solved are the 3D linear elastic

equations expressed by the displacements u; v and w in Cartesian

coordinates:

ðkþ lÞuj;ji þ lr2ui þ F i ¼ 0; i; j ¼ 1;2;3 ð1Þ

where r is the gradient operator:

r ¼
@

@x
;
@

@y
;
@

@z

� �

ð2Þ

and k; l are called the Lamé coefficients which are functions of the

Young’s modulus E and the Poisson’s ratio m in 3D space X:

kðx; y; zÞ ¼
Eðx; y; zÞmðx; y; zÞ

ð1þ mðx; y; zÞÞð1� 2mðx; y; zÞÞ
ð3Þ

lðx; y; zÞ ¼
Eðx; y; zÞ

2ð1þ mðx; y; zÞÞ
ð4Þ

and F i is the body force. In this study, we assume it to be zero andX

is the 3D rectangular domain. Eq. (1) describes the static equilib-

rium in X, while on the boundary @X displacement boundary con-

ditions and stress boundary conditions can both be considered.

2.1. MultiGrid theory

Iterative solution methods like Gauss–Seidel or Jacobi iteration

usually have a good convergence speed for small problems while

becoming very slow for large problems. This slowness can be

explained by the presence of low frequency error components.

The main idea of the MG method is to accelerate the convergence

speed by solving the target equations on different size grids, which

means that different grids solve different frequency errors. A

smooth error on fine grids can be mighty oscillatory on coarser

grids.

The first step of MGmethods is to discretize the target Eq. (1) on

the target domain X
h. Here, a second order accurate difference

scheme is selected (for details see Appendix A). This step follows

the pioneering work of Boffy [12]. The target equations can be sim-

ply denoted as Lu ¼ f .

The simplest MG algorithm contains two different size grids:

one coarse grid with size H and one fine grid with size h where

H > h. For the nonlinear problem solved in this work, the Full

Approximation Scheme (FAS) is selected for the coarse grid correc-

tion cycle. A two level MG scheme is given by (see Fig. 1):

(1) Relax v1 times on X
h
to obtain an approximation ~uh to

uh.

(2) Calculate residuals rh ¼ f
h
� Lh~uh, restrict rh and ~uh from

grid X
h

to grid X
H

respectively, get rH ¼ IHh r
h and

ûH ¼ IHh ~u
h.

(3) Relax v0 times on X
H
: LH~uH ¼ rH þ LHûH, obtain an

approximation ~uH.

(4) Interpolate the difference ~uH � ûH from coarse grid X
H

to fine grid X
h
, obtain the corrected approximation:

�uh ¼ ~uh þ IhHð~u
H � ûHÞ.

(5) Relax v2 times on X
h
.

This scheme can be used recursively for any number of levels.

2.1.1. Local grid refinement

In a composite structure simulation, local grid refinements can

be very useful when a locally much finer grid is required. It can

reduce the computing time and allocated memory dramatically

compared with a global fine grid. The extension from a basic MG

IH
h

Ih
H

Ωh ΩH

v1 v2

v0

Ωh :

ΩH :

Fig. 1. Two level MultiGrid scheme.

Nomenclature

�; r additional disturbed strain and stress due to the pres-
ence of inhomogeneity

�
� eigenstrain

�
1; r1 remote uniform strain applied and uniform stress in-

duced
Dw global averaged displacement
k; l Lamé coefficients
C; C� stiffness tensor of matrix and inhomogeneity
I unit tensor
S Ehselby tensor
lMT
equivalent equivalent shear modulus

r gradient operator
m Poisson’s ratio
E Young’s modulus
Em; Ef Young’s modulus of matrix and fiber
F i body force
IHh ; IhH intergrid operators
L cube length
Lh; LH difference operator on fine and coarse grid
r radius of the sphere or fiber
u; v; w displacements
V f volume percent of the inhomogeneity in matrix
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scheme could be direct: the fine grid residual rh is only calculated

where fine grids exist and excludes points on the ‘‘boundary”

between fine and coarse grid. Likewise, the relaxation step is only

carried out where the fine grid exists.

2.2. Operators

The strong material discontinuity existing in a composite struc-

ture, such as the interface between the fibers and the matrix,

makes the standard MG operators inefficient. For example, Boffy

et al. [6] observed divergence using standard MG operators in

modeling the heterogeneous material for elastic contact

applications.

Alcouffe et al. [13] have found that the MG relaxation should

smooth the error in the product of the strongly discontinues coef-

ficients and the derivative of the solution rather than the error in

the derivative only, and proposed several alternative methods to

solve the diffusion equation with strongly discontinuous coeffi-

cients in 2D. Based on this work, Hoekema et al. [14] developed

the method into a 3D potential field for nerve simulations and

Boffy et al. [7] developed the method into the 3D heterogeneous

material field. For detailed information about the construction of

intergrid operators (IHh and IhH) see [7,13,14].

Another operator to improve is the coarse grid operator: LH .

Since the simple coarse grid operator cannot reflect the informa-

tion correctly from the fine grid operator (Lh) in strong discontinu-

ous cases, a more precise operator is required using Galerkin coarse

grid approximation:

LH ¼ IHh L
hIhH ð5Þ

Eq. (5) results in a 27-point operator instead of a 7-point operator

for the simple coarse grid operator. The most important disadvan-

tage of the 27-point operator is the required larger allocated mem-

ory compared to the simpler case.

2.3. Boundary conditions

According to the problem studied, the boundary conditions can

be divided into 3 types: displacements specified on @X, stress spec-

ified on @X or displacements specified on a portion @X1 and stress

specified on a portion @X2. For the homogenization process in a

composite material, there are two interesting boundary conditions

extended from the above boundary conditions: one called Homo-

geneous Strain Boundary Condition (HSBC) and another called

Periodic Boundary Condition (PBC).

HSBC [15] is suitable for the case where the representative vol-

ume element (RVE) of the composite structure is not periodic. The

boundary condition on @X is:

ui ¼ ��ijxj; i; j ¼ 1;2;3 ð6Þ

If the applied strain ��ij is given, then all the displacements on @X can

be specified according to Eq. (6).

For a periodic RVE, PBC is more suitable [16,17]. The boundary

condition on @X is:

ui ¼ ��ijxj þ u�
i ; i; j ¼ 1;2;3 ð7Þ

where u�
i is the unknown periodic displacement on the boundary

@X and is dependent on the given global strain field ��ij. Hence for

a given strain ��ij, the displacement ui on @X can also be determined

by Eq. (7).

3. Validation

In this section, the validation of the MultiGrid results are imple-

mented in both microscopic and macroscopic aspects. This simula-

tion considers a common case where a spherical inhomogeneity is

embedded in a homogeneous matrix (see Fig. 2). Let X be the

matrix domain with the elastic stiffness tensor C and D be the

spherical domain with the elastic stiffness tensor C�. The accuracy

of the MG method can be tested by comparing the perturbed local

stress field and global stress–strain response induced by the pres-

ence of the inhomogeneity with existing theories.

3.1. Microscopic: Eshelby’s solution

The local stress field inside the elliptical inhomogeneity embed-

ded in the homogeneous matrix which is subjected to a remote

uniform strain field can be obtained from Eshelby’s ‘‘equivalent

inclusion method” [8,9]:

r
1 þ r ¼ C�ð�1 þ �Þ ¼ Cð�1 þ �� �

�Þ in D ð8Þ

where �1 is the remote uniform strain field applied on the matrixX

and r
1 is the uniform stress obtained if there is no inhomogeneity

inside the matrix, which means r1 ¼ C�1. � and r are the addi-

tional disturbed strain and stress respectively. �� is called eigen-

strain and is related to the additional disturbed strain �:

� ¼ S�� ð9Þ

S is the Eshelby tensor, which is determined by the shape of the

inhomogeneity. The details of the determination of the Eshelby ten-

sor components Sijkl can be found in [18] and Appendix B lists the

spherical case.

According to Eqs. (8) and (9), the analytic local stress field inside

the inhomogeneity can be determined.

In this simulation, we assume the spherical inhomogeneity to

be located at the center of the cube. In order to obtain a uniform

stress field on the cube boundary, we set the ratio between the

sphere radius r and the cube length L to be r=L ¼ 1=20. The Young’s

modulus of the sphere is 10 times larger than that of the matrix.

The matrix is subjected to a homogeneous traction strain

�1zz ¼ 0:01 on the boundary. Local grid refinement is applied and

409 points are used per sphere diameter. According to Eshelby’s

theory, the stress field produced in the inhomogeneity is uniform.

x

y

z

Ω : C

D : C∗

Fig. 2. Cubic matrix containing a spherical inhomogeneity.
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Fig. 3 shows a very good agreement for the inner points of sphere

e.g. at the center z ¼ 0:

rEshelby
xx ¼ 0:582r1

zz ; rMG
xx ¼ r1

xx þ rxx ¼ 0:584r1
zz

rEshelby
yy ¼ 0:582r1

zz ; rMG
yy ¼ r1

yy þ ryy ¼ 0:584r1
zz

rEshelby
zz ¼ 1:662r1

zz ; rMG
zz ¼ r1

zz þ rzz ¼ 1:665r1
zz

except for the adjacent points near the boundary between sphere

and matrix, where these points are coupled with the points in the

matrix.

3.2. Macroscopic: homogenization–Mori Tanaka

As pointed out above, the difficulty of simulating the real

composite structure prompted researchers to develop a number

of homogenization methods to predict the global stress–strain

response [19]. A classic homogenization method is the

Mori–Tanaka model.

In the Mori–Tanaka’s theory [10,11], the global effective prop-

erty tensor Ceff can be derived from:

Ceff ¼ Cþ V f ½ðC
� � CÞT�½ð1� V f ÞIþ V fT�

�1 ð10Þ

where T is:

T ¼ ½Iþ SCðC� � CÞ�
�1

ð11Þ

where S is the Eshelby tensor, I denotes the unit tensor, V f is the

volume percent of the inhomogeneity, C and C� are the stiffness

tensor of matrix and inhomogeneity respectively.

In this simulation, the model geometry is the same as in the

Eshelby case but the ratio between the sphere radius r and the

cube length L is selected to be r=L ¼ 1=4, which gives V f ¼ 6:54%.

The Young’s modulus of the sphere is also 10 times larger than that

of the matrix. Periodic boundary conditions are applied. Table 1

shows the results of the Mori–Tanaka prediction and the MG

numerical results. Components of the stiffness tensor Cijkl in trac-

tion part (Ciijj) match very well where the differences are 0.49%

and 0.26%, while for the shear modulus (Cijij; i– j) the difference

is 6.82%. Since the structure studied is isotropic, the equivalent

shear modulus lMT
equivalent calculated in MT prediction according to

the other two components (CMT
1111 and CMT

1122) is:

lMT
equivalent ¼

CMT
1111 � CMT

1122

2
ð12Þ

Its value lMT
equivalent ¼ 1:2295, is very close to the MG result 1.2260

where the difference becomes 0.28%.

4. Application

After the validation of both microscopic and macroscopic

aspects, the MG solver is used to simulate the composite structure.

In this section, the solver simulates the fiber-reinforced laminated

structure. This kind of structure is widely used since it is easy to

obtain the specific mechanical properties by modifying the orien-

tation of the fibers and the stacking sequence. However, it is also

well known that there are free edge effects induced by the mis-

match of adjacent layers [20]. This mismatch can lead to stress

concentrations at the interface between two different layers [21],

which may induce the initial inter-laminar failures such as delam-

ination or matrix cracking. A displacement discontinuity on the

boundary surfaces observed in residual deformation states can be

interpreted [22] as a signature of this early material damage.

In this study, the MGmodel is first applied to an ideal fiber rein-

forced structure case to obtain the effective properties. Then we

perform the numerical calculations with both MG and FE methods.

The MG routine uses the ideal laminated structure while the FE

routine uses the effective properties obtained from MG homoge-

nization. After the comparison between these two methods, we

introduce the real structure into the model, which is obtained

using X-ray tomography. We compare this case with a similar ideal

case which has perfect cylindrical fibers. Then we study the influ-

ence of fiber orientation, interface layer thickness, fiber layer thick-

ness as well as the different ratios of the Young’s modulus between

fibers and matrix.

4.1. Comparison with FE

In this part, the simulated structure contains two layers of dif-

ferent fiber orientations with angles [�15�/+15�] to the z axis. In

each layer, the fibers are staggered, see Fig. 4. The bulk dimensions

compared to the fiber radius r are ½�8r;�8r;�32r�. The fibers have

a Young’s modulus 10 times larger than the matrix denoted as

Ef=Em ¼ 10. In each layer, the vertical distance between any two

fibers is 2:2r.

First we apply a homogeneous strain boundary condition

(HSBC) to obtain the effective properties of this structure with

the MG method. In this step, we can also select a representative

volume element (RVE) to be analyzed, but a large scale dimension

will be more convincing considering the latter real case. Then in

the FE routine, we use the homogenized results under the follow-

ing conditions: at the bottom surface (z ¼ �32r): u ¼ v ¼ w ¼ 0, at

the top surface (z ¼ 32r): u ¼ v ¼ 0; w ¼ 0:01� 64r, and on

the other four surfaces the normal displacement is kept zero. These

conditions are chosen because they approximate the actual free

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

z/r

(σ
∞

+
σ
)/

σ
∞ z
z

(σ∞

xx + σxx)/σ∞

zz

(σ∞

yy + σyy)/σ∞

zz

(σ∞

zz + σzz)/σ∞

zz

σeshelby/σ∞

zz

Fig. 3. Stress component comparison between the Eshelby solution and the

MultiGrid solution.

Table 1

Comparison of elastic constants of the stiffness matrix between the Mori–Tanaka

(MT) prediction and MultiGrid (MG) calculations.

ðCeff
ijkl

ÞMT

ijkl 11 22 33 12 23 13

11 4.2488 1.7899 1.7899 0 0 0

22 1.7899 4.2488 1.7899 0 0 0

33 1.7899 1.7899 4.2488 0 0 0

12 0 0 0 1.3158 0 0

23 0 0 0 0 1.3158 0

13 0 0 0 0 0 1.3158

ðCeff
ijkl

ÞMG

ijkl 11 22 33 12 23 13

11 4.2695 1.7852 1.7852 0.0000 0.0000 0.0000

22 1.7852 4.2695 1.7852 0.0000 0.0000 0.0000

33 1.7852 1.7852 4.2695 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000 1.2260 0.0000 0.0000

23 0.0000 0.0000 0.0000 0.0000 1.2260 0.0000

13 0.0000 0.0000 0.0000 0.0000 0.0000 1.2260
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Fig. 4. Laminated structure composed of two layers with different fiber orientations

(top layer þ15� , bottom layer �15�).

Fig. 5. Displacement w distribution (left FE result with two different homogeneous layers, right MG result with two different fiber orientation layers).

−8 −6 −4 −2 0 2 4 6 8
1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

x/r

w

wFE

wMG

Fig. 6. Displacement w at the intersection between the two planes y ¼ �8r; z ¼ 0.

Fig. 7. Shear stress sxz distribution (left FE result with two different homogeneous layers, right MG result with two different fiber orientation layers).
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edge conditions. In the MG routine, we apply the same boundary

conditions while using the ideal laminated structure (Fig. 4).

Fig. 5 shows the displacement w distribution on the boundary

surfaces, where the left one shows the results of the FE calculation

using a homogeneous structure and the right one shows the results

of the MG calculation using the ideal laminated structure. A

displacement variation along the x direction is found at the plane

y ¼ �8r, the plane visible in Fig. 5, because of the mismatch

induced by the different fiber orientations. If we select a line on

this plane, such as z ¼ 0 i.e. in the middle section of the sample,

Fig. 6 shows a good agreement of the local displacement w distri-

bution along the x direction between FE and MG calculations. Obvi-

ously, the displacement w distribution in FE results is smooth due

to the homogenization while in the MG results the distribution

varies according to the fiber location.

The variation of the displacement w near the interface induces a

stress concentration in sxz. Fig. 7 shows the shear stress sxz distri-
bution on the boundary surfaces. The shear stress sxz shows con-

centration where two fibers with different orientations are close.

Fig. 8 shows the comparison of the local shear stress sxz at two dif-

ferent positions in the interface x ¼ 0, which shows that sxz
increases sharply when approaching to the boundary. A good

agreement between FE and MG is found for both positions while

MG results shows the detailed local stress distribution.

From the above comparisons, we find that the global effects of

both components match very well between FE and MG calcula-

tions. However, the MG simulation allows one to capture all the

strain and stress heterogeneities generated by the micro-structure.

4.2. Real case

In this simulation, the real structure (Fig. 9) captured using

X-ray tomography is modeled. These data were obtained in [22].

Because of the large number of points describing the structure

and the associated computational cost, it is difficult to use tradi-

tional numerical methods, such as FE. The real structure contains

three main phases: one for the fibers, one for the matrix and the

other one for the voids. The ratio of the Young’s modulus between

them is Ef ¼ 10Em ¼ 100Ev . It has two layers with different fiber

orientation with angles [�15�/+15�] as analyzed previously. The

boundary conditions are also applied as in the previous case. The

coarse grid is meshed with ½9;9;33� points and 6 levels in total

are used with ½257;257;1025� points on the finest grid. Each fiber

has at least 20 points along its diameter.

Since the random nature exists in the real structure case and its

interface layer thickness is between 2r and 3r, the thickness of

interface layer in two similar ideal cases with perfect cylindrical

fibers and definite interface layer thickness are selected to be 2r

and 3r respectively. Fig. 10 shows the structure and displacement

w distribution at the boundary surface: y ¼ �32r for both real

structure case and one ideal structure case (interface layer

−8 −6 −4 −2 0 2 4 6 8
−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

y/r

τ x
z

τFE
xz

(τMG
xz )A

(τMG
xz )B

Fig. 8. Shear stress sxz comparison at the interface x ¼ 0.

Fig. 9. Measured structure: yellow-fibers, light blue-matrix, dark blue-voids (top

layer þ15� , bottom layer �15�). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 10. Structure and displacementw distribution at the boundary surface: y ¼ �32r for the real case and the ideal case (interface layer thickness = 2r) respectively (from left

to right: real structure, displacement w distribution for the real case, ideal structure, displacement w distribution for the ideal case).
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thickness = 2r). The variation of displacement w along the x direc-

tion can also be observed in of the real structure case.

Fig. 11 shows the comparison of Dw between the real case and

two similar ideal cases, where Dw is the average displacement w

along the z direction minus its average along the x direction and

describes the global displacement variation. These results are very

similar.

4.3. Parameter study for the ideal case

In this section, we investigate several parameters influencing

the Dw.

The first parameter is the fiber orientation. We model three dif-

ferent cases: [�10�/+10�], [�15�/+15�] and [�20�/+20�]. In all these

cases, the thickness of the interface layer and fiber layer is kept at

2r and 6r respectively and the ratio of the Young’s modulus

between fiber and matrix is 10. Fig. 12 shows that the displace-

ment variation Dw increases with the angle. This confirms what

is reported in the literature and indicates that a more severe mis-

match of the properties between two layers yields s a larger dis-

placement variation. The mismatch depends on the angle and

there is actually a maximum mismatch for an angle between 0�

and 45�. The value of the angle for the maximum mismatch

depends on the mechanical properties of the individual plies and

should be obtained from the homogenized FE model by varying

the orientation between the two plies. However, this investigation

is beyond the scope of the paper.

The second parameter is the thickness of the interface layer.

Four different thicknesses of the interface layer are simulated: 0r

where two different fiber orientation layers touch each other at

the interface, 1r; 2r and 5r. In all theses cases, the thickness of

the fiber layer is kept at 6r, the fiber orientation is set at [�15�/

+15�] and the ratio of the Young’s modulus between fiber and

matrix is 10. Fig. 13 shows that a thicker interface has a larger

amplitude of the displacement variation but has a smaller slope.

The amplitude of the displacement variation between the 2r case

and the 5r case varies little while the slope varies much, which

indicates that the 2r case is more likely to induce the delamination

than the 5r case from this point of view.

The third parameter is the thickness of the fiber layer. Two dif-

ferent thicknesses of fiber layer are simulated: 5:5r and 8r. The

thickness of the interface layer is kept to be 5r, the fiber orientation

is set at [�15�/+15�] and the ratio of the Young’s modulus between

fiber and matrix is 10. Fig. 14 shows that the laminated structure

has the same displacement variation for different thicknesses of

the fiber layer.
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Fig. 11. Displacement Dw comparison between the real case and the ideal case.
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The fourth parameter is the ratio of the Young’s modulus

between fibers and matrix. In this comparison, the thickness of

interface layer and fiber layer is kept at 2r and 6r respectively

and the fiber orientation is set at [�15�/+15�]. Fig. 15 shows that

the tendency of the displacement variation is steeper and larger

when increasing the ratio of the Young’s modulus, which indicates

that a stronger discontinuity between fiber and matrix is more

likely to induce delamination.

5. Conclusion

The efficiency of Multigrid techniques allows solution of the

problem with dense grids and thus very local description of actual

material topologies. This offers great opportunities for future

research for material characterization, derivation of large scale

(FEM) element models from local scale simulations and material

optimization. The main work in this paper can be concluded as

follows:

(1) An efficient and stable MG solver is further developed to

solve the 3D Lamé equations for composite materials. The

solver adopted the method of Alcouffe et al. to solve prob-

lems involving large material gradients. Local grid refine-

ment techniques are applied to reduce the computational

time and allocated memory.

(2) The solver is validated with respect to Eshelby’s solution and

the Mori–Tanaka prediction. A good agreement is found.

Finally, the solver is applied to fiber reinforced materials,

including theoretical material distributions and a measured

distribution. These models use as much as 108 DOFs and are

computed efficiently. Parameters influencing the displace-

ment variation on the boundary surfaces are studied.

(3) Fiber orientation, interface layer thickness and Young’s mod-

ulus ratio are shown to be important parameters concerning

the displacement variation. It is obtained that the fiber layer

thickness does not influence the displacement variation.

Conversely, it is shown that the interface layer thickness

has a strong influence.

(4) A good agreement is found for the MG homogenization,

which shows the potential of MG methods for the homoge-

nization process.
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Appendix A. Discretize equations

The first equation in (1) can be written as:

@

@x
ðkþ 2lÞ

@u

@x

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

þ
@

@y
l
@u

@y

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ð2Þ

þ
@

@z
l
@u

@z

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ð3Þ

þ
@

@x
k
@v

@y

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ð4Þ

þ
@

@y
l
@v

@x

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ð5Þ

þ
@

@x
k
@w

@z

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ð6Þ

þ
@

@z
l
@w

@x

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ð7Þ

¼ 0

Using second order accurate discretization:

ð1Þ
ðkþ2lÞiþ1=2;j;kuiþ1;j;k�ððkþ2lÞiþ1=2;j;kþðkþ2lÞi�1=2;j;kÞui;j;kþðkþ2lÞi�1=2;j;kui�1;j;k

h
2
x

ð2Þ
li;jþ1=2;kui;jþ1;k � ðli;jþ1=2;k þ li;j�1=2;kÞui;j;k þ li;j�1=2;kui;j�1;k

h
2
y

ð3Þ
li;j;kþ1=2ui;j;kþ1 � ðli;j;kþ1=2 þ li;j;k�1=2Þui;j;k þ li;j;k�1=2ui;j;k�1

h
2
z

ð4Þ
kiþ1;j;kðv iþ1;jþ1;k � v iþ1;j�1;kÞ � ki�1;j;kðv i�1;jþ1;k � v i�1;j�1;kÞ

4hxhy

ð5Þ
li;jþ1;kðv iþ1;jþ1;k � v i�1;jþ1;kÞ � li;j�1;kðv iþ1;j�1;k � v i�1;j�1;kÞ

4hxhy

ð6Þ
kiþ1;j;kðwiþ1;j;kþ1 �wiþ1;j;k�1Þ � ki�1;j;kðwi�1;j;kþ1 �wi�1;j;k�1Þ

4hxhz

ð7Þ
li;j;kþ1ðwiþ1;j;kþ1 �wi�1;j;kþ1Þ � li;j;k�1ðwiþ1;j;k�1 �wi�1;j;k�1Þ

4hxhz

Appendix B. Eshelby’s tensor components for a spherical

inhomogeneity

S1111 ¼ S2222 ¼ S3333 ¼
7� 5m

15ð1� mÞ

S1122 ¼ S2233 ¼ S3311 ¼ S1133 ¼ S2211 ¼ S3322 ¼
5m� 1

15ð1� mÞ

S1212 ¼ S2323 ¼ S3131 ¼
4� 5m

15ð1� mÞ

where m is the Poisson’s ratio.
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