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Abstract

A more descriptive but too long title would be : Constructing fly-

automata to check properties of graphs of bounded tree-width expressed

by monadic second-order formulas written with edge quantifications. Such
properties are called MSO2 in short. Fly-automata (FA) run bottom-up
on terms denoting graphs and compute ”on the fly” the necessary states
and transitions instead of looking into huge, actually unimplementable
tables. In previous works, we have constructed FA that process terms de-
noting graphs of bounded clique-width, in order to check their monadic
second-order (MSO) properties (expressed by formulas without edge quan-
tifications). Here, we adapt these FA to incidence graphs, so that they can
check MSO2 properties of graphs of bounded tree-width. This is possible
because: (1) an MSO2 property of a graph is nothing but an MSO prop-
erty of its incidence graph and (2) the clique-width of the incidence graph
of a graph is linearly bounded in terms of its tree-width. Our constructions
are actually implementable and usable. We detail concrete constructions
of automata in this perspective.

keywords: monadic second-order logic, edge quantification, tree-width,
clique-width, algorithmic meta-theorem, fly-automaton.

1 Introduction

Graphs are finite and, either directed or undirected. Our goal is to check their
monadic second-order (MSO) properties by using finite automata running on
the terms that denote input graphs, and to obtain in this way fixed-parameter
tractable (FPT ) algorithms whose parameters are tree-width or clique-width.
We want these automata to be constructable automatically from logical formulas
and practically usable. We recall the following algorithmic meta-theorem [7,10]1;
the notions it uses will be reviewed in Section 2.

∗This work has been supported by the French National Research Agency (ANR) in the
IdEx Bordeaux program ”Investments for the future”, CPU, ANR-10-IDEX-03-02.

1The presentation in these two works is much better than those in the usually quoted
original references [3, 11].
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Theorem 1 : (a) For every integer k and every MSO sentence ϕ, there
exists a linear time algorithm that checks the validity of ϕ in any graph of
clique-width at most k given by a relevant term.

(b) For every integer k and every MSO2 sentence ϕ, there exists a linear
time algorithm that checks the validity of ϕ in any graph of tree-width at most
k given by a relevant tree-decomposition.

A sentence is a logical formula without free variables. An MSO sentence
can only use quantifications over vertices and sets of vertices, whereas an MSO2

sentence can also use quantifications over edges and sets of edges. The incidence
graph Inc(G) of a graphG is a bipartite graph constructed as follows: its vertices
are those of G together with new vertices representing its edges; its adjacency
relation is the incidence relation of G (relating an edge and its ends). Assertion
(b)2 is actually a consequence of (a) because:

(1) an MSO2 property of a graph G is nothing but an MSO property of its
incidence graph Inc(G) and

(2) if G has tree-width k, then Inc(G) has clique-width at most f(k) for
some fixed linear function f ,

(3) a tree-decomposition of G of width k can be converted in linear time (for
fixed k) into a clique-width term of width at most f(k) that defines Inc(G).

Point (1) is just a matter of definitions. Point (2), in particular the fact that
f is linear (f(k) ≤ 2k+5, see details in Section 3) together with the linear time
transformation of (3) make practically usable this reduction of (b) to (a).

Automata constructions.
The classical proof of Assertion (a) constructs from an MSO sentence ϕ and

a positive integer k a finite automaton Aϕ,k that takes as input a term t of
width at most k that denotes an input graph assumed of clique-width ≤ k. This
automaton recognizes the terms that denote graphs satisfying ϕ. The construc-
tion is done by induction on the structure of ϕ. First, one constructs automata
for the atomic formulas that are of only two kinds3 : X ⊆ Y (set inclusion) and
edg(X,Y ) (meaning that X = {x}, Y = {y} and there is an edge from x to y, or
between them if the graph is undirected). As we will recall, MSO formulas can
be written with set variables only and these two types of atomic formulas. From
automata Aϕ,k and Aψ,k, one can build automata for Aϕ∨ψ,k and Aϕ∧ψ,k by
taking the product ofAϕ,k andAψ,k equipped with appropriate accepting states.
Other constructions handle negation and existential quantification. See [7, 10].

It is actually useful to precompute automata Aϕ,k for some formulas ϕ ex-
pressing basic MSO properties, such as Partition(X1, ..., Xp) (meaning that
X1, ..., Xp is a partition of the vertex set), stability of X (denoted by St(X) and
meaning that there are no edges between vertices inX , equivalently, thatX is an

2By a result of Bodlaender (see [1, 12, 13]), a tree-decomposition of G of width k can be
computed in linear time if there exists one. Hence the variant of (b) where a tree-decomposition
is not given but must be computed also holds, but this variant is not a consequence of (a).
Furthermore, the linear time decomposition algorithm is not practically implementable.

3Automata Aϕ,k can also be defined for formulas ϕ with free variables. See Theorem 5.
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independent set), connectedness of the considered graph, existence of directed or
undirected cycles, degree bounds etc. See [7]. The logical expression of a prop-
erty can be made simpler as we allow, in some sense, more atomic formulas. For
example, 3-colorability is expressed by : ∃X1, X2, X3.(Partition(X1, X2, X3) ∧
St(X1) ∧ St(X2) ∧ St(X3)).

However, even with this technique, this construction is intractable because
Aϕ,k has in most cases, even for k = 2, so many states that it cannot be
implemented in the classical way. This is not avoidable [15]. The notion of a
fly-automaton (an FA in short) remedies to this fact. Its states are not listed in
huge tables. Although numerous, they have a common syntactic structure and
can be described by words4. The necessary transitions are not stored in tables
but computed by (small) programs. A deterministic FA having 22

10

states needs
and computes only 100 states on a term of size 100. The maximum size of a state
(the number of bits for encoding it) used on an input term is more important to
bound the computation time than the total number of states. Implementation
of FA has been tested in significant cases [7, 8].

The present contribution :
Our objective is to apply to Assertion (b) the tools developped in [7, 8].

However, the reduction of (b) to (a) necessitates some work on automata. For
instance, the clique-width operations allow to write terms that do not define
incidence graphs. For example, if some vertex intended to represent an edge
has degree more than 2, the defined graph is not an incidence graph. We will
define an automaton ACT to check whether a given term is correct, i.e, defines
an incidence graph.

Furthermore, in MSO2 logic seen as MSO logic on incidence graphs, the
property edg(X,Y ) is no longer atomic. It is expressed by:

”there exists a vertex representing an edge that is adjacent to the
unique vertex of X and to the unique vertex of Y ”,

hence, the automaton for this formula is more complicated than the one for
edg(X,Y ) in the case of MSO logic because of the quantification on vertices
representing edges. We will detail the construction of such an FA for edg(X,Y )
and of other FA for related properties such as domination. We will also construct
FA for checking Hamiltonicity, a graph property that is MSO2-expressible but
not MSO-expressible.

We consider directed graphs because they are in general algorithmically more
difficult to handle than undirected ones. In the present setting they are no more

4FA can have infinitely many states: a state can record the (unbounded) number of oc-
currences of a particular symbol. We can thus construct fly-automata that check properties
that are not MSO expressible (for example that a graph is regular or can be partitioned into p

disjoint regular graphs). These automata yield FPT or XP algorithms [12,13] for clique-width
as parameter. By equipping fly-automata with output functions, we can make them compute
values attached to graphs: for example, assuming that the input graph is s-colorable, the
minimum size of X1 in an s-coloring (X1, . . . ,Xs). We can compute the number of p-vertex
colorings, and also the number of so-called of acyclic 4-colorings of Petersen’s graph: 10800.
The number of acyclic 3-colorings of McGee’s graph is 57024. See [8].
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difficult to deal with, and it is easy to simplify our automata, constructed for
directed graphs so as they handle undirected graphs.

Our method, that consists in computing automata from logical formulas,
yields usable algorithms very quickly as it consists in combining predefined au-
tomata by means of a few standard procedures operating on FA. It has been
implemented5. The produced algorithms follow the general scheme of dynamic
programming over graph decomposition, however, specialized algorithms for
particular problems designed with ad hoc data structures can be quicker. Our
purpose is to obtain by meta-algorithmic tools, usable algorithms with reason-
able, but not necessarly optimal, time complexity.

Section 2 reviews definitions and constructions of automata. Although this
article is a continuation of [7], we recall most definitions to make it readable
independently. In Section 3, we adapt definitions to incidence graphs. Our con-
structions of automata for the correctness of terms and for properties based on
adjacency are in Section 4. Other properties, in particular Hamiltonicity, are
discussed in Section 5. We review related work in our conclusion.

2 Definitions and background constructions.

First, some notation : P(X) denotes the powerset of a set X , Pf(X), the set
of its finite subsets and P≤m(X) the set of its subsets of cardinality at most m
and [X → Y ]f the set of partial functions : X → Y having a finite domain.

A (functional) signature is a set F of function symbols, where f ∈ F has
arity ρ(f) ∈ N and T (F ) is the set of (finite) terms over F . The set of positions
of a term t is Pos(t) and positions are formally denoted by Dewey words. They
are considered as the nodes of a labelled tree, and the terminology of trees
will be used for expressing properties of positions in terms. The positions of
t = f(a, g(a, b)) are the words ε that it is the root of t, also denoted by roott
and the unique occurrence of f , 1 and 21, the occurrences of a, 2 the occurrence
of g and 22, the occurrence of b. If t′ is the subterm t/u of t issued from position
u, then Pos(t′) is the set of words w such that uw ∈ Pos(t). Positions of t are
partially ordered by ≤t such that u ≤t v if and only if v is a prefix of u, i.e., v
is an ancestor of u or is equal to it.

By a language, we mean a set of words or of terms, not to be confused with
a logical language such as monadic second-order (MSO in short) logic.

Graphs and MSO logic.

A simple graph is, here, a finite directed graph without parallel edges and
loops. These graphs will be used as incidence graphs of more general graphs,
to be defined in the next section. We identify a simple graph G to the logical

5The system AUTOGRAPH that builds and runs FA is written in LISP [6] and http://dept-
info.labri.u-bordeaux.fr/˜idurand/autograph
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structure 〈VG, edgG〉 whose domain is VG, the set of vertices, and where edgG is
the binary relation such that (x, y) ∈ edgG if and only if there is an edge from
x to y, which we denote by x→G y, or by x→ y if G is clear from the context.

MSO logic uses individual variables (x, y, z, ...) to denote vertices, and set
variables (X,Y, Z, ...) to denote set of vertices. Quantifications over binary rela-
tions is not allowed. Rather than giving a formal syntax (see [10]), we take the
example of 3-vertex colorability, expressed by the MSO formula ∃X,Y.α(X,Y )
where α(X,Y ) is the formula

X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒ [¬(u ∈ X ∧ v ∈ X)

∧¬(u ∈ Y ∧ v ∈ Y ) ∧ ¬(u /∈ X ∪ Y ∧ v /∈ X ∪ Y )]}.

The formula α(X,Y ) expresses that X,Y and VG − (X ∪ Y ) are the three
color classes of a 3-vertex coloring of G. More generally, p-vertex colorability
is expressible in a similar way. Other MSO expressible graph properties are
connectedness, strong connectedness, planarity (via forbidden minors) and the
existence of directed cycles.

Every MSO formula can be written so as to use only set variables and the
atomic formulas X ⊆ Y (for set inclusion) and edg(X,Y ) (meaning that X =
{x}, Y = {y} and x→ y): for doing that, we replace the atomic formula x ∈ Y
by X ⊆ Y where X denotes a singleton set. The property that X is singleton,
denoted by Sgl(X), can be expressed itself in terms of inclusions. It is however
useful to allow X = Y,X = ∅, Sgl(X), Partition(X1, ..., Xp) (meaning that
(X1, ..., Xp) is a partition of the vertex set, where some sets Xi may be empty)
as atomic formulas. Furthermore, universal quantifications ∀X.ϕ are replaced
by ¬∃X.¬ϕ. These syntactic constraints facilitate the construction of automata.
Details are in [10].

A sentence is a formula without free variables. It expresses a property of the
considered graph.

Clique-width

Clique-width is a graph complexity measure, comparable to tree-width, that
is defined from operations that construct simple graphs equipped with vertex
labels. Let C be a finite or countable set of labels. A C-graph is a triple
G = 〈VG, edgG, πG〉 where πG is a mapping: VG → C. If πG(x) = a we say to
be short that x is an a-vertex.

We let FC be the following set of operations on C-graphs:

⊕ is the union of two disjoint C-graphs,

relaba→b, for a 6= b, a, b ∈ C, is the the unary operation that changes
every vertex label a into b,
−−→
adda,b, for a 6= b, a, b ∈ C, is the unary operation that adds an edge
from each a-vertex x to each b-vertex y (unless we already have an
edge from x to y),
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∅ is a nullary symbol denoting the empty graph,

and for each a ∈ C, the nullary symbol a denotes an isolated a-
vertex.

The set FC is finite if C is finite.
Every term t in T (FC) defines a C-graph G = val(t) (a formal definition

is in [7, 10]). Its vertex set is the set of positions in t of the nullary symbols
a, a ∈ C. The clique-width of a graph G, denoted by cwd(G), is the least
cardinality of a set of labels C such that G is isomorphic, up to vertex labels,
to val(t) for some t in T (FC). It is clear that cwd(G) ≤ |VG| .

Let t′ be a subterm t/u of t ∈ T (FC) for u ∈ Pos(t). The graph val(t′) is,
up to vertex labels, isomorphic to a subgraph G′ of G = val(t). More precisely,
let iu : Pos(t′) → Pos(t) map w to uw (we recall that positions are Dewey
words). Then iu(Pos(t

′)) = {v ∈ Pos(t) | v ≤t u} is the set of vertices of G′

and iu is the isomorphism : val(t′)→ G′. If x→val(t′) y, then iu(x)→G iu(y),
however we may have iu(x) →G iu(y) without having x →val(t′) y because an

edge from iu(x) to iu(y) can be added to G′ by an operation
−−→
adda,b above u in

t. To simplify notation, we will use in the above case the following:

Convention about subterms : we will forget iu and consider val(t′) as
identical to the subgraph G′ of G = val(t).

Hence, a node w of val(t′) will be identified to the node iu(w) = uw of G.

A term t in T (FC) is irredundant if an operation
−−→
adda,b never ”tries to create”

an edge from an a-vertex x to a b-vertex y such that we already have x → y.

In particular, t has no subterm of the form
−−→
adda,b(t

′) such that val(t′) has an
a-vertex x and a b-vertex y such that x→val(t′) y. (The formal definition is more
complicated because of relabellings). Every term can be made irredundant by

an easy preprocessing [7, 10] consisting in removing some operations
−−→
adda,b.

Lemma 2 : Let t ∈ T (FC) be irredundant, u ∈ Pos(t), t′ = t/u. If a vertex
x of val(t′) has indegree p in this graph, then it has indegree p + q in val(t),
where q is nonnegative and depends only on t, u and the label of x in val(t′).
The same holds for outdegrees.

This statement uses our Convention about subterms. Its proof is straightfor-
ward from the definition (Definition 5 of [7]). It follows that if t, t′, x, q are as in
the statement and x′ is another vertex of val(t′) with same label and of indegree
p′, then it has indegree p′ + q in val(t).

We denote by twd(G) the tree-width of a graph G [1, 10, 12, 13].

Proposition 3 : For every simple graph G, we have cwd(G) ≤ 22twd(G)+2+
1, and cwd(G) is not polynomially bounded in terms of twd(G), as it can be at
least 2k−1 for some graphs of tree-width 2k.
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References for the proofs and comments are in [10], Proposition 2.114.

Finally, we explain how a term in T (FC) can be enriched so as to define,
not only a graph, but also vertex sets X1, ..., Xp of this graph. We replace in
FC each nullary symbol a by the nullary symbols (a, w) for all w ∈ {0, 1}p. We

obtain a set of operations F
(p)
C .

Let t ∈ T (FC), X1, ..., Xp ⊆ Vval(t) and x ∈ Vval(t). We let w(x) be the
sequence in {0, 1}p whose i-th element w(x)[i] is 1 if x ∈ Xi and 0 otherwise.
We replace in t a nullary symbol a at position u by (a, w(u)) (u is a vertex of

val(t)). We obtain a term in T (F
(p)
C ) that defines the graph val(t) and also the

p-tuple (X1, ..., Xp). We denote this term by t ∗ (X1, ..., Xp). Conversely, every

term t′ in T (F
(p)
C ) is of this form, and we will also denote by val(t′) the graph

val(t).
If P is a property of graphs6, then LP,C is defined as the set of terms t ∈

T (FC) such that val(t) satisfies P . More generally, if P (X1, ..., Xp) is a property
of vertex sets X1, ..., Xp of graphs, then LP (X1,...,Xp),C is the set of terms

t ∗ (X1, ..., Xp) ∈ T (F
(p)
C ) such that P (X1, ..., Xp) holds in val(t). If

P (X1, ..., Xp) is expressed by an MSO formula ϕ(X1, ..., Xp), we denote by
Lϕ(X1,...,Xp),C the language LP (X1,...,Xp),C .

Automata.

If ϕ(X1, ..., Xp) is an MSO formula and C is finite, then Lϕ(X1,...,Xp),C is a
recognizable language, hence, is definable by a finite automaton. However, if C
is infinite, Lϕ(X1,...,Xp),C can be defined by an infinite automaton that is usable
in algorithms.

Definition 4: Fly-automata.
(a) A set is effectively given if, either it is finite and the list of its elements

is known, or it is countably infinite and its elements are bijectively encoded by
words over {0, 1} (or another finite alphabet) that form a decidable set. Through
this encoding, we have the notion of computable functions on effectively given
sets. If D is effectively given, then so are Ds for s ≥ 2, Pf (D), the set of finite
subsets of D and the set [D′ → D]f of partial functions having a finite domain,
where D′ is effectively given. A signature F is effectively given if the set F is
effectively given, the arity mapping ρ is computable and the least upper bound
ρ(F ) of the arities is finite.

(b) Let F be an effectively given signature. A fly-automaton over F (in short,
an FA over F ) is a 4-tuple A = 〈F,QA, δA,AccA〉 such that QA is an effectively
given set called the set of states, AccA is a decidable subset of QA called the

6Saying that P is a property of graphs means that it is invariant under isomorphisms and
arbitrary vertex relabellings. Labels are used for constructing graphs, but at the end, they are
forgotten.

7



set of accepting states7, and δA is a computable function such that, for each
tuple (f, q1, . . . , qρ(f)) such that q1, . . . , qρ(f) ∈ QA and f ∈ F, the set of states
δA(f, q1, . . . , qρ(f)) is finite. The transitions are the pairs f [q1, . . . , qρ(f)]→A q
(and f →A q if f is nullary) such that q ∈ δA(f, q1, . . . , qρ(f)). We say that
f [q1, . . . , qρ(f)]→A q is a transition that yields q. We say that A is finite if F
and QA are finite, and we get the usual notion of a finite automaton.

(c) A run of an FA A on a term t ∈ T (F ) is a mapping r : Pos(t) → QA

such that :

if u is an occurrence of a function symbol f ∈ F and u1, ..., uρ(f) is
the sequence of sons of u, then f [r(u1), . . . , r(uρ(f))] →A r(u); (if
ρ(f) = 0, the condition reads f →A r(u)).

For q ∈ QA, we define L(A, q) as the set of terms t in T (F ) on which there
is a run r of A such that r(root t) = q. A run r on t is accepting if the state
r(root t) is accepting. We define L(A) :=

⋃
{L(A, q) | q ∈ AccA} ⊆ T (F ). It is

the language accepted (or recognized) by A. A state q is accessible if L(A, q) 6= ∅.
We denote by QA ↾ t the set of states that occur in the runs on t and on its
subterms, and by QA ↾ L the union of the sets QA ↾ t for t ∈ L ⊆ T (F ).

We denote by run∗
A,t the mapping: Pos(t) → Pf (QA) that associates with

every position u the finite set of states of the form r(roott/u) for some run r
on the subterm t/u of t issued from u. This mapping is computable and the
membership in L(A) of a term in T (F ) is decidable because t ∈ L(A) if and
only if the set run∗

A,t(roott) contains an accepting state. Hence, whether all
states of an FA are accessible or not does not affect the membership algorithm:
the inaccessible states simply never appear in any run. There is no need to try
to remove them, which is actually impossible in general, unless if A is finite.
Removing them in the case of a ”small” finite automaton permits to reduce the
size of small the transition table.

We define ndegA(t), the nondeterminism degree of A on t, as the maximal
cardinality of run∗

A,t(u) for u in Pos(t). We have ndegA(t) ≤ |QA ↾ t|.
A sink is a state s such that, for every transition f [q1, . . . , qm] →A q, we

have q = s if qi = s for some i. If F has at least one symbol of arity at least 2,
then an automaton has at most one sink. A state named Error (resp. Success)
will always be a nonaccepting (resp. accepting) sink.

We say that an FA B = 〈H,QB, δB,AccB〉 is a subautomaton of an FA A if
H ⊆ F , QB ⊆ QA, AccB = AccA∩QB and δB(f, q1, . . . , qρ(f)) = δA(f, q1, . . . , qρ(f))
if f ∈ H and q1, . . . , qρ(f) ∈ QB. Then L(B) = L(A) ∩ T (H).

(d) Deterministic automata. An FA A is deterministic (implicitly, and com-
plete) and if all sets δA(f, q1, . . . , qρ(f)) have cardinality 1. A deterministic

7Fly-automata can also compute functions if one replaces the accepting states by a com-
putable mapping from states to some effective domain. See [8].
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FA A has, on each term t, a unique run denoted by runA,t; we let qA(t) :=
runA,t(roott). The mapping qA is computable.

The computation time of A on a term t is bounded by p. |t| where p bounds
the time used for computing a transition.

For every fly-automaton A, there exists a deteministic FA B denoted by
det(A) such that QB = Pf (QA), runB,t = run∗

A,t and L(B) = L(A). (See [7],
Proposition 45(2)). A run of B on a term t, that is, a bottom-up computation
of runB,t, is called the determinized run of A. The maximal size of a state of
det(A) on a term t is bounded by ndegA(t).s where s is the maximal size of a
state in QA ↾ t.

If the state Error is met at any point of the computation of a deterministic
FA, the term can be immediately rejected. If the state Success is met at any
point of the bottom-up computation of an FA, then the term can be immediately
accepted. Hence, using sinks Success and Error in this way can shorten some
computations.

(e) Direct and inverse images of automata.
Let H and F be effectively given signatures. Let h : H → F be a relabelling,

i.e., an arity preserving mapping having a computable inverse, that is, such that
h−1(f) ⊆ H is finite and computable for each f . Let h be extended from
T (H) to T (F ) in the obvious way. If L ⊆ T (H), then h(L) := {h(t) | t ∈ L}.
If A is an FA over H , then h(A) is the fly-automaton over F ( [7], Proposi-
tion 45) obtained from A by replacing each transition f [q1, · · · , qρ(f)]→A q by
h(f)[q1, · · · , qρ(f)]→ q. We say that h(A) is the image of A under h. It is not
deterministic in general, even if A is. We have h(L(A)) = L(h(A)) (because
h(A) has the same accepting states as A).

Let now h : T (H) → T (F ) be a computable relabelling. If K ⊆ T (F ),
then h−1(K) := {t ∈ T (H) | h(t) ∈ K}. If A is an FA over F , we let h−1(A)
be the FA over H with transitions of the form f [q1, · · · , qρ(f)] → q whenever
h(f)[q1, · · · , qρ(f)] →A q. We have L(h−1(A)) = h−1(L(A)). We call h−1(A)
the inverse image of A under h ( [7], Definition 17(h)). It is deterministic if A
is so.

Automata from checking graph properties.

Theorem 5 : Let ϕ(X1, ..., Xp) be an MSO formula and C be an effectively
given set of labels.

(1) There exists a deterministic FA Aϕ(X1,...,Xp),C over FC that recognizes
the language Lϕ(X1,...,Xp),C . This automaton can be constructed by an algo-
rithm.

(2) If C′ ⊆ C is effectively given, then Aϕ(X1,...,Xp),C′ is a subautomaton of
Aϕ(X1,...,Xp),C .

(3) If C is finite, then Aϕ(X1,...,Xp),C is finite.

Proof : In [7, 10] and related articles, we construct, for each finite set C,
a finite deterministic automaton Aϕ(X1,...,Xp),C that accepts the recognizable
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language Lϕ(X1,...,Xp),C ⊆ T (F
(p)
C ). The construction is by induction on the

structure of ϕ(X1, ..., Xp). We first construct automata for the atomic formu-
las, X ⊆ Y and edg(X,Y ) and also for some useful MSO properties such as
X = ∅, Sgl(X), Partition(X1, . . . , Xp), Conn(X) expressing that the induced
subgraph with vertex set X is connected, DirCycle expressing that the graph
has an directed cycle. These constructions are based on our understanding of
the considered properties.

Operations on FA ”implement” the logical connectives ∨,∧,¬, ∃ and vari-
able substitutions. The operation reflecting existential quantification consists in
taking an image automaton, followed by a determinization. We have :

A∃Xp.ϕ(X1,...,Xp),C = det(h(Aϕ(X1,...,Xp),C))

where h : F
(p)
C → F

(p−1)
C deletes the last Boolean of w in each nullary symbol

(a, w).
The transformation reflecting substitutions of variables consists in taking an

inverse image: if ψ(X1, ..., Xp) is defined as ϕ(Xi1 , ..., Xim) from ϕ(Y1, ..., Ym),
then the automaton Aψ(X1,...,Xp),C is an inverse image of Aϕ(Y1,...,Ym),C ( [7],
Lemma 13 and Section 4.2.1). For an example, if ψ(X1, X2, X3) is defined as
edg(X3, X1), we obtainAψ(X1,X2,X3),C = h−1(Aedg(X1,X2),C) where h((a, w1w2w3))
= (a, w3, w1) for all w1, w2, w3 ∈ {0, 1}. If ϕ(X1, ..., Xp) is the conjunction of
two formulas for which we know automata, then the automaton for ϕ(X1, ..., Xp)
is the product of these two automata, provided they are built for formulas hav-
ing the same list of free variables. Variable substitution is useful to insure this
technical point8.

As explained in [7], Section 7.3.1, these constructions work for infinite sets
of labels. The three assertions of Theorem 5 can be proved by induction on the
structure of ϕ. To be more precise9, we define, for each set X and integer i ≥ 0,
the set Li(X) as follows:

L0(X) := X,

Li+1(X) := Li(X) ∪ Pf (Li(X)) ∪ (Li(X)× Li(X)).

It is clear that X ⊆ Y implies Li(X) ⊆ Li(Y ) and that Li(X) is finite if X
is finite. The set Li(X) is effectively given if X is.

For every MSO formula ϕ(X1, ..., Xp), one can define a finite set B and
an integer i such that, for each effectively given set C of labels, one can con-

struct a deterministic FA Aϕ(X1,...,Xp),C over F
(p)
C that recognizes the language

Lϕ(X1,...,Xp),C and whose set of states Q(C) satisfies the following properties:

(i) Q(C) ⊆ Li(B ∪C),

(ii) Q(C′) = Q(C) ∩ Li(B ∪C′) if C′ ⊆ C,

8We use this observation in Section 4.2.
9This definition is used in [9] to prove that the (Strong) Recognizability Theorem, Theorem

5.68(1) of [10], can be proved via the construction of automata.
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(iii) if ℓ : C → C′ is a bijection, then Aϕ(X1,...,Xp),C′ is the FA ob-
tained from Aϕ(X1,...,Xp),C by replacing in its states and transitions
a by ℓ(a) for each a ∈ C (informally, ℓ yields an isomorphism of
automata : Aϕ(X1,...,Xp),C → Aϕ(X1,...,Xp),C′).

For an example, the automaton Aedg(X,Y ),C constructed in [7,10] has states
in {Error,Ok} ∪ (P≤1(C) × P≤1(C)) that is a subset of L2({Error,Ok} ∪ C).
(As they are defined in [7, 10], states are in L1(B ∪ C) for some finite set B.)

It follows from Properties (i)-(iii) that we need only construct a single FA

Aϕ(X1,...,Xp),C over F
(p)
C where C is an infinite effectively given set of labels.

We will take C = N+. Running Aϕ(X1,...,Xp),C on terms in T (F
(p)
[k] ), where

[k] := {1, ..., k}, is the same as running Aϕ(X1,...,Xp),[k]. An implementation of

Aϕ(X1,...,Xp),C yields a single program that works for all terms in T (F
(p)
[k] ), k ≥ 1,

hence for graphs of all clique-widths.

The membership in Lϕ(X1,...,Xp),C of a term t ∈ T (F
(p)
[k] ) can be decided

in (FPT) time f(k). |t| for a function f depending only on ϕ(X1, ..., Xp). This
function bounds the time for computing transitions. This gives a linear time
recognition algorithm for graphs of clique-width at most some fixed k given by
terms in T (F[k]), but finding such terms takes (presently) cubic time. See [10]
for details and references.

Properties of induced subgraphs

We apply to the relativization of a property P to a setX the notion of inverse
image of an FA. If P is a graph property, we denote by P [X ] the property of
(G,X) where X is a set of vertices of G such that the induced subgraph G[X ]
satisfies P .

Let t ∈ T (FC) define a graph G := val(t) and X be a set of vertices of G.
(We recall that X is a set of occurrences of the nullary symbols a for a ∈ C.)
Let t′ ∈ T (FC) be obtained from t by replacing each a by the nullary symbol
∅ (that denotes the empty graph) at its occurrences not in X . Then val(t′) is
G[X ], the induced subgraph of G with vertex set X . (If t is irredundant, then
so is t′).

Then the subset LP [X],C of T (F
(1)
C ) is h−1(LP,C) where h : T (F

(1)
C ) →

T (FC) replaces in a term of T (F
(1)
C ) each nullary symbol (a, 0) by ∅ and (a, 1)

by a. Hence, if P is defined by an MSO sentence ϕ, then P [X ] is defined by an
MSO formula ϕ[X ] with free variable X (we need not write this formula) and
Aϕ[X],C is the inverse image by h of Aϕ,C . See Definition 4(e) and Lemma 15
of [7], or [10].

Irredundant terms
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The set of irredundant terms in T (FC) or in T (F
(p)
C ), denoted by LIrr,

is recognized by an FA I ( [7]), whose states are Error and the finite sub-
sets of C2. For each term t, qI(t) = Error if t is not irredundant and is
{(πval(t)(x), πval(t)(y)) | x→val(t) y} if t is irredundant. Its transitions are easy
to define.

We will construct automata Aϕ(X1,...,Xp),C intended to work correctly for
irredundant terms. This means that L(Aϕ(X1,...,Xp),C)∩LIrr = Lϕ(X1,...,Xp),C ∩
LIrr. If an input term is not irredundant, the answer of Aϕ(X1,...,Xp),C may be
incorrect. By taking the product of Aϕ(X1,...,Xp),C and I, we can get an automa-
ton that recognizes exactly Lϕ(X1,...,Xp),C ∩LIrr. However, we will assume that
the verification of irredundancy is done by the parsing algorithm that builds the
term denoting the input graph to be processed by the automaton.

3 Incidence graphs

When the domain of the relational structure representing a graph is its vertex
set, and since quantifications over binary relations are not allowed, MSO for-
mulas cannot use quantified variables denoting sets of edges. In the incidence
graph Inc(G) of a graph G, each edge of G is made into a vertex, hence an
MSO formula over Inc(G) can be seen as an MSO formula using quantifications
on sets of edges and it is called an MSO2 formula intended to express a prop-
erty of G. The formula : ”there exists a set of edges that induces a directed
cycle and goes through all vertices”, expresses that the considered graph has a
directed Hamiltonian cycle. This property is not expressible in MSO logic over
the relational 〈VG, edgG〉 [10].

Assertion (b) of Theorem 1 does not extend to inputs Inc(G) for G of
clique-width at most k because the clique-width of such graphs Inc(G) is un-
bounded. It can be used for graphs G of tree-width at most k. Proposition 3
gives cwd(Inc(G)) = 2O(twd(G)) (because twd(Inc(G)) ≤ twd(G) + 1) however
cwd(Inc(G)) = O(twd(G)) as we will see.

Definition 6 : Incidence graphs.

Let G be a directed graph that can have parallel edges and loops. We define
it as a triple 〈VG, EG, incG〉 such that VG is its set of vertices, EG is its set of
edges (of course VG ∩EG = ∅) and incG ⊆ (VG×EG)∪ (EG×VG) is such that,
for u, v ∈ VG and e ∈ EG, we have (u, e) ∈ incG and (e, v) ∈ incG if e is an edge
u→ v. We define Inc(G) as the simple, directed and bipartite graph identified
to the relational structure 〈VG∪EG, incG, isvG〉 where isv is unary and isvG(u)
holds if and only if u ∈ VG. This relation is useful to distinguish the vertices
from the edges in an arbitrary relational structure 〈X, inc, isv〉 isomorphic to
〈VG∪EG, incG, isvG〉. It follows that G can be reconstructed up to isomorphism
from any structure 〈X, inc, isv〉 isomorphic to 〈VG ∪EG, incG, isvG〉.

If G is undirected, then we define incG ⊆ EG × VG where (e, u) ∈ incG if
u is an end of e. In this case, the predicate isvG is not necessary because the
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vertices of G are the elements x of the domain such that inc(x, y) holds for no
y. We will only discuss directed graphs in the sequel, leaving to the reader the
easy task of simplifying our constructions so as to handle undirected graphs.

We will use some adaptations of MSO formulas and clique-width operations.
We will consider a relational structure S = 〈DS , incS, isvS〉 as a simple graph,
also denoted by S, whose vertex set is DS , adjacency relation is incS and that is
equipped with a distinguished set of vertices isvS . In such a structure isomorphic
to an incidence graph 〈VG ∪EG, incG, isvG〉, we will call v-vertices the vertices
of S that satisfy isv and represent the vertices of G and e-vertices the others,
that represent its edges. It is FO expressible whether a relational structure
S = 〈DS , incS , isvS〉 is Inc(G) for some directed graph G. If this is true, then
G is unique and its vertex set is isvG.

For expressing properties of such structures S, we will write MSO formulas
with two types of set variables : X,Y, ... to denote sets of v-vertices and U, V,W
to denote sets of e-vertices10. The atomic formulas will be of the forms X ⊆
Y, U ⊆ V, inc(X,U) and inc(U,X); a formulaX ⊆ U or inc(X,Y ) is not allowed,
and the predicate isv will not occur in formulas, as it is replaced by the typing
of variables, forcing them to denote either sets of vertices or sets of edges.

For constructing incidence graphs with clique-width operations, we will use
pairs (C,D) of disjoint, effectively given sets of labels. Those in C will define

the v-vertices, and those in D the e-vertices. The operations relab and
−−→
add will

be those from FC∪D such that:

no label in C can be changed to a label in D, and vice-versa,

no edge-addition
−−→
adda,b can be used with a, b ∈ C or a, b ∈ D.

We obtain an effectively given signature FC,D. Every term t ∈ T (FC,D)
defines a simple bipartite graph val(t) = H = 〈VH , incH , isvH〉 where isvH(x)
holds if and only if x is defined by a for some a ∈ C. We have incH(x, y) if and
only if x →val(t) y. We say that t is correct if H = Inc(G) for some graph G,
whose vertex set is then necessarly isvH . This is the case if and only if each
vertex having a label in D has indegree and outdegree 1.

Proposition 7 : If a directed graph G has tree-width k, then Inc(G) is de-
fined by a term in T (FC,D) such that |C| = 2 and |D| = 2k+3. If G is undirected,
then Inc(G) is defined by a term in T (FC,D) such that |C| = 2 and |D| = k+2.
Terms witnessing these bounds can be constructed in linear time from tree-
decompositions of G of width k. Conversely, twd(G) = O(cwd(Inc(G))).

Proof : See [2,5] for the first three assertions. We have actually cwd(Inc(G))
≤ 2k+4 for G directed if we allow relabellings a→ d such that a ∈ C and d ∈ D
in terms defining Inc(G). Similarly, cwd(Inc(G)) ≤ k + 3 if G is undirected.

10These formulas could be alternatively defined as MSO formulas where each variable X

(resp. U) comes with the condition that the elements x of X (resp. of U) satisfy isv(x) (resp.
¬isv(x)).
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The last assertion holds because twd(G) ≤ twd(Inc(G)) and, by [16] (also
in [10], Proposition 2.115), since Inc(G) has no subgraph isomorphic to K3,3,
we have twd(Inc(G)) ≤ 6.cwd(Inc(G)) − 1.�

By the last assertion, the reduction of (b) to (a) in Theorem 1 does not
work for the verification of MSO2 properties of graphs of bounded clique-width.
This is not a surprise because there are MSO2 properties that are not FPT for
clique-width unless FPT = W[1] ( [14]) which is unlikely, similarly to N = NP
(see [12, 13] for the classes FPT and W[1]).

In order to represent in terms sets of vertices X1, ..., Xp and sets of edges
U1, ..., Um, we replace in FC,D each nullary symbol a, for a ∈ C, by the
nullary symbols (a, w) for w ∈ {0, 1}p and each nullary symbol d, for d ∈

D, by the symbols (d, w) for w ∈ {0, 1}m. We obtain a signature F
(p,m)
C,D

and, for each MSO formula ϕ(X1, ..., Xp, U1, ..., Um), a representing language

Lϕ(X1,...,Xp,U1,...,Um),C,D ⊆ T (F
(p,m)
C,D ) consisting of the correct terms t that en-

code an assignment to X1, ..., Xp, U1, ..., Um for which ϕ holds in val(t). We
will construct FA that recognize these languages.

Denotation of subgraphs

Let G be a graph, X ⊆ VG and U ⊆ EG. We let Inc(G)[X,U ] := 〈X ∪
U, incG ∩ (X ∪ U)2, isvG ∩ (X ∪ U)〉. This structure is an incidence graph
Inc(H) if and only if the ends of all ”edges” u ∈ U are in X . If this is the case,
then VH = X , EH = U and H is a subgraph of G. We call Subgraph(X,U) this
property of (G,X,U). Assume now that Inc(G) = val(t) where t ∈ T (FC,D),
and X,U as above are sets of occurrences in t of nullary symbols respectively
in C and in D. Let t[X,U ] be obtained from t by replacing by ∅ (denoting the
empty graph) the nullary symbols at their occurrences not in X ∪U . It is clear
that val(t[X,U ]) = Inc(G)[X,U ].

Then t[X,U ] is a correct term if and only if Inc(G)[X,U ] is an incidence

graph. The set of correct terms t[X,U ] ∈ T (F
(1,1)
C,D ) is h−1(L) where L is the set

of correct terms in T (FC) and h maps (a, 1) to a and (a, 0) to ∅ for a ∈ C ∪D.
We will define L by an FA ACT . The property Subgraph(X,U) will thus be
defined by its inverse image, h−1(ACT ).

4 Automata

In this section, we construct FA to check MSO2 properties of directed graphs. It
is easy to modify them in order to check similar properties of undirected graphs.
These automata will be deterministic and designed so as to work correctly on
irredundant terms in T (FC,D) for pairs (C,D) of disjoint effectively given sets
of labels.

They will be linear FPT-FA, meaning that their computation times are linear
in the size of input terms over fixed finite subsignatures of FC,D.
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Their constructions are the same for C ∪ D either finite or infinite, as ex-
plained after Theorem 5. We will construct FA for unspecified pairs C,D, either
C = N+ and D = {−n | n ∈ N+} (for being concrete) or finite subsets of them.
The complexities of our automata will appear from their numbers of states when
C and D are finite. An FA constructed from a formula ϕ will be denoted by
Aϕ without reference to C,D.

4.1 Correct terms

Every term t ∈ T (FC,D) defines a simple bipartite graph val(t), and is correct if
and only if val(t) is an incidence graph. A C-vertex of val(t) is a vertex having
a label in C, a D-vertex is one having a label in D. These definitions apply even
if t is not correct.

We describe an FA ACT that checks the correctness of terms in T (FC,D),
assumed to be irredundant. Its states are the sink Error and the 6-tuples
(γ1, γ2, δ00, δ01, δ10, δ11) ∈ Pf (C)

2 × Pf (D)4 such that γ1 ∩ γ2 = ∅ and δ00, δ01,

δ10, δ11 are pairwise disjoint. We will denote (δ00, δ01, δ10, δ11) by
−→
δ .

At the root of a term t ∈ T (FC,D), ACT reaches the state (γ1, γ2,
−→
δ ) if and

only if, we have in val(t):

(i) γ1 is the set of labels a ∈ C that label a single C-vertex.

(ii) γ2 is the set of labels a ∈ C that label at least two C-vertices,

(iii)
−→
δ = (δ00, δ01, δ10, δ11) where for i, j ∈ {0, 1}, δij is the set of

labels of D-vertices of indegree i and outdegree j,

(iv) the sets δ00, δ01, δ10, δ11 defined in (iii) are pairwise disjoint,

(v) no D-vertex has indegree or outdegree 2 or more.

It reaches the state Error if (iv) or (v) does not hold.

The accepting states are the tuples (γ1, γ2,
−→
δ ) such that δ00 = δ01 = δ10 = ∅.

For any subterm t of a correct term, Condition (iv) is necessary by Lemma 2
and Condition (v) also, because the D-vertices in an incidence graph represent
edges. Transitions are listed in Table 1. In order to simplify the table, we use
the following notations and conventions. First, we do not list the transitions
with Error on the left side as they always yield Error (cf. Definition 4(c)).
Furthermore,

a, b denote elements of C and d, e denote elements of D,

d ∈
−→
δ means d ∈ δ00 ∪ δ01 ∪ δ10 ∪ δ11,

Disj(
−→
δ ) means that δ00, δ01, δ10, δ11 are pairwise disjoint,

−→
δ ∪
−→
δ′ := (δ00 ∪ δ

′
00, δ01 ∪ δ

′
01, δ10 ∪ δ

′
10, δ11 ∪ δ

′
11),

γ[a → b] is the set γ where a is replaced by b, and similarly for
δ[d→ e],

15



−→
δ [d→ e] := (δ00[d→ e], δ01[d→ e], δ10[d→ e], δ11[d→ e]),
−→
∅ denotes a sequence of empty sets of appropriate length.

Transitions Conditions

∅→
−→
∅

a→ ({a},
−→
∅ )

d→ (∅, ∅, {d},
−→
∅ )

relaba→b[(γ1, γ2,
−→
δ )]→ (γ1, γ2,

−→
δ ) a /∈ γ1 ∪ γ2

relaba→b[(γ1, γ2,
−→
δ )]→ (γ1, γ2,

−→
δ ) {a, b} ⊆ γ1 ∪ γ2, γ1 = γ1 − {a, b}

and γ2 = γ2 ∪ {b} − {a}

relaba→b[(γ1, γ2,
−→
δ )]→ (γ1, γ2,

−→
δ ) a ∈ γ1 ∪ γ2, b /∈ γ1 ∪ γ2,

γ1 = γ1[a→ b] and γ2 = γ2[a→ b]

relabd→e[(γ1, γ2,
−→
δ )]→ (γ1, γ2,

−→
δ [d→ e]) Disj(

−→
δ [d→ e])

relabd→e[(γ1, γ2,
−→
δ )]→ Error ¬Disj(

−→
δ [d→ e])

−−→
adda,d[(γ1, γ2,

−→
δ )]→ (γ1, γ2,

−→
δ ) a /∈ γ1 ∪ γ2 or d /∈

−→
δ

−−→
adda,d[(γ1, γ2,

−→
δ )]→ Error (a ∈ γ2 and d ∈

−→
δ ) or

a ∈ γ1 and d ∈ δ10 ∪ δ11
−−→
adda,d[(γ1, γ2,

−→
δ )]→ (γ1, γ2,

−→
δ′ ) a ∈ γ1 and d ∈ δ00 ∪ δ01,

δ′00 = δ00 − {d}, δ′01 = δ01 − {d},
δ′10 = if d ∈ δ00 then δ10 ∪ {d} else δ10,
δ′11 = if d ∈ δ01 then δ11 ∪ {d} else δ11.

⊕[(γ1, γ2,
−→
δ ), (γ′1, γ

′
2,
−→
δ′ )]→ (γ1, γ2,

−→
δ ∪
−→
δ′ ) Disj(

−→
δ ∪
−→
δ′ ), γ2 = γ2 ∪ γ

′
2 ∪ (γ1 ∩ γ

′
1),

γ1 = (γ1 − (γ′1 ∪ γ
′
2)) ∪ (γ′1 − (γ1 ∪ γ2)).

⊕[(γ1, γ2,
−→
δ ), (γ′1, γ

′
2,
−→
δ′ )]→ Error ¬Disj(

−→
δ ∪
−→
δ′ )

Table 1: Some transitions of ACT .

Remarks : (1) We do not list the transitions relative to
−−→
addd,a because they

are similar to those of
−−→
adda,d.

(2) For the transitions relative to
−−→
adda,d, there are three cases. It is clear

that the conditions on a and d are mutually exclusive and cover all possibilities.

(3) The transition
−−→
adda,d[(γ1, γ2,

−→
δ )] → Error is correct because the input

term is assumed irredundant. Without irredundancy, it may happen that a ∈ γ1
and d ∈ δ11 ∪ δ10 but

−−→
adda,d has no effect because there are already edges

from the a-vertex to the d-vertex (or to several d-vertices), so that the d-vertex
(or vertices) still have indegree 1. In that case, the transition should yield

(γ1, γ2,
−→
δ ).

(4) If we replace the transitions a → ({a},
−→
∅ ) and d → (∅, ∅, {d},

−→
∅ ) by

(a, w)→ ({a},
−→
∅ ) and (d, w′)→ (∅, ∅, {d},

−→
∅ ) respectively for w ∈ {0, 1}p and

w′ ∈ {0, 1}m, we obtain an automaton that checks the correctness of a term in

T (F
(p,m)
C,D ).
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(5) Some states (γ1, γ2,
−→
δ ) are not accessible: for example, those such that

γ1 ∪ γ2 = ∅ and δ01 ∪ δ10 ∪ δ11 6= ∅.

If C ∪D is finite, k = |C| and ℓ = |D|, the number of states is 3k.5ℓ+1 and
the size of a state is O(k + ℓ). Each transition is computable in time O(k + ℓ)
(our time complexity evaluations are based on straightforward data structures).
We obtain a linear FPT-FA.

As noted previously, h−1(ACT ) = ASubgraph(X,U) where h maps (a, 1) to a

and (a, 0) to ∅ for each a ∈ C ∪D.

4.2 Adjacency in incidence graphs

In the case of MSO graph properties reviewed in Section 2 the atomic formula

edg(X,Y ) is checked by an FA over F
(2)
C that has k2 + k+3 states if C is finite

of cardinality k. This construction is easily applicable to the atomic formula
inc(X,U) (resp. inc(U,X)) stating that X consists of one vertex x and U of
one edge u whose tail (resp. head) is x. We will describe Ainc(X,U) at the end
of the section for purpose of comparison.

In MSO formulas expressing properties of Inc(G), the property edg(X,Y ) is
no longer atomic; it is expressed by ∃U.(inc(X,U) ∧ inc(U, Y )). We can apply
the general construction of [7, 10] to this formula, but, in view of practical

constructions, it is useful to define directly an automaton Aedg(X,Y ) over F
(2,0)
C,D .

The FA Aedg(X,Y )

We now construct an FA Aedg(X,Y ) intended to run on correct and irredun-

dant terms in T (F
(2,0)
C,D ). As for irredundancy, we will assume that correctness

is guaranteed by the parsing algorithm.

The states ofAedg(X,Y ) areOk, Error and the tuples (γ1, γ2,
−→
δ ) ∈ P≤1(C)

2×

Pf (D)3 such that the components of
−→
δ = (δ, δ1, δ2) verify the condition δ1∪δ2 ⊆

δ.
Let t ∈ T (F

(2,0)
C,D ) be a correct and irredundant term. It defines an incidence

graph val(t) = Inc(G) and two sets of vertices X,Y of G. Every subterm t′

of t is irredundant and defines a bipartite graph val(t′) that we consider as a
subgraph of val(t) (by our Convention about subterms, cf. Section 2). It may not
be an incidence graph, because some D-vertices may be of indegree or outdegree
0. Let X ′ = X ∩ Vval(t′), Y

′ = Y ∩ Vval(t′).Their sets of labels are πval(t′)(X
′)

and πval(t′)(Y
′), both subsets of C. To simplify notation we will denote πval(t′)

by π and →val(t′) (the edge relation) by →. At the root of t′, Aedg(X,Y ) reaches
the following state:

Error if and only if X ′ or Y ′ has cardinality 2 or more,

Ok if and only if X ′ = {x}, Y ′ = {y} for some x, y such that
x→ u→ y for some D-vertex u (so that x→G y),
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(γ1, γ2,
−→
δ ) otherwise, and we have :

γ1 = π(X ′) and |X ′| ≤ 1,

γ2 = π(Y ′) and |Y ′| ≤ 1,

δ is the set of labels of D-vertices,

δ1 = π(Out(X ′)) ⊆ δ,

δ2 = π(In(Y ′)) ⊆ δ,

where Out(X ′) (resp. In(Y ′)) is the set of D-vertices u such that
X ′ → u (resp. u→ Y ′).

The accepting state is Ok.
Transitions Conditions

∅→
−→
∅

(a, 00)→
−→
∅

(a, 10)→ ({a},
−→
∅ )

(a, 01)→ (∅, {a},
−→
∅ )

(a, 11)→ ({a}, {a},
−→
∅ )

d→ (∅, ∅, {d},
−→
∅ )

−−→
adda,d[(γ1, γ2,

−→
δ )]→ (γ1, γ2,

−→
δ ) a /∈ γ1 or d /∈ δ

−−→
adda,d[(γ1, γ2,

−→
δ )]→ Ok a ∈ γ1 and d ∈ δ2

−−→
adda,d[(γ1, γ2,

−→
δ )]→ (γ1, γ2, δ, δ

′
1, δ2) a ∈ γ1, d ∈ δ − δ2, δ′1 := δ1 ∪ {d}

−−→
adda,d[Ok]→ Ok

relaba→b[(γ1, γ2,
−→
δ )]→ (γ′1, γ

′
2,
−→
δ ) γ′1 := γ1[a→ b], γ′2 := γ2[a→ b]

relaba→b[Ok]→ Ok

relabd→e[(γ1, γ2,
−→
δ )]→ (γ1, γ2,

−→
δ′ )

−→
δ′ :=

−→
δ [d→ e]

⊕[Ok,Ok]→ Error

⊕[(γ1, γ2,
−→
δ ), Ok]→ Error γ1 6= ∅ or γ2 6= ∅

⊕[(γ1, γ2,
−→
δ ), Ok]→ Ok γ1 = γ2 = ∅

⊕[(γ1, γ2,
−→
δ ), (γ′1, γ

′
2,
−→
δ′ )]→ Error |γ1|+ |γ′1| ≥ 2 or |γ2|+ |γ′2| ≥ 2

⊕[(γ1, γ2,
−→
δ ), (γ′1, γ

′
2,
−→
δ′ )] otherwise

→ (γ1 ∪ γ′1, γ2 ∪ γ
′
2,
−→
δ ∪
−→
δ )

Table 2 : Some transitions of Aedg(X,Y )

Remarks : (1) The transitions ⊕[(∅, ∅,
−→
δ ), Ok] → Ok ”loose” the value

−→
δ .

This value is not needed after Ok is obtained. The only thing that remains to be
checked is that the sets X,Y are singletons. It follows that we have transitions

such as ⊕[Ok,Ok] → Error and ⊕[(γ1, γ2,
−→
δ ), Ok] → Error if γ1 6= ∅ or

γ2 6= ∅. The state Ok is not a sink.
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(2) Let us comment on δ2. A D-vertex u such that u→ Y ′ corresponds either
to a partially defined edge with head in Y ′ and whose tail is not yet found or
to an edge from a vertex not in X ′ to a vertex in Y ′. The set δ2 is the set of

their labels. The transition
−−→
adda,d[(γ1, γ2,

−→
δ )]→ Ok when γ1 = {a} and d ∈ δ2

is correct because, since t is assumed to be a correct term, a D-vertex u with
label d cannot correspond to an edge from a vertex not in X ′ to a vertex in Y ′.

Hence, u→ y ∈ Y ′ and the operation
−−→
adda,d creates an edge from the vertex of

X ′ to y.

(3) Some states (γ1, γ2,
−→
δ ) are not accessible, for example, those such that

γ1 = ∅ and δ1 6= ∅.

If C ∪D is finite, k = |C| and ℓ = |D|, the number of states is (k+1)2.5ℓ+2
and the size of a state is O(log(k) + ℓ)). Each transition is computable in time
O(log(k) + ℓ)). We obtain a linear FPT-FA.

Comparison with the automaton constructed with Theorem 4.

The automaton Ainc(X,U) over F
(1,1)
C,D obtained by a straightforward adapta-

tion of the automaton Aedg(X,Y ) over F
(2)
C defined in [7, 10]. It has states Ok,

Error and the pairs (γ, δ) in P≤1(C)× P≤1(D).

Let t∗ (X,U) ∈ T (F
(1,1)
C,D ) be correct and irredundant. It defines an incidence

graph val(t) = Inc(G), a set X of C-vertices and a set U of D-vertices. Every
subterm t′ of t defines a bipartite graph val(t′). Let X ′ = X ∩ Vval(t′), U

′ =
U ∩ Vval(t′). At the root of t′ ∗ (X ′, U ′), Ainc(X,U) reaches the following state:

Error if and only if X ′ or U ′ has cardinality 2 or more,

Ok if and only if X ′ = {x}, U ′ = {u} and x→val(t′) u,

(γ, δ) otherwise where

γ = πval(t′)(X
′) and |X ′| ≤ 1,

δ = πval(t′)(U
′) and |U ′| ≤ 1.

The accepting state is Ok and the transitions are easy to define. If C ∪D is
finite, k = |C| and ℓ = |D|, the number of states is (k + 1).(ℓ+ 1) + 2.

Similarly, we have Ainc(U,Y ) with same set of states, except that we write
(δ, γ) = (πval(t′)(U

′), πval(t′)(Y
′)) ∈ P≤1(D)× P≤1(C) instead of (γ, δ).

Let us now consider edg(X,Y ) defined by ∃U.(inc1(X,U, Y )∧ inc2(X,U, Y ))
where inc1(X,U, Y ) is defined as inc(X,U) with extra (useless) variable Y
and inc2(X,U, Y )) where inc2(X,U, Y ) is defined as inc(U, Y ). These useless
variables are added so that the two parts of the conjunction inc1(X,U, Y ) ∧
inc2(X,U, Y ) have the same free variables.

The automaton B := Ainc1(X,U,Y )∧inc2(X,U,Y ) over F
(2,1)
C,D is thus the product

of Ainc1(X,U,Y ) and Ainc2(X,U,Y ). Furthermore, Ainc1(X,U,Y ) and Ainc2(X,U,Y )

have the sames states as, respectively, Ainc(X,U) and Ainc(U,Y ). (See the re-
marks on variable substitutions after Theorem 5). The construction of The-

orem 5 replaces B by a nondeterministic FA C over F
(2,0)
C,D that characterizes
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∃U.(inc1(X,U, Y ) ∧ inc2(X,U, Y )). The FA B has ((k + 1).(ℓ + 1) + 2)2 states

if k = |C| and ℓ = |D|, which gives more than 2k
2.ℓ2 states for the deterministic

automaton det(C) obtained from C. However, some states of B are inaccessi-
ble, for instance, those of the form ((γ, δ), (δ′, γ′)) where δ 6= δ′. Furthermore,
the states of det(C) are more complicated to write than those of Aedg(X,Y ) are
in the set {Ok,Error} ∪ (P≤1(C)

2 × Pf (D)3) whereas those of det(C) are in
Pf ([{Ok,Error} ∪ (P≤1(C) × P≤1(D))]2).

This observation motivates our interest for ”direct constructions” of FA for
properties related to adjacency, as these properties are defined with edg(X,Y ).

4.3 Links and domination

We consider the following four properties based on adjacency, ordered by in-
creasing complexity, measured by the sizes of the automata we will construct
(G is the graph whose incidence graph is val(t) and t the given correct term) :

Link∃∃(X,Y ) meaning that X →G Y, i.e., x →G y for some x ∈ X
and y ∈ Y ,

Link∀∃(X,Y ) meaning that for all x ∈ X there is y ∈ Y such that
x→G y, (Y dominates X for ←G),

Link∀∀(X,Y ) meaning that x→G y for all x ∈ X and y ∈ Y ,

Link∃∀(X,Y ) meaning that there is x ∈ X such that x→G y for all
y ∈ Y (x dominates Y for →G).

The property that X induces a complete directed graph (with loops on all
vertices) is expressed by Link∀∀(X,X). That X is stable, i.e., that the induced
graph G[X ] has no edge, is expressed by ¬Link∃∃(X,X).

The logical expressions of these properties by MSO formulas interpreted in
〈VG ∪ EG, incG〉 have the following respective quantifier structures: ∃∃∃, ∀∃∃,
∀∀∃ and ∃∀∃ with 0, 1,1 and 2 quantifier alternations. We will construct FA
or sketch their constructions. Their sets of states will reflect the differences of
quantifier alternations. Notation is as for the definition of Aedg(X,Y ). All FA

will be intended to run on correct and irredundant terms in T (F
(2,0)
C,D ).

The FA ALink∃∃(X,Y )

It is similar to Aedg(X,Y ) with some interesting differences. It is simpler
to describe because it need not check that X and Y are singletons, however,
it has more states. Its states are the accepting sink Success and the tuples

(γ1, γ2,
−→
δ ) ∈ Pf (C)2 × Pf(D)3 such that δ1 ∪ δ2 ⊆ δ. As above for Aedg(X,Y ),

if t′ ∗ (X ′, Y ′) is a subterm of a correct irredundant term t ∗ (X,Y ) ∈ T (F
(2,0)
C,D )

where X ′ = X ∩ Vval(t′) and Y ′ = Y ∩ Vval(t′), then ALink∃∃(X,Y ) reaches the
following state at the root of t′ ∗ (X ′, Y ′) :
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Success if and only if x → u → y for some x ∈ X ′ and y ∈ Y ′ and
u (so that X ′ →G Y ′); otherwise

(γ1, γ2,
−→
δ ) where :

γ1 = π(X ′) ⊆ C,

γ2 = π(Y ′) ⊆ C,

δ is the set of labels of D-vertices,

δ1 = π(Out(X ′)) ⊆ δ,

δ2 = π(In(Y ′)) ⊆ δ.

Some transitions are listed in Table 3 (the others are easy to define or similar
to those for Aedg(X,Y )).

Transitions Conditions
−−→
adda,d[(γ1, γ2,

−→
δ )]→ (γ1, γ2,

−→
δ ) a /∈ γ1 or d /∈ δ

−−→
adda,d[(γ1, γ2,

−→
δ )]→ Success a ∈ γ1 and d ∈ δ2

−−→
adda,d[(γ1, γ2,

−→
δ )]→ (γ1, γ2, δ, δ1 ∪ {d}, δ2) a ∈ γ1, d ∈ δ − δ2

⊕[(γ1, γ2,
−→
δ ), (γ′1, γ

′
2,
−→
δ′ )]

→ (γ1 ∪ γ′1, γ2 ∪ γ
′
2,
−→
δ ∪
−→
δ′ )

Table 3: Some transitions of ALink∃∃(X,Y ).

The accepting state is the sink Success. All transitions with Success on the
left yield Success. (In Aedg(X,Y ), we use a state Ok, that looks like Success
but is not a sink.) See Remark (2) relative to Aedg(X,Y ) to verify the validity of
the transition to Success in this table. There is no Error state.

If C ∪ D is finite, k = |C| and ℓ = |D|, the number of states is 4k.5ℓ + 1.
These states have size O(k + ℓ). Each transition is computed in time O(k + ℓ).
We obtain a linear FPT-FA.

The FA ALink∀∀(X,Y )

Notation is as for the previous automaton. The state at the root of t′ will
contain the relation :

θ := {(π(x), π(y)) | x ∈ X ′, y ∈ Y ′ and ∄u.(x→ u→ y)},

and will be accepting if and only if this relation is empty, because θ indi-
cates the existence of ”missing” edges. However, additional information will be
needed for the construction of transition rules.

A state of ALink∀∀(X,Y ) is a 4-tuple of finite sets (δ,∆,Λ,Θ) such that:
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δ ⊆ D,

∆ ⊆ C × Pf (δ), Λ ⊆ Pf (δ)× C and

Θ ⊆ ∆× Λ ⊆ C × Pf (D)× Pf (D)× C.

The state at the root of t′ ∗ (X ′, Y ′) is (δ,∆,Λ,Θ) such that :

δ is the set of labels of D-vertices,

∆ = {(π(x), π(Out(x)) | x ∈ X ′},

Λ = {(π(In(y)), π(y)) | y ∈ Y ′},

Θ = {(π(x), π(Out(x)), π(In(y)), π(y)) | x ∈ X ′,

y ∈ Y ′ and ∄u.(x→ u→ y)}.

A tuple (a, η, η′, b) in Θ encodes the following information about a ”missing
edge” from some x ∈ X ′ to some y ∈ Y ′: a = π(x), b = π(y), η contains the
labels of the partially defined edges with tail x and similarly, η′ contains the
labels of those, partially defined, with head y. An edge from x to y in the graph

G whose incidence graph is val(t) can be created by
−−→
adda,d if d ∈ η′ or by

−−→
addd,b

if d ∈ η (assuming that labels a, d are not modified above t′).

Remark : The states of ALink∀∀(X,Y ) contain more information than those
of ALink∃∃(X,Y ) because π(X

′) = {a ∈ C | (a, η) ∈ ∆ for some η}, π(Out(X ′))
is the union of the sets η such that (a, η) ∈ ∆ for some a and similarly for
π(Y ′) and π(In(Y ′)). Hence, the state of ALink∃∃(X,Y ) at some position u can
be computed from that of ALink∀∀(X,Y ) at u. One could formalize that by the
existence of a homomorphism : ALink∀∀(X,Y ) → ALink∃∃(X,Y ). �

The accepting states are those such that Θ = ∅ because, at the root of a
correct term t, θ is the set of pairs (a, b) such that (a, η, η′, b) ∈ Θ for some η, η′.
Transitions are as follows. We begin with the easier cases.

∅→
−→
∅

(a, 11)→ (∅, {(a, ∅)}, {(∅, a)}, {(a, ∅, ∅, a)}),

(a, 10)→ (∅, {(a, ∅)},
−→
∅ ),

(a, 01)→ (∅, {(∅, a)},
−→
∅ ),

(a, 00)→
−→
∅ ,

d→ ({d},
−→
∅ ).

Transitions for relabellings are straightforward:
relabx→y[(δ,∆,Λ,Θ)] → (δ′,∆′,Λ′,Θ′) where δ′ := δ[x → y] and similarly

for the other components.

Transitions for disjoint union are as follows:
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⊕[(δ1,∆1,Λ1,Θ1), (δ2,∆2,Λ2,Θ2)]→

(δ1 ∪ δ2,∆1 ∪∆2,Λ1 ∪ Λ2,Θ1 ∪Θ2 ∪Θ′) where

Θ′ := {(a, η, η′, b) | ((a, η) ∈ ∆1 and (η′, b) ∈ Λ2)

or ((a, η) ∈ ∆2 and (η′, b) ∈ Λ1))}.

Transitions for edge addition are as follows:
−−→
adda,d[(δ,∆,Λ,Θ)]→ q where we have:

q := (δ,∆,Λ,Θ) if a does not occur in ∆ or d /∈ δ,

q := (δ,∆′,Λ,Θ′) otherwise, where :

∆′ is defined from ∆ by replacing each pair (a, η) by (a, η∪{d});

Θ′ is defined from in Θ as follows :

a tuple of the form (a, η, η′, b), for any b ∈ C is deleted

if d ∈ η′; otherwise it is replaced by (a, η ∪ {d}, η′, b).

In the transitions for
−−→
adda,d, we cannot have a and d occurring both in ∆

because the input term t is assumed irredundant and correct. If d belongs to
η′, then it labels vertices of indegree 0 because t is correct and irredundant.

If C∪D is finite, k = |C| and ℓ = |D|, the number of states is at most 2ℓ.5k
24ℓ .

However, there are less accessible states. Counting them precisely seems difficult
and is actually not important for our use of FA. The size of a state is O(k2.4ℓ).
We obtain a linear FPT-FA.

The FA ALink∀∃(X,Y )

The construction is similar to the previous one. The set of states is a bit
smaller, although of similar type. Notation is as in the previous cases. The states
are sets of 5-tuples of sets (γ, δ, λ,∆,Θ) ∈ Pf (C) × Pf (D)2 × Pf(C × Pf (D))2

such that:

γ ⊆ C, δ ⊆ D,λ ⊆ δ and Θ ⊆ ∆ ⊆ C × Pf (δ).

The state at the root of t′ ∗ (X ′, Y ′) is (γ, δ, λ,∆,Θ) such that :

γ = π(Y ′),

δ is the set of labels of D-vertices,

λ = π(In(Y ′)) ⊆ δ,

∆ = {(π(x), π(Out(X ′))) | x ∈ X ′},

Θ = {(π(x), π(Out(X ′))) | x ∈ X ′ and ∄u.(x→ u→ Y ′)}.
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The accepting states are those such that Θ = ∅.

Transitions for disjoint union are as follows:

⊕[(γ1, δ1, λ1,∆1,Θ1), (γ2, δ2, λ2,∆2,Θ2)]→

(γ1 ∪ γ2, δ1 ∪ δ2, λ1 ∪ λ2,∆1 ∪∆2,Θ
′
1 ∪Θ′

2).

where:

Θ′
1 := if γ2 = ∅ then Θ1 else ∆1, and

Θ′
2 := if γ1 = ∅ then Θ2 else ∆2.

The most complicated transitions are for edge addition:
−−→
adda,d[(γ, δ, λ,∆,Θ)]→ q where the following holds:

if a does not occur in ∆ or d /∈ δ, then q := (γ, δ, λ,∆,Θ),

otherwise q := (γ, δ, λ,∆′,Θ′), where ∆′,Θ′ are defined as follows
from ∆ and Θ :

a pair (a, η) in ∆ is replaced by (a, η ∪ {d}),

a pair (a, η) in Θ is deleted if d ∈ λ and replaced by (a, η∪{d})
otherwise.

−−→
addd,b[(γ, δ, λ,∆,Θ)]→ q where the following holds:

if b /∈ γ or d /∈ δ, then q = (γ, δ, λ,∆,Θ),

otherwise q := (γ, δ, λ ∪ {d},∆,Θ′) where Θ′ is defined from Θ by
deleting each pair (a, η) such that if d ∈ η.

If C ∪D is finite, k = |C| and ℓ = |D|, the number of states is bounded by

2k3ℓ.3k.2
ℓ

. The size of a state is O(k.2ℓ) and the computation time of a transition
is O(k.2ℓ). We obtain a linear FPT-FA.

The FA ALink∃∀(X,Y )

This automaton is more complicated than the two previous ones, as it checks
a formula with two quantifier alternations instead of one. Its states are triples
of finite sets (δ,Λ,Ξ) such that:

δ ⊆ D,

Λ ⊆ Pf(δ)× C,

Ξ ⊆ C × Pf (δ)× Pf (Λ) ⊆ C × Pf (D)× Pf (Pf (D)× C).
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The state at the root of t′ ∗ (X ′, Y ′) is (δ,Λ,Ξ) such that :

δ is the set of labels of D-vertices,

Λ = {(π(In(y)), π(y)) | y ∈ Y ′},

Ξ is the set of triples

(π(x), π(Out(x)), {(π(In(y)), π(y)) | y ∈ Y ′, ∄u.(x→ u→ y)})

for all x ∈ X ′.

The accepting states are those such that Ξ contains a triple of the form
(a,Λ, ∅). We show some transitions.

⊕[(δ1,Λ1,Ξ1), (δ2,Λ2,Ξ2)]→ (δ1 ∪ δ2,Λ1 ∪ Λ2,Ξ1 ∪ Ξ2 ∪ Ξ′)

where Ξ′ is the set of triples are of the form (a, η,Φ ∪ Λ2) for
(a, η,Φ) ∈ Ξ1 and of the form (a, η,Φ ∪ Λ1) for (a, η,Φ) ∈ Ξ2.

The other transitions are easy to define, by the same methods as for the
previous automata. If C ∪ D is finite, k = |C| and ℓ = |D|, the number of

states is bounded by 2ℓ.2k.2
ℓ

.2k.2
ℓ.2k.2ℓ

. The size of a state is O(2k.2
ℓ

) and the

computation time of a transition is O(2k.2
ℓ

).

Table 4 compares the bounds on the sizes of the states for the linear FPT-
FA we just constructed for incidence graphs to the bounds for those constructed
in [7] for ”ordinary” graphs. For terms obtained by Proposition 6 from a tree-
decomposition of width p, we have k = 2 and ℓ ≤ 2p+ 3.

Property MSO MSO2

edg O(log(k)) O(log(k) + ℓ)

Link∃∃ O(k) O(k + ℓ)

Link∀∃ O(k) O(k.2ℓ)

Link∀∀ O(k2) O(k.2ℓ)

Link∃∀ O(2k) O(2k.2
ℓ

)

Table 4: Comparison between MSO and MSO2-automata.

5 Automata for other properties

5.1 Inc-invariant properties

Definition 8 : Invariance for taking the incidence graph.
A graph property P is Inc-invariant if P (G)⇐⇒ P (Inc(G)) for every graph

G.
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So are, for instance, for a directed graph G, connectedness and strong con-
nectedness, the properties that all its vertices are of outdegree at most p, that
G has a directed cycle, or an undirected cycle (a cycle in which edge directions
do not matter), or that G has a path from vertex x to vertex y.

For such a property P , an FA over FC,D intended to check it on incidence
graphs defined by correct terms can be constructed from the FA AP,C over FC
that checks P on ”ordinary” graphs G, without needing significant modification:
essentially, we replace C by C ∪D. Although the FA for the relation edg(X,Y )
is more complicated in the case of incidence graphs than for ordinary graphs,
this increasing complexity does not extend to all properties expressed by means
of edg(X,Y ).

5.2 An automaton for Directed Hamiltonian cycle

The property DirHam that a graph G has a directed Hamiltonian cycle is
MSO2 expressible but not MSO expressible. It is expressed in Inc(G) by ”there
exists a set of edges of G that forms a directed cycle going through all vertices”.
Without using the corresponding logical expression, we will construct an FA for
this property.

We let P mean be that the considered graph is a directed cycle or is empty,
and L be the set of correct irredundant terms t in T (FC,D) such that P (val(t))
holds. We first construct an FA B over FC,D that recognizes L among correct
and irredundant terms, that is, such that L(B) ∩ LIrr ∩ LCT = L.

Let t ∈ L and t′ be a subterm of t. Then val(t′) satisfies one of the following
properties:

(a) it is a single directed cycle (and then val(t′) = val(t)),

(b) it consists of isolated vertices x1, ..., xp, (p ≥ 0) and of pairwise
disjoint paths from y1 to z1, y2 to z2, ... , ym to zm (m ≥ 0), such
that the labels of x1, ..., xp, y1, ..., ym, z1,... , zm are all different.

Each of them implies :

(c) no C-vertex has indegree or outdegree 2 or more.

Since t is assumed correct, every D-vertex has indegree and outdegree at
most one. A transition that shows a violation of (c) will yield Error.

We define B with the following states : Ok, Error and the 3-tuples (α, β,Ψ)
in Pf (C ∪D) × Pf (C) × Pf ((C ∪D)2). At the root of a term t′ ∈ T (FC,D) as
above, the automaton B reaches the following state:
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Ok if (a) holds,

Error if neither (a) nor (b) holds,

(α, β,Ψ) if (b) holds and :

α is the set of labels of the vertices x1, ..., xp,

β is the set of labels of the C-vertices of indegree and outdegree
1,

Ψ = {(π(y1), π(z1)), ..., (π(ym), π(zm))}.

From any finite set Ψ = {(a1, b1), ..., (am, bm)} ⊆ (C ∪D)2, we define Ψ1 :=
{a1, ..., am} and Ψ2 := {b1, ..., bm}.

If σ = (α, β,Ψ) is reached at the root of t′ satisfying (b), then:

(i) the sets α, β,Ψ1 and Ψ2 are pairwise disjoint,

(ii) no two pairs in Ψ have a component in common (by (i) this
condition reduces to: ai 6= aj and bi 6= bj for i 6= j).

We denote by D(σ) the conjunction of these two conditions.

Remarks : When B reaches state (α, β,Ψ), the labels of the C-vertices of
val(t′) are all in α ∪ β ∪ Ψ1 ∪ Ψ2, but (α, β,Ψ) does not indicate the set δ of
labels of the D-vertices that are on the paths from yj to zj but not at their
ends. These vertices have indegree and outdegree 1. Since t is assumed correct
and irredundant, Lemma 2 yields that δ ∩ (α ∪Ψ1 ∪Ψ2) = ∅.�

The accepting state is Ok. We now describe some transitions.

∅→
−→
∅ ,

a→ ({a},
−→
∅ ) for a ∈ C ∪D,

⊕[Ok,
−→
∅ ]→ Ok,

⊕[Ok, q]→ Error, if q 6=
−→
∅ (in particular if q = Ok),

⊕[σ, σ′]→ σ ∪ σ′ if α ∩ α′ = ∅,Ψ ∩Ψ′ = ∅ and D(σ ∪ σ′) holds,

where, if σ = (α, β,Ψ) and σ′ = (α′, β′,Ψ′), we have

σ ∪ σ′ :=(α ∪ α′, β ∪ β′,Ψ ∪Ψ′),

⊕[σ, σ′]→ Error otherwise.

We denote by a, b any labels in C ∪ D. The transitions for relabellings
relaba→b in FC,D are:
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relaba→b[Ok]→ Ok,

relaba→b[σ]→ Error if {a, b} ⊆ α or D(σ′) does not hold11

where σ′ is obtained from σ by replacing everywhere a by b;

otherwise relaba→b[σ]→ σ′.

Let comment on the last case. If a ∈ C and a /∈ α ∪ β ∪ Ψ1 ∪ Ψ2, then
relaba→b has no effect and the last transition yields σ′ = σ. If a ∈ D and
a /∈ α ∪ Ψ1 ∪Ψ2, it may happen that a ∈ δ (cf. the above remarks) hence that
relaba→b might have some effect. But since the input term is irrendundant and
correct, Lemma 2 shows that b cannot belong to α∪Ψ1∪Ψ2. Hence δ is replaced
by δ[a → b] and nothing else is modified. Hence the transition yields correctly
σ′ = σ.

Transitions for edge additions are as follows:
−−→
adda→b[(α, β,Θ)]→ σ if a or b is not in α ∪ β ∪Ψ1 ∪Ψ2,
−−→
adda→b[(α, β,Θ)]→ Ok if α = ∅ and Ψ = {(b, a)},
−−→
adda→b[(α, β,Θ)]→ (α′, β′,Ψ′) as described in Table 5.

Condition α′ β′ Ψ′

a, b ∈ α α− {a, b} β Ψ ∪ {(a, b)}
a ∈ α, (b, c) ∈ Ψ α− {a} β ∪ {b} Ψ ∪ {(a, c)} − {(b, c)}
(d, a) ∈ Ψ, b ∈ α α− {b} β ∪ {a} Ψ ∪ {(d, b)} − {(d, a)}
(d, a), (b, c) ∈ Ψ α β ∪ {a, b} Ψ ∪ {(d, c)} − {(d, a), (b, c)}

Table 5 : Transitions
−−→
adda→b[(α, β,Ψ)]→ (α′, β′,Ψ′).

By Properties (i) and (ii), a, b, c, d are pairwise distinct. Finally,

−−→
adda→b[(α, β,Ψ)]→ Error in all other cases.

Note that by our usual argument using Lemma 2, if
−−→
adda→b[(α, β,Ψ)] is to

be fired, then b cannot belong to δ.
If C ∪D is finite, k = |C| and ℓ = |D|, then the number of states is bounded

by 3k.2ℓ.m(k+ℓ) wherem(n) is the number of ordered matchings over n elements

(of sets of pairwise disjoint ordered pairs). We have ⌊n/2⌋! < m(n) < 2n
2

. The
size of a state is O((k + ℓ) log(k + ℓ)) and the time for computing a transition
is also O((k + ℓ) log(k + ℓ)).

The property DirHam, i.e., the existence of a directed Hamiltonian cycle
in the graph G such that Inc(G) = val(t) is expressed by :

”There exists a set U of D-vertices of val(t)

such that P (val(t)[Vval(t), U ]) holds”

11That D(σ′) holds implies that a and b are not both in Ψ1 and not both in Ψ2.

28



(cf. the end of Section 3). Note that t[Vval(t), U ] is a correct irredundant term
for all sets U if t is so. This property is thus checked by the nondeterministic

FA C obtained from B by adding the transitions d →
−→
∅ for d ∈ D. These new

transitions correspond to the elimination of the edges that will not be on the
directed cycle under construction. The FPT-FA det(C) checks DirHam in time

O(22(k+ℓ)
2

.n) where n is the number of vertices and edges of the input graph.

6 Conclusion

These results indicate that the tools of [7, 8] can be applied to the verifica-
tion of MSO2 properties of graphs of bounded tree-width given by their tree-
decompositions. The software AUTOGRAPH12 can be used basically as it is
(up to minor syntactic adaptations) although the algebras of terms describing
tree-decompositions and of terms defining clique-width are fairly different (as
discussed in [4]).

We have introduced in [4] a variant of tree-width called special tree-width
intended for the verification of MSO2 properties. It is weaker than tree-width in
the sense that bounded special tree-width implies bounded tree-width but not
vice-versa. Its advantage is that special tree-decompositions can be formalized in
terms of clique-width operations. A decomposition of width p is formalized by
a term in T (F[p+2]). Hence, this article also provides tools for checking MSO2

properties by FA based on clique-width operations.
For completeness, we also cite [17] where a completely different method is

used to check MSO2 properties of graphs of bounded tree-width.
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