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Abstract

The control of traffic flow can be related to different applications. In
this work, we introduce how to manage variable speed limits combined
with coordinated ramp metering within the framework of the LWR net-
work model. Following a “first discretize then optimize” approach, we
derive the first order optimality system and explain the switch of speeds
at certain fixed points in time and the boundary control for the ramp
metering as well. Sequential quadratic programming methods are used
to solve the control problem numerically. For application purposes, we
present experimental setups where variable speed limits are used as a
traffic guidance system to avoid traffic jams on highway interchanges and
on-ramps.

AMS Classification. 90B20, 49K20
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1 Introduction

Traffic flow networks based on scalar conservation laws have been investigated
from various perspectives during the last years, see for instance [5,18] for theoret-
ical results or [2,31] for numerical considerations and applications. In the case of
nonlinear traffic flow networks where the dynamics obey the Lighthill-Whitham-
Richards equations [23, 27], the crucial point is the modeling of intersections.
Assuming conservation of mass, further conditions like flux maximization at
nodes need to be prescribed to obtain unique admissible solutions. This ap-
proach results in appropriate Riemann solutions that can be directly specified,
see [8]. We will use this mathematical formulation and framework to describe
the dynamics for the traffic system.

For many applications, not only the numerical simulation of the nonlinear
dynamics is of interest but also optimization or control issues. To set up the
optimization problem, a cost functional and control variables must be identi-
fied, while the constraints are given by the above mentioned traffic flow net-
work equations. There exists a broad range of practical aspects including the
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optimal routing of traffic [13], traffic light control [12] or coordinated ramp me-
tering [26] for the LWR network model. Since these optimal control problems
are constrained by nonlinear conservation laws, relaxed models with simplified
dynamics have been investigated instead, cf. [17].

Reduced or time-discrete models usually rely on linear approximations lead-
ing to control methodologies such as linear optimization [24], feedback con-
trol [4, 25] or Lyapunov stability [1], respectively. However, nonlinear control
techniques as for instance adjoint calculus [26] or model predictive control [14]
represent a suitable and natural choice to treat traffic network control problems.

We concentrate on the variable speed limit (VSL) problem coupled to ramp
metering. From a mathematical point of view, the control variable, i.e. the
maximal velocity for the VSL problem, varies and must be evaluated at discrete
points in time. This leads to conservation laws with time-dependent discon-
tinuous coefficients [6]. On the other hand, the on-ramp metering problem
corresponds to a discussion of boundary conditions at junctions [9, 10]. Setting
up the corresponding control problems is then a combination of two control
issues directly influencing each other in the sense that time-dependent speed
limits reduce congestions and hence the travel times. This kind of problem for
macroscopic traffic flow models have been for example considered in [4,7,14,24]
and references therein. In contrast to our approach, the latter either follow a
model predictive control [14] where the optimization is obtained using sequen-
tial quadratic programming (SQP), closed loop/feedback control [4,7] or linear
programming techniques [24]. Mostly, these approaches are restricted to the pre-
sentation of (numerical) results for one road/one on-ramp only while complex
road network topologies are not considered.

To the best of our knowledge, the variable speed limit control problem com-
bined with ramp metering has never been solved for the full LWR model on
complex network topologies in a rigorous mathematical manner. In this article,
we will close this gap from a modeling and computational point of view. We
will stick to continuous optimization techniques where usually the first order
optimality system is derived and solved by a descent type method [19, 28]. We
apply the so-called discretize-then-optimize approach, meaning that a suitable
numerical discretization is chosen such that the original problem leads to a
finite-dimensional optimality system [13]. In this way, we automatically include
information about the current traffic situation into the control framework (open
loop control) and look for the best traffic management. This procedure was
originally introduced for aerodynamic shape design [11].

We proceed as follows: We briefly recall the LWR network model in Section 2.
Then, in Section 3, we explain how we model variable speed limits and ramp
metering. We address the optimal control problem and its solution procedure by
discretizing the governing equations in space and time. The numerical results
are collected in Section 4. In particular, we point out benefits and drawbacks
of our approach. We also observe that variable speed limits and ramp metering
help to navigate the traffic flow, so that congestion cannot always be prevented
but reduced.
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2 Traffic Flow Network Modeling

Following the ideas in [5, 8], we typically model a traffic flow network as a
directed graph G = (V,E), where the edges E correspond to roads and the
vertices V to junctions or intersections. Each edge e ∈ E is associated with an
interval [0, Le] and ρe(x, t) denotes the density of cars on road e.

Given some initial state ρe(x, 0) on all roads, the dynamics are described by

∂tρe(x, t) + ∂xfe(ρe(x, t), t) = 0 ∀e ∈ E, x ∈ (0, Le), t ∈ [0, T ] (1)

with Lighthill-Whitham-Richards flux [23,27]

fe(ρ, t) = ρ vmax
e (t)

(
1− ρ

ρmax
e

)
,

where vmax
e (t) is the (piecewise constant) maximal speed limit and ρmax

e is the
maximal car density corresponding to the jammed situation. See for instance
Figure 1 for an illustration of the dependencies of the velocity and the flow rate
with respect to the density in case of different speed limits. We also denote by
fmax
e (t) the maximal flux:

fmax
e (t) = fe(ρ

c
e, t) with ρce = ρmax

e /2 .
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Figure 1: Velocity and flow rate for different speed limits.

We also see in Figure 1 that different maximal velocities vmax
e (t) lead to

conservation laws on networks with time-dependent discontinuous coefficients.
Note that general existence results for these type of conservation laws on net-
works are not available at the moment. The network consideration requires
the extension of the well-posedness result given in [6] for the standard Cauchy
problem on the real line. Nevertheless, in the specific application considered
in this work, the time-dependence is piecewise constant, and therefore classical
existence results on networks can be applied [9].

Coupling Conditions at Junctions

The description of the whole network dynamics requires the definition of the
corresponding boundary and coupling conditions at junctions v ∈ V to basically
ensure the conservation of mass. Therefore, we introduce the demand and supply
functions that are given respectively by

De(ρ, t) =

{
fe(ρ, t) if ρ ≤ ρce ,
fmax
e (t) if ρ ≥ ρce ,

and Se(ρ, t) =

{
fmax
e (t) if ρ ≤ ρce ,
fe(ρ, t) if ρ ≥ ρce .
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For simplicity and in view of the applications considered in this work, we
will only consider the cases of one-to-one junctions, the merging of two roads
into one, and the dispersing of one road into two, see Fig. 2.

γ̂1 γ̂2

(a) One-to-one

γ̂1

γ̂3

γ̂2

(b) One-to-two

γ̂1

γ̂2

γ̂3

(c) Two-to-one

Figure 2: Different types of junctions.

In the case of a junction between only an incoming road e = 1 and an
outgoing one e = 2, the appropriate fluxes at the junction are simply obtained
through the minimization between demand and supply:

γ̂1 = γ̂2 = min {D1(ρ1, t),S2(ρ2, t)} . (2)

Note that we explicitly indicate the time dependency of the demand and supply
functions here, but we omit the dependencies for all γs for a better reading.

Let us now consider more involved cases, e.g. the case of a dispersing junction
with one incoming road e = 1 and two outgoing roads e = 2, e = 3. Here, the
distribution of cars must be externally prescribed by so-called distribution rates
α2,1 ≥ 0 and α3,1 ≥ 0 (and α2,1 + α3,1 = 1).

Contrarily to what is proposed in [8], we make the choice of applying NON-
FIFO rules, thus allowing for some flow through the junction even if one of
the outgoing roads is blocked. This is more reasonable for highway networks
than a classical FIFO model. The fluxes at the junction are computed as (see
also [16,22])

γ̂2 = min {α2,1D1(ρ1, t),S2(ρ2, t)} , (3a)

γ̂3 = min {α3,1D1(ρ1, t),S3(ρ3, t)} , (3b)

γ̂1 = γ̂2 + γ̂3 . (3c)

Finally, we focus on the case of a merging junction of ingoing two roads
e = 1, e = 2 and outgoing one e = 3. In this case, a priority parameter P ∈ (0, 1)
is introduced so that γ̂1 = P γ̂3 and γ̂2 = (1− P )γ̂3. This is necessary to define
a unique solution in the supply constrained cases, see [8, Section 5.2.2] for more
details. The corresponding fluxes are then

γ̂1 = min {D1(ρ1, t),max {PS3(ρ3, t),S3(ρ3, t)−D2(ρ2, t)}} , (4a)

γ̂2 = min {D2(ρ2, t),max {(1− P )S3(ρ3, t),S3(ρ3, t)−D1(ρ1, t)}} , (4b)

γ̂3 = γ̂1 + γ̂2 . (4c)

The model equations (1)-(4) can be further coupled to inflow conditions at
roads entering or leaving the network. As we will see later on, this modeling
framework can be extended to describe the ramp metering.
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γin
e

Figure 3: Road with an inflow condition.

Inflow and Outflow Conditions

Let us consider an arc e connected to the network only at its right node as
shown in Figure 3. Given a desired inflow rate f in

e (t), the actual inflow to the
road e is given by

γin
e = min

{
f in
e (t),Se(ρe, t)

}
. (5)

We assume there is a queue at the left node of arc e with length le(t). Then,
the inflow to the road is given by

γin
e = min {De(le, t),Se(ρe, t)} (6)

with the demand function dependent on the current length le(t) and the time t,

De(le, t) =

{
f̃max
e if le > 0 ,

min
{
f in
e (t), f̃max

e

}
if le = 0 .

(7)

Here, f̃max
e denotes the maximum flux from the queue onto the road. As usual,

the evolution of the queue length le(t) obeys the rate equation

dle(t)

dt
= f in

e (t)− γin
e (8)

for an initial state le(0).

γout
e

Figure 4: Road with an outflow condition.

Conversely, on arcs connected only on their left to the network as shown in
Figure 4, we prescribe absorbing boundary conditions up to a given maximum
flow rate fout

e (t) in the form

γout
e = min

{
fout
e (t), De(ρe, t)

}
, (9)

which ensures that the flow reaching the end of such a road is able to leave the
network without being stopped if it is below the given maximum flow rate.

In the next section, we describe the optimization problem we intend to solve.
We also comment on the discretization and the numerical implementation.
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3 Optimal Control Problem

For optimization purposes, we are interested in controlling the traffic flow through
a network by adjusting maximal speed limits and on-ramp fluxes as well.

The overall goal of optimization is to choose the controls in such a way
that the total travel time is minimized [31] and/or the outflow of the system is
maximized, i.e.

min J(~l, ~ρ,~γout):=
∑
e

βe

T∫
0

le(t) +

Le∫
0

ρe(x, t) dx

 dt−
∑
e

εe

T∫
0

γout
e (t) dt

(10)

with vectors ~l = (le)e, ~ρ = (ρe)e and ~γout = (γout
e )e, or to minimize a congestion

measure similar to [26], i.e.

min J(~l, ~ρ) :=
∑
e

βe

T∫
0

le(t) + max

0,

Le∫
0

(
ρe(x, t)−

fe(ρe(x, t), t)

ve,ref

)
dx


 dt .

(11)
Here, βe and εe denote non-negative weights and ve,ref a reference velocity.

Note that we later consider additional terms in the objective function such
that J will further explicitly depend on the control variables introduced in the
following. The constraints of the optimization problem are mainly determined
by the traffic flow network model introduced in Section 2. Further, we consider
upper bounds for queue lengths below. These inequality constraints will be
explicitly passed to the applied optimization procedure and not integrated by
additional penalty terms in the objective function. However, we need to explain
how the two controls are integrated into the model equations. That means, we
have to modify the flux in (1) for the speed limit and (8) for the ramp metering
control. Since the optimization problem under consideration is constrained by
differential equations, we first use suitable numerical methods to discretize the
equations and then propose a nonlinear optimization technique. This results in
a so-called discretize-then-optimize approach.

Variable Speed Limits

As already mentioned and shown in Figure 1, the maximal velocities vmax
e (t) on

each road e ∈ E may change in time. Therefore, we assume that vmax
e (t) is a

time-dependent control variable restricted by box constraints,

vlow
e ≤ vmax

e (t) ≤ vhigh
e ∀t ∈ [0, T ] .

To get a finite dimensional optimization problem and also for practical reasons,
we introduce control points νk ∈ [0, T ] (k ∈ {0, . . . ,Nu}) and corresponding
control variables zke for each road. We take vmax

e (t) piecewise constant on the
control grid:

vmax
e (t) = zk+1

e ∀t ∈ (νk, νk+1] . (12)

The choice of the control grid will be investigated in Section 4.1. Note that, in
order to avoid high fluctuations in the control function, a penalty term can be
added to (10). This issue is also addressed in Section 4.1.
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Ramp Metering

The control of on-ramps can be recast in the framework of merging junctions,
i.e. we consider a two-to-one merge as in Figure 2(c). We aim at controlling
the main lane access from the on-ramp, where we assume that the index e = 2
corresponds to the on-ramp, now described by a queue (7). The time-dependent
control variable we = we(t) is used to control the inflow from the on-ramp
into the main lane by rewriting equations (4). Mathematically, we define the
controlled demand function

Dc
e(le, t) = we(t)De(le, t), (13)

for De(le, t) given by (7). Then we plug (13) in (4) and end up with

γ̂1 = min {D1(ρ1, t),max {PS3(ρ3, t),S3(ρ3, t)−Dc
2(l2, t)}} , (14a)

γ̂2 = min {Dc
2(l2, t),max {(1− P )S3(ρ3, t),S3(ρ3, t)−D1(ρ1, t)}} , (14b)

γ̂3 = γ̂1 + γ̂2 . (14c)

Correspondingly, the evolution of the on-ramp buffer changes to

dl2(t)

dt
= f in

2 (t)− γ̂2 , (15)

where f in
2 (t) is the external boundary inflow at the on-ramp.

Similar to the speed control (12) we also assume a piecewise constant control
function for the ramp metering:

we(t) = wk+1
e ∀t ∈ (νk, νk+1] . (16)

A reasonable extension is to put queue length limits on (15). This case is
presented in Sections 4.2 and 4.3.

Summarizing, the speed limit and ramp metering control problem for traffic
flow networks reads as follows:

min
~z,~w

J(~l, ~ρ,~γout)

s.t. (1)-(9), (12), (13)-(16)
(17)

with ~z = (ze)e and ~w = (we)e. This is a nonlinear optimization problem which
can be solved within an adjoint-based optimization framework. To this end, we
fully discretize (17) in a straightforward way. Then, the first order optimality
system and the associated gradient information is obtained by evaluations of
forward and backward (or adjoint) equations. Details of this procedure can be
found in Section 3.2.

3.1 Discretization

For the numerical solution of the described model, we consider a finite number
of time points tn = n∆t with ∆t = T

Nt . Note that the tn may differ from the
control points νk above. Further, we divide each road e into Nxe cells of equal
size ∆xe = Le

Nxe
.
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Hence, the objective functions (10) and (11) are discretized by quadrature
formulas as follows:

min
∑
e

βe

Nt∑
n=1

lne +

Nxe∑
j=1

ρne,j−0.5 ∆xe

 ∆t−
∑
e

εe

Nt∑
n=1

f(ρne,Nxe , t
n) ∆t , (18)

and

min
∑
e

βe

Nt∑
n=1

lne + max

0,

Nxe∑
j=1

(
ρne,j−0.5 −

fe(ρ
n
e,j−0.5, t

n)

ve,ref

)
∆xe


 ∆t ,

(19)
where ve,ref = 1

2v
high
e . The constraints are discretized by following the structure

of Section 2. For the discretization of (1), we use a staggered Lax-Friedrichs
scheme and a first order Godunov scheme. Leaving out the index e for the road
for a better reading, the staggered Lax-Friedrichs scheme reads

ρn+1
0.5 = 1

4 (3ρn0.5 + ρn1.5)− λ
2 [f(ρn1.5, t

n) + f(ρn0.5, t
n)− 2f(ρn0 , t

n)] , (20a)

ρn+1
j−0.5 = 1

4 (ρnj−1.5 + 2ρnj−0.5 + ρnj+0.5)− λ
2 [f(ρnj+0.5, t

n)− f(ρnj−1.5, t
n)] ,

(20b)

ρn+1
Nx−0.5 = 1

4 (ρnNx−1.5 + 3ρnNx−0.5)

− λ
2 [2f(ρnNx, t

n)− f(ρnNx−0.5, t
n)− f(ρnNx−1.5, t

n)] ,
(20c)

where λ = ∆t/∆x and

ρne,j−0.5 ≈
1

∆xe

j∆xe∫
(j−1)∆xe

ρe(x, t
n) dx for j ∈ {1, . . . ,Nxe}, n ∈ {0, . . . ,Nt} .

The first order Godunov scheme is given by

ρn+1
0.5 = ρn0.5 − λ [min{D(ρn0.5, t

n),S(ρn1.5, t
n)} − f(ρn0 , t

n)] , (21a)

ρn+1
j−0.5 = ρnj−0.5 − λ

[
min{D(ρnj−0.5, t

n),S(ρnj+0.5, t
n)}

−min{D(ρnj−1.5, t
n),S(ρnj−0.5, t

n)}
]
, (21b)

ρn+1
Nx−0.5 = ρnNx−0.5 − λ

[
f(ρnNx, t

n)−min{D(ρnNx−1.5, t
n),S(ρnNx−0.5, t

n)}
]
.

(21c)

The inflow f(ρn0 , t
n) and the outflow f(ρnNx, t

n) directly result from the applied
coupling and boundary conditions. Concerning (10), fout

e (tn) corresponds to
f(ρnNx, t

n).

Coupling conditions at junctions

At a simple junction connecting two roads e = 1 (incoming) and e = 2 (outgo-
ing), we use

f(ρn1,Nx1 , t
n) = f(ρn2,0, t

n) = min
{

D1(ρn1,Nx1−0.5, t
n),S2(ρn2,0.5, t

n)
}
, (22)

according to (2).
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For junctions with one incoming road e = 1 and two outgoing roads e = 2 and
e = 3, and non-negative distribution rates α2,1 and α3,1 (with α2,1 + α3,1 = 1),
we apply (referring to (3))

f(ρn2,0, t
n) = min {α2,1c1, c2} , (23a)

f(ρn3,0, t
n) = min {α3,1c1, c3} , (23b)

f(ρn1,Nx1 , t
n) = f(ρn2,0, t

n) + f(ρn3,0, t
n) , (23c)

with

c1 = D1(ρn1,Nx1−0.5, t
n) , c2 = S2(ρn2,0.5, t

n) , c3 = S3(ρn3,0.5, t
n) .

For junctions with two incoming roads e = 1 and e = 2, one outgoing road
e = 3, and priority parameter P ∈ (0, 1), we use (according to (4))

f(ρn1,Nx1 , t
n) = min {c1,max {Pc3, c3 − c2}} , (24a)

f(ρn2,Nx2 , t
n) = min {c2,max {(1− P )c3, c3 − c1}} , (24b)

f(ρn3,0, t
n) = f(ρn1,Nx1 , t

n) + f(ρn2,Nx2 , t
n) , (24c)

with

c1 = D1(ρn1,Nx1−0.5, t
n) , c2 = D2(ρn2,Nx2−0.5, t

n) , c3 = S3(ρn3,0.5, t
n) .

Note that c2 = Dc
2(ln2 , t

n) in the case of a controlled on-ramp junction as de-
scribed in (13) and (14).

Inflow conditions

According to (5), we apply

f(ρne,0, t
n) = min

{
f in
e (tn),Se(ρ

n
e,0.5, t

n)
}

(25)

at an inflow boundary with a desired inflow rate f in
e (tn). In the presence of a

queue, according to (6), (7), (8) and (13), we use

f(ρne,0, t
n) = min

{
cqueue, Se(ρ

n
e,0.5, t

n)
}

(26)

with

cqueue = we(t
n) min

{
f in
e (tn) +

lne
∆t

, f̃max
e

}
,

and the explicit Euler scheme

ln+1
e = lne + ∆t

(
f in
e (tn)− f(ρne,0, t

n)
)
, (27)

where lne ≈ le(tn).
At an outflow boundary at edge e with maximum outflow rate fout

e (tn), we
use (see (9))

f(ρne,Nx, t
n) = min

{
fout
e (tn),De(ρ

n
e,Nx−0.5, t

n)
}
. (28)

9



Entire Simulation Procedure

For given initial conditions for the traffic flow network and prescribed speed
limits and ramp controls, the presented discretizations allow for an approximate
solution of our model. The basic steps of this procedure are given in Algorithm 1.
Starting from the initial state at time t0 = 0, one may iteratively compute the
flow rates at the current time tn (for n = 0, . . . ,Nt − 1), and subsequently the
density values and queue lengths at the next time tn+1.

Algorithm 1 Numerical Simulation

Input: initial conditions ρ0
e,j and l0e at time t0; speed limits vmax

e (t) and ramp
controls we(t).

Output: state variables ρne,j and lne for all times tn with n ∈ {1, . . . ,Nt}.
for n = 0, . . . ,Nt− 1 do

1. Compute inflow and outflow rates at the nodes at time tn according to
(25), (26), (28), (22), (23) and (24).
2. Compute density values ρn+1

e,j and queue lengths ln+1
e at time tn+1 ac-

cording to (20) and (27).
end for

3.2 Optimization approach

Based on the presented discretization and the simulation procedure shown in
Algorithm 1, we want to solve the underlying (finite dimensional) optimization
task with an SQP solver (DONLP2) [29, 30]. This necessitates the evaluation
of the objective function and the computation of gradient information. The
(discretized) objective function (18) can be directly evaluated after running a
simulation according to Algorithm 1. For the necessary gradient information
we apply a first-discretize adjoint approach. The main steps of the underlying
procedure are given in Algorithm 2.

Algorithm 2 Gradient Computation

Input: initial conditions ρ0
e,j and l0e at time t0; speed limits vmax

e (t) and ramp

controls we(t) given by a control vector u containing all zke and wke (for k ∈
{1, . . . ,Nu}).

Output: total derivative d
duJ(u, y(u)).

1. Run numerical simulation according to Algorithm 1.
2. Solve adjoint equation (29).
3. Compute gradient d

duJ(u, y(u)) according to (30).

To describe the applied adjoint approach, we consider the objective function
J(u, y) (in our case given by (18)), where u contains all control variables of the
discretized model equations (the speed limits zke and the ramp controls wke ) and
y all state variables (densities ρne , flow rates f(ρne ), queue lengths lne ). Further,
we summarize all discretized model equations, or constraints respectively, as
E(u, y) = 0. Assuming that for given control variables u the model equations
E(u, y) = 0 have a unique solution, one may consider y = y(u) and the so-called

10



reduced problem with the objective function J(u) = J(u, y(u)). Note that the
solution of E(u, y) = 0 corresponds to running Algorithm 1.

With the so-called adjoint state ξ given by the solution of the adjoint equa-
tion (

∂

∂y
E(u, y(u))

)T
ξ = −

(
∂

∂y
J(u, y(u))

)T
, (29)

one can efficiently compute the cost gradient as

d

du
J(u, y(u)) =

∂

∂u
J(u, y(u)) + ξT

∂

∂u
E(u, y(u)) . (30)

In fact, the partial derivatives of J and E with respect to u and y can be
easily computed and (29) is a single linear system with a special structure that
can be easily exploited (see for instance [20, 21]). We remark that some of the
discretized model equations are continuous but not differentiable with respect
to u and y so that smoothing is necessary. Incidentally, we also remark that the
solution given by the gradient-based descent method is only locally optimal.

As already noted above, the time points tn of the discretization may differ
from the control points νk. The values of the controls vmax

e (t) and we(t) at
t = tn, which are needed within Algorithms 1 and 2, are computed according
to (12) and (16). Regarding the computation of gradient information using
Algorithm 2, this necessitates the application of the chain rule (cf. again [20]),
where in our case the “inner derivatives” equal zero or one due to the piecewise
constant control functions.

4 Numerical Results

This section collects the numerical results corresponding to three different sce-
narios. The first example is concerned with variable speed limits to control
traffic flow on a road network similar to the Frankfurter Kreuz, which is a fa-
mous German Autobahn interchange. Here we vary discretization as well as
control grid parameters to study their influence on the optimal solution. In the
second example we consider the combined optimization of variable speed limits
(VSL) and ramp metering. The topology of the third example is quite similar
to the second one, but refers to a real world case study.

4.1 Variable Speed Limits

Inspired by the Autobahn interchange in Frankfurt, Germany, we present a
corresponding topology of the road network (including distribution rates α and
priority parameters P ) in Figure 5. Further road properties as well as the initial
conditions are given in Table 1. Additionally, Figure 6 shows the inflow profiles
within the considered time horizon of 1000 seconds.

For the described setting we consider the following experiments:

1. Optimization for a fixed discretization (∆x = 50, ∆t = 0.5, Lax-Friedrichs
scheme) and various numbers of control points Nu.

2. Optimization for a fixed number of control points (Nu = 20) and various
discretization parameters.
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P = 0.7
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α = 0.3
roadAB
1−P = 0.3

1−P = 0.3
roadBA
α = 0.3

Figure 5: Road network with two main roads.

Table 1: Properties of the roads in Figure 5

road length ρmax vlow vhigh initial density

roadA1 1000 2 20 30 0.3
roadA2 1000 2 20 30 0.3
roadA3 1000 2 20 30 0.3
roadB1 1000 2 20 30 0.3
roadB2 1000 2 20 30 1.2
roadB3 1000 2 20 30 1.2
roadAB 200 0.5 10 20 0.1
roadBA 200 0.5 10 20 0.1

3. We finally consider the same experiment as in 1. with a fixed discretization
but an additional penalty term with weight δe ≥ 0 in (18):

∑
e

δe

Nt∑
n=1

∆t

(
vmax
e (tn)− vmax

e (tn−1)

vhigh
e ∆t

)2

in order to get smoother controls. This is similar to [15].
Table 2 and Figure 7 show the results for the first test. While the discretiza-

tion parameters are kept fixed, we consider an increasing number of control
points Nu (starting with Nu = 5 in the first line of Figure 7 until Nu = 80
in the last line) and run the optimization once for minimizing the total travel
time (with βe = 10−3) and once for maximizing the accumulated outflow at
the nodes outA and outB (with εe = 10−1). As expected one gets lower travel
times / larger outflows for an increasing number of control points. In particular,
compared to the uncontrolled case, where all speed limits are taken at the upper
bound, we achieve an improvement of 1.28% / 0.03%. Exemplarily, Figure 8
compares the traffic density in the middle of roadB2 with and without optimiza-
tion of speed limits (with respect to the total travel time). The computing time
for a single simulation with the given discretization parameters is roughly one
second on an Intel(R) Core(TM) i5-3340M CPU with 2.70GHz.

In the second experiment we vary the discretization parameters and keep
the number of control points constant for the minimization of the total travel
time / maximization of the outflow. Table 3 and Figure 9 show the results
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Figure 6: Inflow profiles for the network in Figure 5.

Table 2: Optimal travel times / outflows for different numbers of control points

Nu ∆x / ∆t min. travel time max. outflow

- 50 / 0.5 2336.698921 1844.762416
5 50 / 0.5 2307.370375 1845.023309
10 50 / 0.5 2307.157634 1845.030866
20 50 / 0.5 2306.863796 1845.289234
40 50 / 0.5 2306.778537 1845.290014
80 50 / 0.5 2306.694086 1845.353672

for these computations (with ∆x = 200 in the first line of Figure 9 down to
∆x = 12.5 in the last line). Note that the presented values of the objective
function (scaled travel times / outflows) are evaluated using a simulation with
the finest discretization parameters.

Table 3: Optimal travel times / outflows for different discretizations

Nu ∆x (max.) / ∆t min. travel time max. outflow

- - 2330.987519 1846.918574
20 200 / 0.500 2369.960626 1825.869588
20 100 / 0.500 2333.714043 1836.601771
20 50 / 0.500 2306.708163 1845.327369
20 25 / 0.250 2300.563136 1846.649973
20 12.5 / 0.125 2297.448274 1847.150023

Similar to above, the finer the discretization parameters are, the better the
computed optimal solutions are. For the (too) coarse discretizations, one ac-
tually gets “optimal controls”, which are worse than the “no control” case (all
speed limits at the upper bound). Note that this may only happen because we
finally evaluate the computed controls by a simulation using the finest grid.

The results of the third experiment are shown in Figure 10. Obviously,
the additional penalty term, which penalizes variations in the control, leads to
smoother optimal solutions.
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Figure 7: Optimal control of vmax for an increasing number of control points.
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Figure 8: Density on roadB2 with and without optimization of speed limits.

4.2 VSL meets Coordinated Ramp Metering

In our second example, we consider the combined optimization of variable speed
limits and ramp metering. The topology of the underlying network is shown in
Figure 11 and the corresponding parameters are given in Table 4. The priority
parameter at the on-ramp is P = 0.5 and we take f̃max = 1.5. Figure 12
shows the inflow profiles and the maximum outflow. Again, we consider several
discretizations and also compare the results of the Lax-Friedrichs scheme with
the Godunov scheme. Depending on the chosen resolution, a single simulation
for the considered time horizon of 3 hours takes between 0.1s (∆t = 30 and
∆x = 1000) and about 13s (∆t = 0.75 and ∆x = 25). For the optimization we
use Nu = 36 control points and consider the congestion measure (19) subject to
the following constraints: We allow a maximum size of the queue at the inflow
of the main road (node “in”) of 50 cars and a maximum size of the queue at the
on-ramp of 600 cars. Both constraints are violated without optimization (vmax

at the upper bound and w(t) = 1 at the on-ramp). Note that the gradients of
these constraints, which are necessary for the applied SQP solver, are computed
exactly in the same manner as the gradients of the objective (as described in
Section 3.2).

Table 4: Properties of the roads in Figure 11

road length ρmax vlow vhigh initial density

road1a 2000 2 30 30 0.1
road1b 2000 2 10 30 0.1
road2 4000 2 30 30 0.1

Figure 13 shows the inflow to the main road from the on-ramp in the un-
controlled case, nicely validating the different situations that may occur at an
on-ramp: Initially the full inflow goes to the main road (f in = 0.75). Due to
the congestion at road2, the inflow drops down to P · fout = 0.5 (outflow at the
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Figure 9: Optimal control of vmax for different discretizations.
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Figure 10: Optimal control of vmax with and without penalty term (min. travel
time).
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Figure 11: Road network with an on-ramp at the node “on-ramp”.
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Figure 12: Inflow/max. outflow profiles for the network in Figure 11.

node “out” is 1.0 and priority parameter P = 0.5). When the maximum possi-
ble outflow at the node “out” increases, also the flow on the on-ramp increases
up the maximum flow level (f̃max = 1.5). When the queue at the on-ramp is
empty, the inflow to the main road from the on-ramp decreases to the inflow at
this node again (f in = 0.75).

Table 5 shows the results of the optimization procedure. The first (four)
column(s) contain the parameters used for the optimization (number of control
points, discretization parameters, applied scheme). The resulting controls have
then been evaluated by simulations with the same scheme and discretization
parameters, but also with a “reference discretization” (∆t = 0.75, ∆x = 25,
Godunov scheme). The last column shows the improvement in the computed
objective function - always comparing the “optimal” solution with the uncon-
trolled case for simulations with the same discretization parameters and the
same scheme. Obviously, the considered discretization has a strong impact on
the improvement. On the one hand, let us first consider the evaluations with the
reference discretization: Even the optimal solution found with the coarsest dis-
cretization of the Lax-Friedrichs scheme (∆x = 1000) yields only slightly worse
results than the best solution found (1.58% towards 1.75%). On the other hand,
when comparing the uncontrolled and the optimized case with the coarsest dis-
cretization of the Lax-Friedrichs scheme, one gets an improvement of 12.22%.
This effect certainly has to be taken into account, when comparing optimiza-
tion results for a well-resolved PDE model with other existing approaches: In
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the benchmark problem in [14] for instance, the discretization parameters are
∆x = 1000 (metres) and ∆t = 10 (seconds).

Table 5: Optimization results and actual improvement for various discretization
parameters

optimization simulation objective improvement
Nu ∆x ∆t scheme ∆x ∆t scheme

0 1000 15.00 LF 19.771085 -
1000 30.00 G 20.414095 -
100 1.50 LF 21.056753 -
100 3.00 G 21.338182 -
25 0.75 G 21.422205 -

36 1000 15.00 LF 1000 15.00 LF 17.354620 12.22%
25 0.75 G 21.082987 1.58%

36 1000 30.00 G 1000 30.00 G 18.985271 7.00%
25 0.75 G 21.063006 1.68%

36 100 1.50 LF 100 1.50 LF 20.437825 2.94%
25 0.75 G 21.081400 1.59%

36 100 3.00 G 100 3.00 G 20.886909 2.11%
25 0.75 G 21.047366 1.75%

Finally, Figures 14, 15 and 16 show the computed optimal controls for the
finest discretization and the Godunov scheme, the queue lengths at the inflow of
the main road and at the on-ramp in the uncontrolled and the optimized cases,
and the density at the beginning of road2, respectively. The speed control is in
particular active during the times of large inflows (at the beginning and after
approximately one and a half hour), while the on-ramp control takes care of
the bound on the queue. Further, in the optimal solution, the queue at the
beginning of the road stays empty, whereas there is a new large peak in the
queue at the on-ramp during the high traffic time after about 2 hours because
of the reduced density on the main road.
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Figure 13: Inflow on the main road at the on-ramp without optimization.
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Figure 14: Optimal control of vmax(t) on road1b and w(t) at the on-ramp.
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Figure 15: Queue at the node “in” and the on-ramp with and without optimiza-
tion.
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Figure 16: Density at the beginning of road2 with and without optimization.
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4.3 Real World Example: From Antibes to Nice

1 2 3 4 5 6 7 8

Antibes Est Nice St Isidore

Km 172.44 Km 190.00

Figure 17: (Taken from [3].) A8 highway’s scheme between Antibes and Nice St.
Isidore. Blue spots indicate loop detectors’ locations. Light blue lines indicate
toll stations’ locations. Black arrows indicate the direction of cars flow, where
those on the bottom are on and off ramps. Highway’s sections limited by green
lines are those where the maximal speed limit is 110 km/h, while in the orange
ones is 90 and in the red one is 70 km/h. Width is proportional to the number
of lanes: 2, 3 or 4. For further details see [3].
Numerical simulations performed in this section correspond to sections 1 to 4.

Inspired by the real network depicted in Figure 17, we consider a stretch of
highway of 9 km long divided in cells of ∆x = 100m each as follows:

• a section of 5 km between x0 = 0 km and x1 = 5 km consisting of 3 lanes
(ρmax

1 = 450 cars/km) with maximal speed vmax
1 = 110 km/h;

• a section of 3 km between x1 = 5 km and x2 = 8 km consisting of 4 lanes
(ρmax

2 = 600 cars/km) with maximal speed vmax
2 = 110 km/h;

• a section of 1 km between x2 = 8 km and x3 = 9 km consisting of 3 lanes
(ρmax

3 = 450 cars/km) with maximal speed vmax
3 = 90 km/h.

Moreover, an on-ramp link is connected to the mainline at the node x1 (with
priority parameter P = 0.25). We know that traffic is hindered downstream,
that is, we impose a maximum outflow at x3. The inflow and maximum outflow
values are given in Figure 18. The computing time for a single simulation with
∆t = 3 seconds and the Godunov scheme for a 5 hour time horizon is roughly
2.5 seconds.

The speed limits vmax
1 , vmax

2 and vmax
3 are imposed by the authorities. We

are interested in comparing the current situation resulting from the above choice
of the parameters with the controlled one. We use the current speed limits as
upper bound for the speed controls and 50 km/h as lower bound for all roads.

The objective is again to minimize the congestion measure (19) subject to
the following constraints:

• maximum size of the queue in Antibes: 50 cars,

• maximum size of the queue at the on-ramp: 100 cars.
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(b) Inflow at x1 (on-ramp).
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(c) Max. outflow at x2 (off-ramp).
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(d) Max. outflow at x3.

Figure 18: Inflow/max. outflow profiles for considered network part of Figure 17.

Figure 19 shows the traffic density on the entire section at different times
in the uncontrolled case. Due to the limited outflow, a traffic jam is building
at (roughly) 7:15 (corresponding to t = 1.25 hours, first plot), almost arriving
at x0 at about 8:30 (third plot) and having vanished approximately further 2
hours later.

Figure 20 shows the computed optimal controls (Nu = 36). As a result, the
congestion measure (19) could be reduced from 18.138 in the uncontrolled case
to 17.222, an improvement of roughly 5%, which is of the same order as the
results in [26]. In particular, the speed limit on road1 is (significantly) active
for the first time during the peak time of the inflow (around t = 2). The queues
in the uncontrolled and the optimized case are plotted in Figure 21. Figure 22
shows the density at the beginning of road2 (behind the on-ramp). Similar to
the results in Section 4.2, the price for the lower density on the main road is a
further increase of the queue at the on-ramp.

5 Conclusion

In this work we have considered variable speed limits combined with coordi-
nated ramp metering within the framework of the LWR network model. On one
hand, the first order LWR model can be considered the most simple PDE model
for traffic flow, which also allows for congestions. Nevertheless, the simulation
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Figure 19: Traffic density between Antibes and Nice at different times.
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Figure 20: Optimal control of vmax on road1, road2 and road3, and w(t) at the
on-ramp.

results for the real world example presented in Section 4.3 agreed well with the
observed real situation. To improve the current situation, we applied a first
discretize then optimize adjoint approach and sequential quadratic program-
ming. While the computed optimal solutions for coarse discretizations often
already delivered good results, we observed a strong dependence of the actual
improvement with respect to the discretization parameters.

Further, the fulfillment of prescribed constraints was always successful within
the presented framework. On the other hand, it seems to be a drawback of the
applied first order model that within several scenarios one is not able to (sig-
nificantly) improve the current situation in terms of total travel time or system
outflow. This assumption is motivated by (additional) results we achieved for
the scenario presented in Section 4.2, since for similar scenarios as in [14], where
a “discrete second order model” but also a different model for the on-ramp flow
are used, speed control and coordinated ramp metering also yield a significant
improvement of the total travel time. Accordingly, in future work we are going
to extend the presented framework to a second order PDE model and we also
intend to consider different models for the on-ramp flow.
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Figure 21: Queue at the node “in” and the on-ramp with and without optimiza-
tion.
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Figure 22: Density at the beginning of “road2” with and without optimization.
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