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RAMANUJAN’S MASTER THEOREM
FOR RIEMANNIAN SYMMETRIC SPACES

GESTUR ÓLAFSSON AND ANGELA PASQUALE

Abstract. Ramanujan’s Master theorem states that, under suitable conditions, the Mellin
transform of a power series provides an interpolation formula for the coefficients of this series.
Based on the duality of compact and non-compact reductive Riemannian symmetric spaces
inside a common complexification, we prove an analogue of Ramanujan’s Master Theorem
for the spherical Fourier transform of a spherical Fourier series. This extends the results
proven by Bertram for Riemannian symmetric spaces of rank-one.

Introduction

Ramanujan’s Master Theorem asserts that if a function f(x) can be expanded around x = 0
in a power series of the form

f(x) =
∞∑
k=0

(−1)ka(k)xk

then ∫ +∞

0

x−λ−1f(x) dx = − π

sin(πλ)
a(λ) . (1)

Of course, one needs additional assumptions for this formula to hold, as one can directly see
from the example a(λ) = sin(πλ).

Formula (1) is contained in Ramanujan’s First Quarterly Report to the Board of Studies
of the University of Madras in 1913. These reports have never been published; see [2], p.
295. However, Hardy presents them in his book on Ramanujan’s work [11] and provides a
rigorous proof of formula (1) for a natural class of functions a and a natural set of parameters
λ, by means of the Residue Theorem.

Let A, P , δ be real constants so that A < π and 0 < δ ≤ 1. Let H(δ) = {λ ∈ C : Reλ >
−δ}. The Hardy class H(A,P, δ) consists of all functions a : H(δ)→ C that are holomorphic
on H(δ) and satisfy the growth condition

|a(λ)| ≤ Ce−P (Reλ)+A| Imλ|

for all λ ∈ H(δ). Hardy’s version of Ramanujan’s Master theorem is the following, see [11],
p. 189.

Theorem 0.1 (Ramanujan’s Master Theorem). Suppose a ∈ H(A,P, δ). Then:
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The research by Ólafsson was supported by DMS-0801010, DMS-1101337, and the University Paul Verlaine
of Metz.

1



(1) The power series

f(x) =
∞∑
k=0

(−1)ka(k)xk (2)

converges for 0 < x < eP and defines a real analytic function on this domain.
(2) Let 0 < σ < δ. For 0 < x < eP we have

f(x) =
1

2πi

∫ −σ+i∞

−σ−i∞

−π
sin(πλ)

a(λ)xλ dλ . (3)

The integral on the right hand side of (3) converges uniformly on compact subsets of
]0,+∞[ and is independent of the choice of σ.

(3) Formula (1) holds for the extension of f to ]0,+∞[ and for all λ ∈ C with 0 < Reλ <
δ.

The last part of Theorem 0.1 is obtained from its second part by applying Mellin’s inversion
formulas

ψ(λ) =

∫ ∞
0

φ(x)x−λ
dx

x
, φ(x) =

1

2πi

∫ −σ+i∞

−σ−i∞
ψ(λ)xλ dλ

to

ψ(λ) =
−π

sin(πλ)
a(λ), φ(x) = f(x) .

Formula (1) can be thought of as an interpolation formula allowing us to reconstruct a(λ)
from the discrete set of its values {a(k) : k ∈ Z+}. In particular, the function a must vanish
identically whenever it vanishes on Z+. As already noticed by Hardy ([11], p. 188), this fact
and the bound π for the exponent A are related to the well-known theorem of Carlson.

An equivalent formulation of Ramanujan’s Master Theorem is obtained by replacing a(λ) ∈
H(A,P, δ) with A(λ) = a(λ)Γ(λ+1) where Γ is the gamma function. Since Γ(−λ)Γ(λ+1) =
−π/ sin(πλ), this converts the power series (2) into

f(x) =
∞∑
k=0

(−1)k
A(k)

k!
xk

and formula (1) becomes ∫ +∞

0

f(x)x−λ
dx

x
= Γ(−λ)A(λ) . (4)

It holds for the extension of f to ]0,+∞[ and for all λ ∈ C with 0 < Reλ < δ. In [11], §11.3,
formula (1) is taken as the standard interpolation formula, though (4) often turns out to be
more convenient in the applications.

In [4], Bertram provided the following group theoretic interpretation of (1). The functions
xλ (λ ∈ C) are the spherical functions on XG = R+ and the xk (k ∈ Z) are the spherical
functions on the torus XU = U(1). Both XG and XU can be realized as real forms of their
complexification XC = C∗. Then (2) and (3) can be seen respectively as the restriction to

XU and XG of a “good” holomorphic function f on XC. Let f̃ and f̂ respectively denote the
spherical Fourier transforms of f on XG and XU . Then Ramanujan’s formula (1) becomes

f̃(λ) =
−π

sin(πλ)
a(λ) , f̂(k) = (−1)ka(k) .
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By replacing the duality between U(1) and R+ inside C∗ with the duality between sym-
metric spaces of the compact type XU = U/K and of noncompact type XG = G/K inside
their complexification XC = GC/KC, Bertram proved an analogue of Ramanujan’s Master
theorem for semisimple Riemannian symmetric spaces of rank one.

In this paper we extend Bertram’s results first to semisimple Riemannian symmetric spaces
of arbitrary rank and then to reductive symmetric spaces. Our main result is Theorem 2.1
which is Ramanujan’s Master Theorem for the spherical Fourier transform on semisimple
Riemannian symmetric spaces. The generalization to reductive symmetric spaces is then
obtained by combining the semisimple case and a multivariable extension of the classical
(abelian) Theorem 0.1; see Theorem 7.1.

Let XU and XG be dual Riemannian symmetric spaces, respectively of the compact and of
the noncompact type, and let XC be their complexifiction. Our theorem deals with spherical
Fourier series on XU of the form

f(x) =
∑
µ∈Λ+

(−1)|µ|d(µ)a(µ+ ρ)ψµ(x) , (5)

in which the coefficients a(µ + ρ) are obtained from a holomorphic function a belonging to
a certain Hardy class H(A,P, δ) associated with the pair (XU , XG) and depending on three
real parameters A,P, δ. The function f defines a K-invariant holomorphic function on a
neighborhood of XU in XC. It is then shown to extend holomorphically to a neighborhood
of XG in XC by means of the inverse spherical Fourier transform:

f(x) =

∫
σ+ia∗

a(λ)b(λ)ϕλ(x)
dλ

c(λ)c(−λ)
. (6)

Formulas (5) and (6) are the symmetric space analogue of Ramanujan’s formulas (2) and (3).
An interpolation formula extending (1) is then obtained from (6) using inversion theorems
for the spherical Fourier transform. The function b occurring in (6) is a normalizing factor
depending only on the pair (XU , XG) (and not on the Hardy class). It plays the rôle of
the function −(2i sin(πx))−1 appearing in Ramanujan’s formula (3). We refer the reader to
Theorems 2.1 and 7.1 for more precise statements of our results and for the unexplained
notation in (5) and (6).

As in the classical proof by Hardy, our principal tool to prove Ramanujan’s Master The-
orem in the semisimple case is the Residue Theorem. Our methods are a multivariable
generalization of those of Bertram, and in fact we follow several hints to the general rank
case that one can find in Section 0.6 of [4]. To deal with the task of taking residues in our
multivariable setting, the main idea is to select the fundamental highest restricted weights
as a basis of the space a∗C of spectral parameters and then to work in the corresponding
coordinates.

Besides [4], some other articles have dealt with the extension of Ramanujan’s Master
Theorem to special classes of semisimple or reductive symmetric spaces. Bertram [3] and
Ding, Gross and Richards [8] have proven this theorem for the (reductive non semisimple)
case of symmetric cones. The version considered in [8] corresponds to Ramanujan’s formula
(B) in Hardy’s book [11], p. 186. Moreover, Ding [7] proved a slightly different version of
Ramanujan’s Master theorem for Hermitian symmetric spaces by a reduction to the case of
symmetric cones from [8]. Because of this indirect proving method, the resulting theorem

3



has a more complicate structure than the special case of our Theorem 2.1 for the Hermitian
symmetric situation.

This article is organized as follows. In Section 1 we recall the duality of Riemannian
symmetric spaces of compact and noncompact type, we introduce the spherical transform in
these contexts, and recall Lassalle’s results on the holomorphic extension of spherical Fourier
series. In section 2 we state Ramanujan’s Master theorem for Riemannian symmetric spaces
in duality. In the classical version of the Master Theorem, the interpolated coefficients of
the power series are multiplied by a normalizing factor b(λ) which is a constant multiple of
the function sin(πλ)−1. Similarly, a normalizing function b(λ) appears in the statement of
Master’s Theorem for symmetric spaces. In Section 3 we explain our choice of the function b.
Its explicit expression is determined in Section 4, using the relation between the Plancherel
densities for Riemannian symmetric spaces in duality. Examples for Riemannian symmetric
spaces of rank-one or with even root multiplicites are presented. Section 5 collects several
estimates which will be needed in the proof of Ramanujan’s Master Theorem. This theorem is
proven in Section 6. In Section 7 we extend our theorem to reductive Riemannian symmetric
spaces. In the final Section 8, we discuss some further possible extensions of Ramanujan’s
Theorem for symmetric spaces to related settings and present some open problems.

Notation. We shall use the standard notation Z, Z+, R, R+ and C respectively for the
integers, the nonnegative integers, the reals, the nonnegative reals, and the complex numbers.

1. Preliminaries

1.1. Symmetric spaces and their structure. Let XU = U/K be a Riemannian symmet-
ric space of the compact type. Hence U is a compact connected Lie group, and there is an
involutive automorphism τ of U so that U τ

0 ⊂ K ⊂ U τ . Here U τ = {u ∈ U : τ(u) = u}
and U τ

0 is its connected component containing the unit element e of U . We will assume that
K is connected and U is semisimple. (This assumption on U will be removed in Section
7.) As U is compact, it admits a finite dimensional faithful representation. So we can as-
sume that U ⊂ U(m) ⊂ GL(m,C) for some m. Let u ⊂ M(m,C) denote the Lie algebra
of U . The automorphism of u which is the differential of τ will be indicated by the same
symbol. Then u = k ⊕ ip where k = {X ∈ u : τ(X) = X} is the Lie algebra of K and
ip = {X ∈ u : τ(X) = −X}. Let UC denote the analytic subgroup of GL(m,C) of Lie
algebra uC = u ⊕ iu. Set g = k ⊕ p and let G be analytic subgroup of UC of Lie algebra g.
Then G is a connected noncompact semisimple Lie group containing K, and XG = G/K is a
symmetric space of the noncompact type. Since gC = uC, the group UC is a complexification
of G. We will write GC = UC. Let kC = k⊕ ik and let KC be the connected subgroup of GC
with Lie algebra kC. Then KC is a closed subgroup of GC. The symmetric spaces XU = U/K
and XG = G/K embed in the complex homogeneous space XC = GC/KC as totally real
submanifolds.

A maximal abelian subspace a of p is called a Cartan subspace. The dimension of any
Cartan subspace is a constant, called the real rank of G and the rank of XU and XG. Let
a∗ be the (real) dual space of a and let a∗C be its complexification.

Let Σ be the set of (restricted) roots of the pair (g, a). It consists of all nonzero α ∈ a∗ for
which the vector space gα := {X ∈ g : [H,X] = α(H)X for every H ∈ a} is nonzero. The
dimension of gα is called the multiplicity of the root α and is denoted by mα. We fix a set
Σ+ of positive restricted roots. Then Σ is the disjoint union of Σ+ and −Σ+. Moreover,
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a+ := {H ∈ a : α(H) > 0 for all α ∈ Σ+} is an open polyhedral cone called the positive
Weyl chamber.

A root α ∈ Σ is said to be unmultipliable if 2α /∈ Σ. We respectively denote by Σ∗ and
Σ+
∗ := Σ+ ∩ Σ∗ the sets of unmultipliable roots and of positive unmultipliable roots in Σ.

The half-sum of the positive roots counted with multiplicities is denoted by ρ: hence

ρ =
1

2

∑
α∈Σ+

mαα =
1

2

∑
β∈Σ+

∗

(mβ/2

2
+mβ

)
β . (7)

Here we adopt the usual convention that the multiplicity mβ/2 is zero if β/2 is not a root.
By classification, mβ/2 is always even.

The Cartan-Killing form B defines a Euclidean structure on the Cartan subspace a. We
set 〈X, Y 〉 := B(X, Y ). We extend this inner product to a∗ by duality, that is we set
〈λ, µ〉 := 〈Hλ, Hµ〉 if Hγ is the unique element in a such that 〈Hγ, H〉 = γ(H) for all H ∈ a.
The C-bilinear extension of 〈·, ·〉 to a∗C will be denoted by the same symbol. We shall employ
the notation

λα =
〈λ, α〉
〈α, α〉

(8)

for λ ∈ a∗C and α ∈ a∗ with α 6= 0. Notice that 2λα = λα/2.
The Weyl group W of Σ is the finite group of orthogonal transformations of a generated

by the reflections rα with α ∈ Σ, where

rα(H) := H − 2
α(H)

〈α, α〉
Hα , H ∈ a .

The Weyl group action extends to a∗ by duality, and to aC and a∗C by complex linearity.
We set n =

⊕
α∈Σ+ gα. Let N = exp n and A = exp a be the connected subgroups of G

of Lie algebra n and a, respectively. The map (k, a, n) 7→ kan is an analytic diffeomorphism
of the product manifold K ×A×N onto G. The resulting decomposition G = KAN is the
Iwasawa decomposition of G. Thus, for g ∈ G we have g = k(g) expH(g)n(g) for uniquely
determined k(g) ∈ K, H(g) ∈ a and n(g) ∈ G. We will also need the polar decomposition
G = KAK: every g ∈ G can be written in the form g = k1ak2 with k1, k2 ∈ K and a ∈ A.
The element a is unique up to W -invariance. It is therefore uniquely determined in A+ where
A+ = exp a+.

1.2. Normalization of measures. We adopt the normalization of measures from [15], Ch.
II, §3.1. In particular, the Haar measures dk and du on the compact groups K and U are
normalized to have total mass 1. The Haar measures da and dλ on A and a∗, respectively,
are normalized so that the Euclidean Fourier transform

(FAf)(λ) :=

∫
A

f(a)e−iλ(log a) da , λ ∈ a∗ , (9)

of a sufficiently regular function f : A→ C is inverted by

f(a) =

∫
a∗

(FAf)(λ)eiλ(log a) dλ , a ∈ A . (10)

The Haar measures dg and dn of G and N , respectively, are normalized so that dg =
e2ρ(log a)dk da dn. Moreover, if L is a Lie group and P is a closed subgroup of L, with left Haar
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measures dl and dp, respectively, then the L-invariant measure d(lP ) on the homogeneous
space L/P (when it exists) is normalized so that∫

L

f(l) dl =

∫
L/P

(∫
P

f(lp) dp

)
d(lP ) . (11)

This condition normalizes the G-invariant measure dx = d(gK) on XG = G/K and fixes the
U -invariant measure d(uK) on XU = U/K to have total mass 1.

1.3. Spherical functions on XG and XU . Let (π, V ) be an irreducible unitary represen-
tation of G or of U , and let

V K = {v ∈ V : π(k)v = v for all k ∈ K}

be the subspace of the K-fixed vectors of V . The representation (π, V ) is said to be K-
spherical if V K 6= {0}. In this case dimV K = 1.

The spherical functions on G are the matrix coefficients of the (non-unitary) spherical
principal series representations. The spherical function on G of spectral parameter λ ∈ a∗C
is the K-biinvariant function ϕλ : G→ C given by

ϕλ(g) =

∫
K

e(λ−ρ)
(
H(gk)

)
dk (12)

where H : G → a is the Iwasawa projection defined earlier. If e denotes the unit element
of G, then ϕλ(e) = 1. Moreover, ϕλ(g

−1) = ϕ−λ(g) for all λ ∈ a∗C and g ∈ G. The function
ϕλ(g) is real analytic in g ∈ G and W -invariant and entire in λ ∈ a∗C.

According to Helgason’s theorem, the highest restricted weights of the finite-dimensional
K-spherical representations of U are the dominant restricted weights, that is the elements
of the set

Λ+ = {µ ∈ a∗ : µα ∈ Z+ for all α ∈ Σ+} . (13)

See [14], Ch. V, Theorem 4.1.
Let Π = {α1, . . . , αl} be a basis of a∗ consisting of simple roots in Σ+. For j = 1, . . . , l set

βj =

{
αj if 2αj /∈ Σ

2αj if 2αj ∈ Σ
. (14)

Then Π∗ = {β1, . . . , βl} is a basis of a∗ consisting of simple roots in Σ+
∗ . Define ω1, . . . , ωl ∈ a∗

by the conditions

(ωj)βk =
〈ωj, βk〉
〈ωk, βk〉

= δjk . (15)

Let µ ∈ a∗. Then µ ∈ Λ+ if any only if

µ =
l∑

j=1

µjωj with µj ∈ Z+ , j = 1, . . . , l .

See [15], Ch. 2, Proposition 4.23.
The spherical functions on U are matrix coefficients of the finite-dimensional (non-unitary)

spherical representations on U . As U is semisimple, the spherical functions on U are
parametrized by a subset Λ+

K(U) of Λ+. If XU = U/K is simply connected, then Λ+
K(U) =
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Λ+. See [28], Ch. II, Theorem 8.2 and Corollary 1, Theorem 6.1(2), and p. 109 and 104. If
µ ∈ Λ+

K(U), the corresponding spherical function is given by

ψµ(u) = 〈πµ(u)eµ, eµ〉 , (16)

where 〈·, ·〉 denotes the inner product in the space Vµ of πµ for which this representation is
unitary and eµ ∈ V K

µ is a unit vector.
The spherical functions on U are linked to the spherical functions on G by holomorphic

continuation. More precisely, for every µ ∈ Λ+
K(U), the spherical function ψµ on U with

spectral parameter µ extends holomorphically to a KC-biinvariant function on GC. Its re-
striction to G is K-biinvariant and coincides with the spherical function ϕµ+ρ of G. See [14],
pp. 540–541, or [6], Lemma 2.5. The spherical function ϕλ of G extends holomorphically to
a KC-biinvariant function on GC if and only if λ belongs to the W -orbit of Λ+

K(U)+ρ. Notice

that, as a matrix coefficient of a unitary representation, ψµ(u) = ψµ(u−1) for all u ∈ U .
If L is a group acting on a space X and F (X) is a space of functions on X, then we

shall denote by F (X)L the subspace of L-invariant elements of F (X). In the following, the
K-biinvariant functions on G (resp. on U) will be often identified with the K-invariant
functions on XG = G/K (resp. on XU = U/K). In particular, one can consider the ϕλ’s as
K-invariant functions on XG and the ψµ as K-invariant functions on XU = U/K. In this
case, one can think of the the spherical functions on XU as the restrictions of the holomorphic
extension of the corresponding spherical functions on XG:

ψµ = ϕµ+ρ|XU , µ ∈ Λ+
K(U) . (17)

1.4. Spherical harmonic analysis on XG and XU . The spherical Fourier transform of a

(sufficiently regular) K-invariant function f : XG → C is the function f̃ = FGf defined by

f̃(λ) = FGf(λ) =

∫
XG

f(x)ϕ−λ(x) dx (18)

for all λ ∈ a∗C for which this integral exists. The Plancherel theorem states that the spherical
Fourier transform FG extends as an isometry of L2(XG)K onto L2(ia∗, |W |−1|c(λ)|−2dλ)W .
Here |W | denotes the order of the Weyl group W . The function c(λ) occurring in the
Plancherel density is Harish-Chandra’s c-function. It is the meromorphic function on a∗C
given explicitly by the Gindikin-Karpelevich product formula. In terms of Σ+

∗ , we have

c(λ) = c0

∏
β∈Σ+

∗

cβ(λ) (19)

where

cβ(λ) =
2−2λβ Γ(2λβ)

Γ
(
λβ +

mβ/2
4

+ 1
2

)
Γ
(
λβ +

mβ/2
4

+
mβ
2

) (20)

and the constant c0 is given by the condition c(ρ) = 1. Formula (20) looks slightly different
from the usual formula for the c-function as found for instance in [14], Ch. IV, Theorem
6.4, where it is written in terms of positive indivisible roots (α ∈ Σ+ with α/2 /∈ Σ+) rather
than in terms of positive unmultipliable roots.

The spherical Fourier transform has the following inversion formula, which holds for in-

stance a.e. if f ∈ Lp(XG)K , with 1 ≤ p < 2, and f̃ ∈ L1(ia∗, |c(λ)|−2dλ)W : for almost all
7



x ∈ XG we have

f(x) =
1

|W |

∫
ia∗
f̃(λ)ϕλ(x)

dλ

c(λ)c(−λ)
. (21)

See [27], Theorem 3.3.
We shall also need some properties of the K-invariant Lp-Schwartz spaces Sp(XG)K on

XG. Let 1 < p ≤ 2 and let U(g) be the universal enveloping algebra of gC. The K-invariant
Lp-Schwartz space Sp(XG)K is the space of all C∞ K-bi-invariant functions f : G→ C such
that for any D ∈ U(g) and any integer N ≥ 0 we have

sup
g∈G

(
1 + σ(g)

)N
ϕ0(g)−2/p|(Df)(g)| <∞ .

Here σ(g) = ‖H‖ if g = k1 exp(H)k2 for k1, k2 ∈ K and H ∈ a+. Then Sp(XG)K ⊂ S2(XG)K .
Moreover, by identifying as usual K-biinvariant functions on G with K-invariant functions
on XG, we have Sp(XG)K ⊂ Lp(XG)K .

Let 1 < p < 2 and let ε = 2
p
− 1. Let C(ερ)0 denote the interior of the convex hull of

the W -orbit of ερ in a∗ and let Tε = C(ερ)0 + ia∗ be the tube domain in a∗C of base C(ερ)0.
The W -invariant Schwartz space S(a∗ε)

W consists of the W -invariant holomorphic functions
F : Tε → C such that for every u ∈ S(aC) and every integer N ≥ 0 we have

sup
λ∈Tε

(1 + ‖λ‖)N |∂(u)F (λ)| <∞ .

Then S(a∗ε)
W ⊂ (L1∩L2)(ia∗, |W |−1|c(λ)|−1 dλ)W . Moreover, the spherical Fourier transform

FG is a bijection of Sp(XG)K onto the W -invariant Schwartz space S(a∗ε)
W . We refer the

reader to [10], Ch. 7, and [1] for additional information.

The compact spherical Fourier transform ĥ = FUh of a (sufficiently regular) K-invariant
function h : XU → C is usually defined by integration against the spherical functions ψµ
on XU . Because of the relation (17), we consider ĥ = FUh as the function defined for
λ ∈ Λ+

K(U) + ρ by

ĥ(λ) = FUh(λ) =

∫
XU

h(y)ϕλ(y) dy =

∫
XU

h(y)ϕ−λ(y) dy . (22)

The spherical Fourier series of h is the formal series on XU given by∑
µ∈Λ+

K(U)

d(µ)ĥ(µ+ ρ)ψµ =
∑

µ∈Λ+
K(U)

d(µ)ĥ(µ+ ρ)ϕµ+ρ . (23)

In (23), d(µ) denotes the dimension of the finite dimensional spherical representation πµ of U
of highest weight µ. According to Weyl dimension’s formula, the function d is a polynomial
function on a∗C. If h ∈ L2(XU)K , then this series converges to h in L2-norm. The convergence
is absolute and uniform, if h is smooth. The Plancherel theorem states that compact spherical
Fourier transform FU extends to an isometry of L2(XU)K onto L2(Λ+

K(U), d(µ)dµ) where dµ
is the counting measure.

The spherical harmonic analysis on a general semisimple space U/K of the compact type
can be reduced to the simply connected case. In fact, let G/K and U/K be Riemannian
symmetric spaces in duality, as in Section 1.1. Suppose in that U/K is not simply connected.

Let Ũ denote the connected simply connected Lie group with Lie algebra u. Let θ̃ be the

involution on Ũ with differential equal to the differential of the involution on U associated
8



with U/K. The subgroup K̃ of fixed points of θ̃ is connected. Hence Ũ/K̃ is a simply
connected symmetric space of the compact type. Moreover, there is a subgroup S of the

center of Ũ so that U = Ũ/S and K = K∗/S where K∗ is a θ̃-invariant subgroup of Ũ

satisfying K̃S ⊂ K∗ ⊂ KS = {u ∈ Ũ : u−1θ̃(u) ∈ S}. The space U/K = Ũ/K∗ is then

covered by Ũ/K̃. See [13], Ch. VII, Theorem 9.1 and Corollary 9.3.

The group Ũ is connected, simply connected, compact and semisimple. Hence its universal

complexification is a connected, simply connected, semisimple, complex Lie group ŨC of Lie
algebra uC = gC. Here, as in Section 1.1, we we have set g = k⊕ p and u = k⊕ ip for the Lie
algebras of G and U , respectively.

Let G] be the connected Lie subgroup of ŨC with Lie algebra g. Then the inclusion of G]

in ŨC gives the universal complexification of G]. Moreover, G] has finite center. Since k ⊂ g

and K̃ is connected, we also have K̃ ⊂ G]. Hence K̃ is a maximal compact subgroup of G].

Thus, G]/K̃ is a symmetric space of the noncompact type, G] is a connected subgroup of

its universal complexification ŨC, and the compact dual of G]/K̃ is Ũ/K̃, where Ũ is the

connected subgroup of ŨC of Lie algebra u. This replaces the original dual pair (G/K,U/K)

with the dual pair (G]/K̃, Ũ/K̃) with Ũ/K̃ simply connected.

Let π : Ũ/K̃ → Ũ/K∗ = U/K be the covering map. By composing with π, we can identify

a K-invariant function f on U/K with a K∗-invariant function on Ũ/K̃. The space of K-

invariant functions on U/K can then be considered as the subspace of K̃-invariant functions

on Ũ/K̃ that, moreover, are K∗-invariant. The compact spherical Fourier transform of f as a
K-invariant function on U/K is then identified with the restriction to Λ+

K(U) of the compact

spherical Fourier transform of f as K∗-invariant function on Ũ/K̃. On the noncompact side,

the canonical isomorphism of G/K and G]/K̃ allows us to identify K-invariant functions

on G/K with K̃-invariant functions on G]/K̃. Under these identifications, the noncompact
spherical transforms on these two symmetric spaces agree.

1.5. Holomorphic extension of spherical Fourier series. Set b := ia, and let ‖ · ‖ be
a W -invariant norm on b. Endow a∗ with the dual norm, still denoted by the same symbol.
Let B = {H ∈ b : ‖H‖ < 1} be the open unit ball in b. Let oC = eKC be the base point
in XC = GC/KC. Under suitable exponential decay of their coefficients, Lassalle proved in
[19] the normal convergence of the spherical Fourier series on U -invariant domains in XC of
the form Dε = U exp(iεB) · oC. Notice that Dε is a neighborhood of XU in XC and that
Dε ⊃ K exp(iεB) · oC. Moreover, K exp(iεB) · oC is an open neighborhood of oC in KA · oC,
which is the image of XG in its embedding in XC. For the reader’s convenience, we collect
the results which will be needed in the following.

Theorem 1.1. (a) Let F : Λ+
K(U) → C. Suppose there are constants C > 0 and ε > 0

so that for all µ ∈ Λ+
K(U)

|F (µ)| ≤ Ce−ε‖µ‖ .

Then the spherical Fourier series∑
µ∈Λ+

K(U)

d(µ)F (µ)ψµ(x)

9



converges normally on compact subsets of Dε. Its sum is therefore a holomorphic
K-invariant function on Dε.

(b) Conversely, suppose that h is a continuous K-invariant function on XU admitting a

holomorphic extension to a neighborhood of XU in XC. Let F (µ) = ĥ(µ + ρ) be the
Fourier coefficients of h. Then there are constants C > 0 and ε > 0 so that for all
µ ∈ Λ+

K(U)

|F (µ)| ≤ Ce−ε‖µ‖ .

Proof. For the proof of part (a), we follow [19], p. 189. It is enough to prove the normal
convergence of the series on compact sets of the form Dr = U exp(irB).oC where 0 < r < ε
and B = {H ∈ b : ‖H‖ ≤ 1} is the closed unit ball in b. Set b+ = ia+. If x ∈ XC, then we
can write x = u exp

(
iA(x)

)
· oC for a unique A(x) ∈ b+ and some (non unique) u ∈ U ; see

[19], Théorème 1, p. 177. If A(x) ∈ rB, then, by [19], Proposition 12, p. 184, one has

|ψµ(x)| ≤ eµ
(
iA(x)

)
≤ esupH∈rB µ(iH) = er‖µ‖ .

Thus
|d(µ)F (µ)ψµ(x)| ≤ d(µ)e−(ε−r)‖µ‖ ,

which implies the convergence of the series as d(µ) is a polynomial in µ.
Part (b) is a special case of Proposition V.2.3 in [9]. It is proven using Cauchy’s inequalities

for the Fourier coefficients of h. �

We observe that Theorem 1.1 holds in the general case where U is reductive. This will be
needed in Section 7.

1.6. Coordinates in a∗C and tubes domains around ia∗. We choose Π∗ = {ω1, . . . , ωl}
as basis of a∗. For λ ∈ a∗ we have

λ =
l∑

j=1

λjωj with λj := λβj =
〈λ, βj〉
〈βj, βj〉

. (24)

Set a∗+ = {λ ∈ a∗ : λβ ≥ 0 for all β ∈ Σ+
∗ }. By identifying λ ≡ (λ1, . . . , λl), we obtain the

correspondences a∗ ≡ Rl, a∗+ ≡ (R+)l and Λ+ ≡ (Z+)l. For µ =
∑l

j=1 µjωj ∈ Λ+, we define

|µ| = µ1 + · · ·+ µl . (25)

Set

ρ =
l∑

j=1

ρjωj . (26)

Since βj is a multiple of a simple root, we have

ρj =
1

2

(
mβj +

mβj/2

2

)
. (27)

For an arbitrary β ∈ Σ+
∗ , we set

ρ̃β =
1

2

(
mβ +

mβ/2

2

)
. (28)

Notice that ρ̃β = ρj = ρβj if β = βj, but ρ̃β 6= ρβ in general.
10



Let δ > 0. We consider the following tube domains in a∗C around the imaginary axis:

Tδ = {λ ∈ a∗C : |Reλβ| < δρ̃β for all β ∈ Σ+
∗ } , (29)

T ′δ = {λ ∈ a∗C : |Reλj| < δρj for all j = 1, . . . , l} , (30)

T ′′δ = {λ ∈ a∗C : Reλj < δρj for all j = 1, . . . , l} . (31)

In the following we shall denote by B(T ) the base in a∗ of the tube domain T in a∗C. Hence
T = B(T ) + ia∗ and B(T ) = T ∩ a∗. The following lemma is rather standard; we provide a
proof for the sake of completeness.

Lemma 1.2. Let w0 be the longest element of W . Then

T ′δ = T ′′δ ∩ w0(T ′′δ ) (32)

and
Tδ =

⋂
w∈W

w(T ′δ) =
⋂
w∈W

w(T ′′δ ) . (33)

In particular, Tδ is the largest W -invariant tube domain contained in T ′δ. Moreover,

Tδ = C(δρ)0 + ia∗ (34)

where C(ν) is the the convex hull of the W -orbit {wν : w ∈ W} of ν ∈ a∗ and C(ν)0 is its
interior.

Proof. It is enough to prove that the bases in a∗ of the considered tube domains are equal.
The element w0 maps Σ+ into −Σ+. Hence w0ρ = −ρ. Moreover, w0 maps the basis Π of

simple roots in Σ+ into the basis−Π in−Σ+. Hence it maps {β1, . . . , βl} into {−β1, . . . ,−βl}.
Furthermore, it satisfies w−1

0 = w0. Therefore

w0

(
B(T ′′δ )

)
= {w0λ ∈ a∗ : 〈λ− δρ, βj〉 < 0 for all j = 1, . . . , l}
= {w0λ ∈ a∗ : 〈λ− δρ, w0βj〉 > 0 for all j = 1, . . . , l}
= {w0λ ∈ a∗ : 〈w0λ− δw0ρ, βj〉 > 0 for all j = 1, . . . , l}
= {λ ∈ a∗ : 〈λ+ δρ, βj〉 > 0 for all j = 1, . . . , l}
= {λ ∈ a∗ : λj > −δρj for all j = 1, . . . , l} .

This proves (32).
Set C = B

(⋂
w∈W w(T ′δ)

)
=
⋂
w∈W w

(
B(T ′δ)

)
. We have B(Tδ) ⊂ B(T ′δ) as ρ̃βj = ρj.

Hence B(Tδ) ⊂ C as B(Tδ) is W -invariant. Conversely, let λ ∈ C and let β ∈ Σ∗. Since
Σ∗ is a reduced root system and the corresponding Weyl group is W , there is j ∈ {1, . . . , l}
and w ∈ W so that wβ = βj. Since wλ ∈ C ⊂ B(T ′δ), we obtain that |λβ| = |(wλ)wβ| =
|(wλ)βj | < δρj = δρ̃β . Thus λ ∈ B(Tρ). The second equality in (33) is a consequence of
(32).

For the final result, we have by [14], Lemma 8.3 (i), that C(δρ) =
⋂
w∈W w

(
δρ − a∗+

)
.

Notice that

δρ−a∗+ = {δρ−λ ∈ a∗ : λj ≤ 0 for all j = 1, . . . , l} = {λ ∈ a∗ : λj ≤ δρj for all j = 1, . . . , l} .
Thus, by (33),

C(δρ)0 =
⋂
w∈W

w
(
(δρ− a∗+)0

)
=
⋂
w∈W

w
(
B(T ′′δ )

)
= B(Tδ) .

11
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By (34) and a theorem by Helgason and Johnson, T1 = C(ρ)0 + ia∗ is the interior of the
set of parameters λ ∈ a∗C for which the spherical function ϕλ is bounded. See [14], Theorem
8.1.

2. Statement of Ramanujan’s Master theorem for symmetric spaces

Let XG = G/K and XU = U/K be semisimple symmetric spaces in duality inside their
common complexification XC as in Section 1.1. We suppose that XU is simply connected.

Let A, P , δ be constants so that A < π, P > 0 and 0 < δ ≤ 1. Let

H(δ) = {λ ∈ a∗C : Reλβ > −δ ρ̃β for all β ∈ Σ+
∗ } . (35)

The Hardy class H(A,P, δ) consists of the functions a : H(δ)→ C that are holomorphic on
H(δ) and so that

|a(λ)| ≤ C
l∏

j=1

e−P (Reλj)+A| Imλj | (36)

for some constant C ≥ 0 and for all λ ∈ H(δ).
We denote by ‖X‖ the norm of X ∈ a with respect to the W -invariant norm which is

induced by the Killing form. The same notation is also employed for the corresponding norm
on a∗. Recall from Section 1.4 the notation d for the polynomial function on a∗C given by
Weyl dimension formula. An explicit expression of d in terms of the positive unmultipliable
roots will be given in formula (58).

Theorem 2.1 (Ramanujan’s Master Theorem for semisimple Riemannian symmetric spaces).
Let b be the meromorphic function on a∗C defined by the equality

b(λ)

c(λ)c(−λ)
=

(
i

2

)l
d(λ− ρ)

l∏
j=1

1

sin
(
π(λj − ρj)

) (37)

and let

TΣ,m = {λ ∈ a∗C : |Reλβ| < 1 for all β ∈ Σ+
∗ with (mβ/2)/2 even}

∩ {λ ∈ a∗C : |Reλβ| < 1/2 for all β ∈ Σ+
∗ with (mβ/2)/2 odd} . (38)

Suppose a ∈ H(A,P, δ).

(1) Set

Ω = max
j=1,...,l

‖ωj‖ . (39)

Then the spherical Fourier series

f(x) =
∑
µ∈Λ+

(−1)|µ|d(µ)a(µ+ ρ)ψµ(x) (40)

converges normally on compact subsets of DP/Ω = U exp
(
(P/Ω)B

)
· oC where B =

{H ∈ a : ‖H‖ < 1} is the open unit ball in a. Its sum is a K-invariant holomorphic
function on the neighborhood DP/Ω of XU in XC.
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(2) Let Tδ be the tube domain in (29) and let σ ∈ B(Tδ). Then for x = expH ∈ A with
‖H‖ < P/Ω, we have

f(x) =
1

|W |

∫
σ+ia∗

(∑
w∈W

a(wλ)b(wλ)

)
ϕλ(x)

dλ

c(λ)c(−λ)
. (41)

The integral on the right hand side of (41) is independent of the choice of σ. It con-
verges uniformly on compact subsets of A and extends to a holomorphic K-invariant
function on a neighborhood of XG in XC.

(3) The extension of f to XG satisfies∫
XG

|f(x)|2 dx =
1

|W |

∫
ia∗

∣∣∣ ∑
w∈W

a(wλ)b(wλ)
∣∣∣2 dλ

|c(λ)|2
.

Moreover, ∫
XG

f(x)ϕ−λ(x) dx =
∑
w∈W

a(wλ)b(wλ) (42)

for all λ ∈ Tδ ∩ TΣ,m. More precisely, the integral on the left-hand side of (42)
converges in L2-sense and absolutely on ia∗. It defines a W -invariant holomorphic
function on a W -invariant tube domain around ia∗, and (42) extends as an identity
between holomorphic functions on Tδ ∩ TΣ,m.

Remark 2.2. The function b occurring in Theorem 2.1 plays the role of the function
−1
2πi

π
sin(πx)

= i
2

1
sin(πx)

of the classical formula by Ramanujan. A more explicit formula for

this function will be given in Corollary 4.4. The tube domain TΣ,m is linked to the singulari-
ties of b. Indeed, TΣ,m∩Tδ is the largest domain on which the function

∑
w∈W a(wλ)b(wλ) is

holomorphic for any a ∈ H(A,P, δ). See Lemma 5.6. Furthermore, the condition 0 < δ ≤ 1
guarantees the convergence of the integral in (41), as in the classical case.

Remark 2.3. Set ‖λ‖1 =
∑l

j=1 |λj| for λ =
∑l

j=1 λjωj ∈ a∗. Then ‖ · ‖1 is a norm on

a∗. The growth condition (36) can be written as |a(λ)| ≤ Ce−P‖Reλ‖1+A‖ Imλ‖1 . Since the
spherical transform maps into W -invariant functions, it is sometimes more convenient to
consider estimates with respect to the W -invariant norm ‖ · ‖ on a∗ which is associated with
the Killing form. This can of course be done by norm equivalence. We shall denote by c1

and c2 two positive constants so that c1‖λ‖ ≤ ‖λ‖1 ≤ c2‖λ‖ for all λ ∈ a∗. By (24), one can

choose for instance c1 = Ω−1 with Ω as in (39) and c2 =
∑l

j=1 ‖βj‖−1.

Remark 2.4. Hardy’s version of Ramanujan’s Master Theorem holds for functions inH(A,P, δ)
when P is an arbitrary real number, whereas Theorem 2.1 is stated only for P > 0. This
assumption cannot be removed. Notice first that if a ∈ H(A,P, δ), then for all µ ∈ Λ+ we

have |a(µ + ρ)| ≤ Ce−P
∑l
j=1 µj ≤ Ce−Pc‖µ‖ where c is a positive constant (see Remark 2.3).

According to Theorem 1.1 (b), P > 0 is a necessary condition for the elements (−1)|µ|a(µ+ρ)
to be the Fourier coefficients of a continuous K-invariant function on XU admitting a holo-
morphic extension to a neighborhood of XU in XC. In this case, the Fourier series converges
in an open domain of XG containing the base point o. It is natural to ask whether a condition
P ≥ 0 could still allow the absolute convergence of the series

∑
µ∈Λ+(−1)|µ|d(µ)a(µ+ρ)ψµ(x)

for x in some open domain in XG. The answer is negative. Indeed, by K-biinvariance, we
13



can restrict ourselves to domains in A+ ≡ A+ · o. According to Proposition IV.5.2 in [9], one
has the estimate

ψµ(expH) ≥ c(µ+ ρ)eµ(H)

for expH ∈ A+ and µ ∈ Λ+. Formulas (19) and (20) show that c(µ+ ρ) > 0 for µ ∈ Λ+. If∑
µ∈Λ+(−1)|µ|d(µ)a(µ + ρ)ψµ(expH) converges absolutely, then there is a constant CH > 0

so that

|a(µ+ ρ)|c(µ+ ρ)eµ(H) ≤ |a(µ+ ρ)ψµ(expH)| ≤ CH

for all µ ∈ Λ+. Hence |a(µ+ ρ)| ≤ c(µ+ ρ)−1e−µ(H) has exponential decay in µ for H 6= 0.
Notice also that in the classical version of Ramanujan’s Master Theorem, the series (2)

converges normally on compact subsets of the domain |z| < eP . This set is a neighborhood
of U(1) = {z ∈ C : |z| = 1} if and only if P > 0. The restriction P > 0 is therefore
intrinsically related to the geometric interpretation of Ramanujan’s Master Theorem as a
relation of mathematical objects on symmetric spaces in duality.

Remark 2.5. A slightly more general definition of Hardy class could be obtained by replac-
ing the constants δ and P respectively by a W -invariant multiplicity function δ : Σ∗ →]0, 1]
and a vector P = (P1, . . . , Pl) with Pj > 0 for all j. The version of Ramanujan’s Master
Theorem for this notion of Hardy class would not present any new difficulty with respect to
the version proven here. We have nevertherless preferred to present the case where δ and P
are constants, to keep the notation as simple as possible.

Remark 2.6. Suppose that XG = G/K and XU = U/K is a pair of symmetric spaces
in duality, as in Section 1.1, with U/K not simply connected. As in Section 1.3, we can
identify the K-invariant functions f on U/K with the K∗-invariant functions on its simply

connected cover Ũ/K̃. In this way, the compact spherical Fourier transform of f is the

restriction to Λ+
K(U) ⊂ Λ+ of the transform of f as a function on Ũ/K̃. Likewise, we

identify the K-invariant functions on G/K with the K̃-invariant functions on G]/K̃. See
Section 1.3. Ramanujan’s Master theorem for XG and XU is then obtained from the one for

Ũ/K̃ and G]/K̃ by replacing the Hardy class H(A,P, δ) with its subspace

HU/K(A,P, δ) = {a ∈ H(A,P, δ) : a(µ) = 0 for all µ ∈ Λ+ \ Λ+
K(U)} .

As in the classical case, there is an equivalent formulation of Ramanujan’s Master Theorem
using the gamma function. For simplicity, we only consider the case when XU is simply con-
nected. The general case can be dealt with as in Remark 2.6. Let B(λ) be the meromorphic
function on a∗C defined by the equality

B(λ)

c(λ)c(−λ)
=

(
1

2πi

)l
d(λ− ρ)

l∏
j=1

Γ(−λj + ρj) ,

i.e.

B(λ) = b(λ)
l∏

j=1

1

Γ(λj − ρj + 1)
.

Replace a(λ) ∈ H(A,P, δ) with A(λ) = a(λ)
∏l

j=1 Γ(λj − ρj + 1) in Theorem 2.1. Notice

that A is in general no longer holomorphic on H(δ). However, A(λ) is holomorphic on
14



{λ ∈ a∗C : λj > ρj − 1 for all j = 1, . . . , l} and A(λ)B(λ) = a(λ)b(λ). The power series (40)
now becomes

F (x) =
∑
µ∈Λ+

(−1)|µ|d(µ)
A(µ+ ρ)

µ!
ψµ(x) (43)

where

µ! = µ1! · · ·µl! for µ =
l∑

j=1

µjωj . (44)

Moreover, the extension of F to XG satisfies∫
XG

F (x)ϕ−λ(x) dx =
∑
w∈W

A(wλ)B(wλ) . (45)

Other formulas can be deduced from (42) or (45) by formal manipulations. We mention
for instance the following, which is the analogue Ramanujan’s formula in [2], Corollary (i),
p. 318.

Let B̃(λ) be the meromorphic function defined on a∗C by the equality

B̃(λ)

c(λ)c(−λ)
=

(
1

4πi

)l
πl/2d(λ− ρ)

l∏
j=1

Γ(−λj + ρj)

Γ((λj − ρ+ 1)/2)
,

i.e.

B̃(λ) = b(λ)
l∏

j=1

cos(π(λj − ρj)/2)

Γ(λj − ρj + 1)
.

Let

Ã(λ) = a(λ)
Γ(λj − ρj + 1)

cos(π(λj − ρj)/2)

with a(λ) ∈ H(A,P, δ). The power series (40) becomes

F̃ (x) =
∑
µ∈Λ+

d(2µ)
Ã(2µ+ ρ)

(2µ)!
ψ2µ(x) (46)

and the extension of F̃ to XG satisfies∫
XG

F̃ (x)ϕ−λ(x) dx =
∑
w∈W

Ã(wλ)B̃(wλ) . (47)

3. The function b

In this section we explain our choice of the function b occurring in the statement of Ramanu-
jan’s Master theorem, Theorem 2.1.

We are looking for a meromorphic function b : a∗C → C with the following property: For
every function a : a∗C → C in the Hardy class, we have

1

|W |

∫
ia∗

( ∑
w∈W

a(wλ)b(wλ)
)
ϕλ(x)

dλ

c(λ)c(−λ)
=
∑
µ∈Λ+

(−1)|µ|d(µ)a(µ+ ρ)ϕµ+ρ(x) (48)

for all x ∈ XG sufficiently close to the base point o = eK.
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The right-hand side of (48) will represent the holomorphic extension to a neighborhood
of XU in XC of the K-invariant function f1 : XU → C defined by the the spherical Fourier
series

f1(y) =
∑
µ∈Λ+

(−1)|µ|d(µ)a(µ+ ρ)ψµ(y) , y ∈ XU .

The right-hand side will give a K-invariant function f2 : XG → C having the W -invariant
function

∑
w∈W a(wλ)b(wλ), λ ∈ ia∗, as noncompact spherical transform.

Observe that, since the spherical function ϕλ and the Plancherel density [c(λ)c(−λ)]−1 are
W -invariant in λ, the equality (48) can be rewritten as∫

ia∗
a(λ)b(λ)ϕλ(x)

dλ

c(λ)c(−λ)
=
∑
µ∈Λ+

(−1)|µ|d(µ)a(µ+ ρ)ϕµ+ρ(x) (49)

for all x ∈ XG sufficiently close to the base point o = eK.
Under the identifications λ ≡ (λ1, . . . , λl) by means of the basis Π∗ = {ω1, . . . , ωl} of

a∗ ≡ Rl, the right-hand side of (49) becomes

+∞∑
µ1=0

· · ·
+∞∑
µl=0

(−1)|µ|a(µ+ ρ)d(µ)ϕµ+ρ(x) (50)

where

µ = (µ1, . . . , µl) , µ+ ρ = (µ1 + ρ1, . . . , µl + ρl) , |µ| = µ1 + · · ·+ µl .

Moreover, the integral on the left-hand side becomes∫
iR
· · ·
∫
iR
a(λ)ϕλ(x)

(
b(λ)

c(λ)c(−λ)

)
dλ1 · · · dλl . (51)

Under suitable decay and convergence conditions, subsequent applications of the 1-dimensional
residue theorem to (51) yields (50) provided:

(1) The function b(λ)
c(λ)c(−λ)

is meromorphic, with simple poles in the region (R+)l along

the hyperplanes λj = µj + ρj with µj ∈ Z+ and j = 1, . . . , l.
(2) For µ = (µ1, . . . , µl) ∈ (Z+)l, we have

(−2πi)l Res
λ1=µ1+ρ1

. . . Res
λl=µl+ρl

b(λ)

c(λ)c(−λ)
= (−1)|µ|d(µ) .

Based on the rank-one case in [4], we are therefore led to define b(λ) by means of the equality

b(λ)

c(λ)c(−λ)
= Cbd(λ− ρ)

l∏
j=1

1

sin
(
π(λj − ρj)

) (52)

where Cb is a suitable constant. From the above arguments, we can compute that

Cb =

(
i

2

)l
. (53)

To make the definition (52) explicit, we need to further analyze the relation between the
Plancherel density [c(λ)c(−λ)]−1 for XG and the Plancherel density d(µ) for XU .
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4. The Plancherel densities on XG and XU

Recall that if both β/2 and β are roots, then mβ/2 is even and mβ is odd. See e.g. [13],
Chapter X, Ex. F. 4. For a fixed β ∈ Σ+

∗ , the singularities of the function [cβ(λ)cβ(−λ)]−1

are then described by distinguishing the following four cases:

(a) mβ even, mβ/2 = 0;
(b) mβ odd, mβ/2 = 0;
(c) mβ odd, mβ/2/2 even;
(d) mβ odd, mβ/2/2 odd.

Recall the constant ρ̃β attached to β ∈ Σ+
∗ from formula (28). Following the computations

yielding to formula (25) in [16], we obtain the following lemma. See also [4], Proposition
1.4.1.

Lemma 4.1. Let β ∈ Σ+
∗ . Then

1

cβ(λ)cβ(−λ)
= Cβ pβ(λ)qβ(λ) (54)

where

(1) Cβ is a positive constant (depending on β and on the multiplicities), explicitly given
by

Cβ = 4πε(β) where ε(β) =

{
(−1)mβ/2 mβ is even

(−1)(mβ/2+mβ−1)/2 mβ is odd
(55)

(2) pβ is a polynomial. If ρ̃β > 1/2, then

pβ(λ) = λβ
(
λβ + ρ̃β − 1

)(
λβ + ρ̃β − 2

)
· · ·
(
λβ − (ρ̃β − 2)

)(
λβ − (ρ̃β − 1)

)
×

×
(
λβ +

(mβ/2

4
− 1

2

))(
λβ +

(mβ/2

4
− 3

2

))
. . .
(
λβ −

(mβ/2

4
− 3

2

))(
λβ −

(mβ/2

4
− 1

2

))
,

and the product on the second line does not occur if mβ/2 = 0. If ρ̃β = 1/2, then
pβ(λ) = λβ.

(3) qβ(λ) = 1 if mβ is even; if mβ is odd, then

qβ(λ) = − tan
(
π(λβ −

mβ/2

4
)
)

= cot
(
π(λβ − ρ̃β)

)
. (56)

The relation between the Plancherel measures on XG and XU is given by the following
lemma.

Lemma 4.2. The dimension d(µ) of the finite-dimensional spherical representation of high-
est restricted weight µ ∈ Λ+ is given by

d(µ) =
c(λ− µ)c(−λ+ µ)

c(λ)c(−λ)

∣∣∣∣
λ=µ+ρ

.

Proof. This is Theorem 9.10, p. 321, in [15]. �

The apparent singularities in the formula in Lemma 4.2 can be removed using Lemma 4.1
and the fact that the cotangent function is π-periodic. We obtain the following formula from
[16], Proposition 3.5.
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Proposition 4.3. For µ ∈ Λ+ we have

d(µ) =
P (µ+ ρ)

P (ρ)

where

P (λ) =
∏
β∈Σ+

∗

pβ(λ) (57)

and pβ is the polynomial from Lemma 4.1.

According to Proposition 4.3, the polynomial function on a∗C extending d(µ) by means of
Weyl integration formula can be written in terms of the positive unmultipliable roots as

d(λ) =
P (λ+ ρ)

P (ρ)
, λ ∈ a∗C , (58)

where P (λ) is as in (57) .

Corollary 4.4. (a) Let Cb =
(
i
2

)l
be the constant introduced in (53). Then the function

b(λ)

c(λ)c(−λ)
=

Cb
P (ρ)

P (λ)
l∏

j=1

1

sin
(
π(λj − ρj)

) (59)

is meromorphic on a∗C with simple poles located along the hyperplanes of equation

±λj − ρj = kj

where kj ∈ Z+ and j ∈ {1, . . . , l}.
(b) For all w ∈ W the function b(wλ)

c(λ)c(−λ)
is holomorphic on the tube T1 = C(ρ)0 + ia∗ of

Lemma 1.2.
(c) For all λ ∈ a∗C we have

b(λ) = KbT (λ)
l∏

j=1

1

sin
(
π(λj − ρj)

) (60)

where

T (λ) =
∏
β∈Σ+

∗

tβ(λ) (61)

and

tβ(λ) =

{
1 if mβ is even

tan
(
π(λβ − ρ̃β)

)
if mβ is odd

(62)

is the inverse of the function qβ from Lemma 4.1. Moreover, Kb is a constant de-
pending on the multiplicities. It is given explicitly by

Kb =

(
i

2

)l
c2

0

P (ρ)

∏
β∈Σ+

∗

Cβ ,

where Cβ is as in (55) and c0 is the constant appearing in the definition (19) of
Harish-Chandra’s c-function.
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Proof. Immediate consequence of (52), Lemma 4.1 and Proposition 4.3. For the list of
singular hyperplanes, notice that for fixed j ∈ {1, . . . , l}, the zeros of the function sin

(
π(λj−

ρj)
)

are located along the hyperplanes of equation λj − ρj = kj with kj ∈ Z. Recall that
λj = λβj and ρ̃βj = ρj. The polynomial pβj is divided by(

λj − (ρj − 1)
)(
λj − (ρj − 2)

)
· · ·
(
λj + (ρj − 2)

)(
λj + (ρj − 1)

)
.

Hence all singularities of [sin
(
π(λj−ρj)

)
]−1 for |λj| < ρj are canceled. No other singularities

of this function are canceled by zeros of pβj .

Because of (a), the function b(λ)
c(λ)c(−λ)

is holomorphic on the tube T ′1 of Lemma 1.2. Hence
b(wλ)

c(λ)c(−λ)
is holomorphic on the largest W -invariant tube domain contained in T ′1, which is

T1 = ∩w∈Ww(T ′1).
The formula for the constant Kb is obtained by comparing (59), (60), (19) and (54). �

Remark 4.5. According to the four cases for mβ and mβ/2 listed in Section 4, we have
ρ̃β ∈ Z in cases (a) and (d), and ρ̃β ∈ Z + 1/2 in cases (b) and (c). We can therefore write
(60) as

b(λ) = K ′b

( ∏
β∈Σ+

∗ \{β1,...,βl}
cases (b) or (c)

cot(πλβ)
)( ∏

β∈Σ+
∗ \{β1,...,βl}
case (d)

tan(πλβ)
)( ∏

j∈{1,...,l}
cases (a),(b) or (c)

1

sin(πλj)

)( ∏
j∈{1,...,l}
case (d)

1

cos(πλj)

)
(63)

where K ′b = ±Kb and the sign depends on the parity of the multiplicities.

Remark 4.5 immediately implies the following corollary. Notice that the cases (a), (b) and
(c) for the root multiplicities correspond to the situation in which (mβ/2)/2 is even.

Corollary 4.6. Let

Π(λ) =
∏
β∈Σ+

∗

λβ (64)

and let TΣ,m be as in (38). Then Π(λ)b(λ) is holomorphic on TΣ,m.

Example 4.7 (The rank-one case). In the (real) rank-one case, a is one dimensional. Then
Σ+ consists of at most two elements: β and, possibly, β/2. Hence Σ+

∗ = {β}, l = 1 and
β1 = β. According to Remark 4.5, we have

b(λ) =

{
±Kb[sin(πλ1)]−1 in cases (a),(b) and (c)

±Kb[cos(πλ1)]−1 in case (d).
.

This case has been previously considered by Bertram in [4].

Example 4.8 (The even multiplicity case). Suppose that Σ is a reduced root system and that
all roots multiplicities are even. Geometrically, even multiplicities correspond to Riemannian
symmetric spaces of the noncompact type G/K with the property that all Cartan subalgebras
in the Lie algebra g of G are conjugate under the adjoint group of g. The simplest examples
occur when g admits a complex structure, in which case all root multiplicities are equal
to 2. In the even multiplicity case, one has b(λ) = Kb

∏l
j=1[sin(πλj)]

−1. In the complex

case, one can compute that Kb = (i/2)l. In particular, for the complex rank-one case
corresponding to the pair of symmetric spaces G/K = SL(2,C)/ SU(2) and U/K ∼= SU(2),
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we have b(λ) = i
2

[sin(πλ1)]−1. Thus, in this case and with our choice of the coordinate λ1

in a∗C, the function b agrees with the one of Ramanujan for the case of R+.

Remark 4.9. In comparison to the classical version of the Master Theorem, the assumption
P > 0 in the statement of Ramanujan’s Theorem for symmetric spaces strongly restricts the
class of spherical Fourier series to which our theorem can be applied. On the other hand, by
replacing the pair (U(1),R+) by a pair of Riemannian symmetric spaces in duality, we are
considering a much richer class of different geometric situations where our theorem applies.
According to the choice of the dual pair of symmetric spaces, the restrictions to the Cartan
subspace A of the spherical functions ϕµ+ρ provide several classes of orthogonal polynomials
of Jacobi type in several variables. Likewise, by the integral formulas corresponding to the
decomposition G = KAK, the spherical Fourier transforms gives different specializations
of Jacobi transforms in several variables. The simplest example of these specializations
corresponds to the complex case considered above. In this case, G = KC and U = K ×K
where K is a compact connected semisimple Lie group. The corresponding Riemannian
symmetric spaces in duality are XG = KC/K and XU = (K × K)/K . The space XU

can be identified with K. In this way, the K-invariant functions on XU correspond to the
central functions on K. To simplify notation, we assume in the following that K is simply
connected. The spherical representations of U are of the form πµ = δµ ⊗ δµ where µ ∈ Λ+ is

the highest weight of the irreducible representation δµ of K and δµ denotes the contregradient
representation of δµ. The spherical functions on XU are therefore the normalized characters

1
dim δ

χµ where χµ is the character of δµ. On the noncompact side, one can obtain explicit
formulas by using the integral formulas for the KAK decomposition of G and the explicit
formulas on A for the spherical functions on Riemannian symmetric spaces of the noncompact
type and G with complex structure; see e.g. [14], Ch. I, Theorem 5.8 and Ch. IV, Theorem
5.7. Since Σ = Σ∗ is reduced and all multiplicities are equal to 2, one has ρ =

∑
β∈Σ+ β. Set

f(x) =
∑
µ∈Λ+

(−1)|µ|a(µ+ ρ)χµ(x) x ∈ KC

with a ∈ H(A,P, δ). Then Ramanujan’s interpolation formula (42) becomes the Fourier
integral formula ∫

a+

f(expH)∆(H)eλ(H) dH =
∑
w∈W

a(wλ)b(wλ)

where

∆(H) =
∏
β∈Σ+

(eβ(H) − e−β(H)) =
∑
w∈W

(detw)ewρ(H) ,

b(λ) = cb

l∏
j=1

sin(πλj)
−1

and cb is a suitable normalizing constant.

5. Some estimates

In this section we collect some estimates which will be needed in the proof of Theorem 2.1.
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For every λ ∈ a∗C the spherical function ϕλ extends holomorphically as a KC-invariant
function on the domain KC exp(2Ωπ) · o in XC, where

Ωπ = {H ∈ aC : |β(ImH)| < π/2 for all β ∈ Σ} . (65)

The estimates of the holomorphically extended spherical functions that are given in Lemma
5.1 below will be sufficient to our purposes.

Recall that a∗+ = {λ ∈ a∗ : λβ ≥ 0 for all β ∈ Σ∗+}. Notice that H(δ) ⊃ a∗+ + ia∗ for all
δ > 0. Recall also the constant Ω from (39).

Lemma 5.1. There is a constant C > 0 so that

|ϕλ(expH · o)| ≤ Ce−minw∈W Im(wλ(H2))+maxw∈W Re(wλ(H1)) (66)

for all λ ∈ a∗C and all H = H1 + iH2 ∈ Ωπ with H1, H2 ∈ a. In particular:

(a) for all λ ∈ a∗+ + ia∗ and H ∈ a we have

|ϕλ(expH · o)| ≤ CeΩ‖H‖(
∑l
j=1 Reλj)

(b) for all H ∈ Ωπ and λ ∈ a∗ we have

|ϕλ(expH · o)| ≤ Ce‖ ImH‖‖ Imλ‖ .

Proof. Estimates (66) are due to Opdam; see [24], Proposition 6.1(2) and Theorem 3.15. For
(a), we can suppose by W -invariance that H ∈ a+. In this case, for λ ∈ a∗+ + ia∗, we have

0 ≤ Reλ(H) =
l∑

j=1

Reλjωj(H) ≤ Ω‖H‖
( l∑
j=1

Reλj
)
.

Part (b) follows immediately from (66). �

Lemma 5.2. Let P be as in (57). Then there are positive constants C0, C
′
0 and C ′′0 so that

|P (λ)| ≤ C0

∏
β∈Σ+

∗

(1 + |λβ|)mβ/2+mβ ≤ C ′0(1 + ‖λ‖)M ≤ C ′′0

l∏
j=1

(1 + |λj|)M

where
M =

∑
β∈Σ+

∗

(mβ/2 +mβ) . (67)

Proof. The first inequality is an immediate consequence of the formula for pβ in Lemma
4.1, which gives pβ as polynomial of degree mβ/2 + mβ in λβ. For the second, notice that

|λβ| ≤ ‖β‖−1‖λ‖. The final inequality follows immediately from λ =
∑l

j=1 λjωj. �

We define
Q(λ) =

∏
β∈Σ+

∗

qβ(λ) (68)

where qβ is the function defined in Lemma 4.1.
Observe that there is a constant K > 0 so that∣∣ sin (π(λj − ρj)

)∣∣−1 ≤ Ke−π| Imλj | (69)

for | Imλj| ≥ 1 or for Reλj = ρj +N + 1/2 with N ∈ Z+.
The following lemma contains the estimates needed to apply the Residue Theorem.
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Lemma 5.3. (a) Let N be a positive integer and let M be as in (67). Let λ =
∑l

j=1 λjωj ∈
a∗C with | Imλj| ≥ 1 or Reλj = ρj +N + 1/2 or Reλj = 0 for all j = 1, . . . , l. Then
there is a positive constant C1, independent of N , so that∣∣∣∣ b(λ)

c(λ)c(−λ)

∣∣∣∣ ≤ C1

l∏
j=1

[
(1 + |λj|)Me−π| Imλj |

]
.

(b) Set

B =
{
λ =

l∑
j=1

λjωj ∈ a∗+ + ia∗ : | Imλj| ≥ 1 or

Reλj ∈ (ρj + Z+ + 1/2) ∪ {0} for all j = 1, . . . , l
}
. (70)

Let a ∈ H(A,P, δ). Then there is a constant C2 > 0 so that for all λ ∈ B and H ∈ a+

we have∣∣∣∣ a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o)

∣∣∣∣ ≤ C2

l∏
j=1

[
(1 + |λj|)Me(A−π)| Imλj |+(‖H‖Ω−P ) Reλj

]
. (71)

Proof. For | Imλj| ≥ 1 or Reλj = ρj + N + 1/2, the estimate in (a) is a consequence of
(59), (69) and Lemma 5.2. The inequality holds also if Reλj = 0 for some j, as the possible

singularity of sin
(
π(λj−ρj)

)−1
at λj = 0 is cancelled by the factor λj in pβj(λ); see formulas

(59) and Lemma 4.1. Part (b) follows from (a) and Lemma 5.1,(a). �

The next lemma will be useful to prove the independence on σ ∈ B(Tδ) for the integral
occurring in Part (b) of Ramanujan’s Theorem.

Lemma 5.4. Let 0 < δ ≤ 1 and let Tδ be the tube domain from (33). Let M be the constant
defined in (67).

(a) There is a constant Cδ > 0 so that∣∣∣∣ b(λ)

c(λ)c(−λ)

∣∣∣∣ ≤ Cδ(1 + ‖λ‖)Me−π
(∑l

j=1 | Imλj |
)

(72)

for all λ ∈ Tδ.
(b) Let a ∈ H(A,P, δ). For every R > 0 and every integer N ≥ 0 there is a constant

CR,N,δ > 0 so that for all λ ∈ Tδ and H ∈ a with ‖H‖ < R, we have∣∣∣∣ a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o)

∣∣∣∣ ≤ CR,N,δ(1 + ‖λ‖)−N (73)

Consequently,∣∣∣∣∣( ∑
w∈W

a(wλ)b(wλ)
)ϕλ(expH · o)
c(λ)c(−λ)

∣∣∣∣∣ ≤ CR,N,δ|W |(1 + ‖λ‖)−N . (74)

Proof. The polynomial

pj(λ) =
(
λj − (ρj − 1)

)(
λj − (ρj − 2)

)
· · ·
(
λj − (−ρj + 2)

)(
λj − (−ρj + 1)

)
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is a divisor of pβj(λ). Hence

b(λ)

c(λ)c(−λ)
=

Cb
P (δ)

P (λ)
l∏

j=1

1

sin(π(λj − ρj))

=
Cb
P (δ)

P̃ (λ)
l∏

j=1

pj(λ)

sin(π(λj − ρj))
(75)

for a certain polynomial P̃ . For fixed η ∈]0, 1[, the function z
sin(πz)

is bounded on {z ∈ C :

| Im z| ≤ 1, |Re z| ≤ η}. By (69), we conclude that there is a constant C ′δ > 0 so that for
any fixed j = 1, . . . , l and every λ =

∑
h λhωh with |Reλj| ≤ δρj and arbitrary λh ∈ C with

h 6= j, we have ∣∣∣∣∣ pj(λ)

sin
(
π(λj − ρj)

)∣∣∣∣∣ ≤ C ′δ(1 + |λj|)deg pje−π| Imλj | .

We obtain Part (a) from these estimates and (75).

To prove (b), observe first that by Lemma 1.2, the function b(wλ)
c(λ)c(−λ)

is holomorphic on

T1 ⊃ Tδ. Moreover, Tδ is a W -invariant subset of H(δ). Hence a(wλ)b(wλ)
c(λ)c(−λ)

ϕλ(expH · o) is

holomorphic on Tδ. Notice that |ϕλ(expH · o)| ≤ ϕReλ(expH · o). Let R > 0 be fixed. Since
the basis B(Tδ) of the tube domain Tδ has compact closure, it follows by continuity, that
there is a constant CR,δ > 0 so that

|ϕλ(expH · o)| ≤ CR,δ (76)

for all λ ∈ Tδ and H ∈ a with ‖H‖ ≤ R. (This can also be obtained from Lemma 5.1.)
Suppose that a ∈ H(A,P, δ). By (76) and Part (a), there is a constant C ′R,δ > 0 so that∣∣∣∣ a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o)

∣∣∣∣ ≤ C ′R,δ(1 + ‖λ‖)Me(A−π)
∑l
j=1 | Imλj | .

This implies (73) as A < π. �

We shall also need the following result, which is a local version of a classical argument by
Malgrange (see [15], p. 278, and [26], Lemma 4.2).

Lemma 5.5. Let V ′ be an open domain in a∗C and let H : V ′ → C a holomorphic function
satisfying the following property: there exist constants R ∈ R, s > 0 and C > 0 so that

|H(λ)| ≤ C(1 + ‖λ‖)seR‖ Imλ‖

for all λ ∈ V ′. Let τ > 0 and let V be an open domain in a∗C such that

Vτ :=
{
ν ∈ a∗C : ∃λ ∈ V with ‖λ− ν‖ ≤ τ

}
⊂ V ′ .

Let p be a polynomial such that F (λ) = H(λ)
p(λ)

is holomorphic on V ′. Then there is a constant

Cτ > 0 (depending also on C,R, s) such that

|F (λ)| ≤ Cτ (1 + ‖λ‖)seR‖ Imλ‖

for all λ ∈ V .
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Proof. Let m = deg p. By Cauchy’s integral formula, for any multiindex α there is a constant
Cm,α > 0 so that for every λ ∈ V we have

|F (λ)(∂αp)(λ)| ≤ Cm,α

∫
‖ξ‖≤τ

|F (λ+ ξ)||p(λ+ ξ)| dξ .

Choose α so that ∂αp is a constant d 6= 0. We obtain:

|F (λ)| ≤ d−1Cm,α

∫
‖ξ‖≤τ

|H(λ+ ξ)| dξ

≤ d−1CCm,α

∫
‖ξ‖≤τ

(1 + ‖λ+ ξ‖)seR(‖ Imλ+Im ξ‖) dξ

≤ Cτ (1 + ‖λ‖)seR‖ Imλ‖ ,

where Cτ = d−1CCm,α(1 + τ)se|R|τ
∫
‖ξ‖≤τ dξ. �

The following lemma shows that if a ∈ H(A,P, δ), then there is a constant ε ∈]0, 1[
(depending on A,P, δ) so that the function

ã(λ) =
∑
w∈W

a(wλ)b(wλ) (77)

belongs to the W -invariant Schwartz space S(a∗ε)
W on the tube domain Tε around ia∗; see

(29) for the definition of Tε and section 1.3 for the definition of the W -invariant Schwartz
space.

For 0 ≤ η < 1/2 set

TΣ,m,η = {λ ∈ aC : |Reλβ| < 1− η, β ∈ Σ+
∗ with (mβ/2)/2 even}

∩ {λ ∈ aC : |Reλβ| < 1− η, β ∈ Σ+
∗ with (mβ/2)/2 odd} .

So TΣ,m,0 = TΣ,m is the tube domain on which Π(λ)b(λ) is holomorphic; see Corollary 4.6.

Lemma 5.6. Set s = |Σ+
∗ |.

(a) Let 0 < η < 1/2. Then there is a constant Cη > 0 so that

|Π(λ)b(λ)| ≤ Cη(1 + ‖λ‖)se−π
(∑l

j=1 | Imλj |
)

for all λ ∈ TΣ,m,η.
(b) Let a ∈ H(A,P, δ) and set ã(λ) =

∑
w∈W a(wλ)b(wλ). Then ã is holomorphic in

TΣ,m ∩ Tδ. Moreover, let 0 < η < min{1/2, δ}. Then there is a constant Cη,a > 0 so
that

|ã(λ)| ≤ Cη,a(1 + ‖λ‖)se(A−π)c2‖ Imλ‖

for all λ ∈ TΣ,m,η ∩ Tδ−η. Here c2 is the positive constant introduced in Remark 2.3.
(c) Let

γ = min
{
δ, min
b∈Σ+

∗ ,(mβ/2)/2 even
(ρ̃β)−1, min

β∈Σ+
∗ ,(mβ/2)/2 odd

(2ρ̃β)−1
}
∈]0, 1[ .

Then Tγ ⊂ TΣ,m,η ∩ Tδ. Moreover, let 0 < ε < γ. Then ã ∈ S(a∗ε)
W , the W -invariant

Schwartz space on the tube domain Tε.
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Proof. Since Π(λ)b(λ) is bounded on TΣ,m,η, the proof of the estimate in (a) follows the same
argument as in part (a) of Lemma 5.4.

To prove part (b), notice first that, by Corollary 4.6, on TΣ,m the function b(λ) has at
most simple poles on hyperplanes of the form λβ = 0 with β ∈ Σ+

∗ . The same property holds
on TΣ,m ∩ Tδ for b(wλ)a(wλ), with w ∈ W , and hence for ã(λ). But ã(λ), as W -invariant
function, cannot admit first order singularities on root hyperplanes through the origin. Thus
ã is holomorphic on TΣ,m ∩ Tδ.

Let 0 < η < η′ < min{1/2, δ}. By (a), there is a constant Cη′ > 0 so that

|Π(λ)b(λ)a(λ)| ≤ Cη′(1 + ‖λ‖)se(A−π)‖ Imλ‖1 ≤ Cη′(1 + ‖λ‖)se(A−π)c2‖ Imλ‖

for all λ ∈ TΣ,m,η′ . Since Π(λ) is W -skew-invariant, we obtain, on TΣ,m,η′ :

|π(λ)ã(λ)| ≤ Cη′ |W |(1 + ‖λ‖)se(A−π)c2‖ Imλ‖ .

The estimate for ã on TΣ,m,η follows then from Lemma 5.5.
To show that Tγ ⊂ TΣ,m∩Tδ, notice that γ ≤ δ and that if λ ∈ Tγ, then |Reλβ| < γρ̃β ≤ 1

if (mβ/2)/2 is even and ≤ 1/2 if (mβ/2)/2 odd. Hence Tγ ⊂ TΣ,m. The property that
ã ∈ S(a∗ε)

W for 0 < ε < γ is a consequence of Cauchy’s estimates. Indeed, let ε̃ = (γ − ε)/2.
For λ ∈ Tε, let D = {ν ∈ a∗C : |νj − λj| ≤ ε̃ for all j = 1, . . . , l} be the closed polydisc with
center λ = (λ1, . . . , λl) and multiradius (ε, . . . , ε). Then D ⊂ Tγ. According to Cauchy’s
estimates (see e.g. [18], Lemma 2.3.9), for every multiindex α,

|∂αã(λ)| ≤ α!

ε̃ |α|
sup
ν∈D
|ã(ν)| .

Since |ã(ν)| ≤ Cγ(1 + ‖ν‖)se(A−π)c2‖ Im ν‖, by estimating ‖ν‖ and ‖ Im ν‖ in terms of ‖λ‖ and
‖ Imλ‖, respectively, we obtain for a constant Cε̃,γ depending on ε̃ and γ but not on λ:

|ã(λ)| ≤ Cε̃,γ(1 + ‖λ‖)se(A−π)c2‖ Imλ‖ .

Since A < π, we conclude the required rapid decay. �

6. Proof of Ramanujan’s Master theorem for symmetric spaces

In this section we prove Theorem 2.1. Part 1 is an immediate consequence of Lassalle’s
Theorem 1.1 with F (µ) = (−1)|µ|a(µ + ρ) and ε = P/Ω. Indeed, for µ ∈ Λ+ we have

Ω
(∑l

j=1 µj
)

= Ω‖µ‖1 ≥ ‖µ‖ . Hence, for a ∈ H(δ),

|a(µ+ ρ)| ≤ C

l∏
j=1

e−P (µj+ρj) = C ′e−P
∑l
j=1 µj ≤ C ′e−

P
Ω
‖µ‖ ,

where C ′ = C
∏l

j=1 e
−Pρj .

To prove Part 2, let N be a positive integer. For j = 1, . . . , l, let Cj,N be the closed
rectangular contour in the λj-plane passing clockwise through its vertices −iN , iN , iN +(
ρj +N + 1/2

)
and −iN +

(
ρj +N + 1/2

)
. Set

f(λ) = Cba(λ)ϕλ(x)d(λ− ρ) .

Recall that the spherical function ϕλ is an entire function of λ ∈ a∗C. Hence f is holomorphic
on H(δ). Suppose λ2, . . . , λl are fixed values so that λj − ρj /∈ Z+. Then, by the residue
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theorem, we have∮
C1,N

f(λ)
l∏

j=1

1

sin
(
π(λj − ρj)

) dλ1 = (−2πi)
N∑

µ1=0

Res
λ1=ρ1+µ1

(
f(λ)

l∏
j=1

1

sin
(
π(λj − ρj)

))

= (−2πi)
N∑

µ1=0

f(ρ1 + µ1, λ2, . . . , λl)
(−1)µ1

π

l∏
j=2

1

sin
(
π(λj − ρj)

) .
Iterating, we obtain∮

C1,N

· · ·
∮
Cl,N

f(λ)
l∏

j=1

1

sin
(
π(λj − ρj)

) dλ1 · · · dλl =

= (−2πi)l
N∑

µ1=0

· · ·
N∑

µl=0

f(ρ1 + µ1, . . . , ρl + µl)
(−1)µl+···+µl

πl

= (−2i)lCb

N∑
µ1=0

· · ·
N∑

µl=0

(−1)|µ|d(µ)a(ρ+ µ)ϕρ+µ(x).

Thus, by (53),∮
C1,N

· · ·
∮
Cl,N

a(λ)ϕλ(x)
b(λ)

c(λ)c(−λ)
dλ1 · · · dλl =

N∑
µ1=0

· · ·
N∑

µl=0

(−1)|µ|d(µ)a(ρ+ µ)ϕρ+µ(x) .

(78)
By Part 1, the right-hand side of (78) converges as N → ∞ to

∑
µ∈Λ+(−1)|µ|d(µ)a(µ +

ρ)ϕµ+ρ(x) for x = expH · o with ‖H‖ < P/Ω, the convergence being normal on compacta of
exp((P/Ω)B) · o.

For the limit of the left-hand side of (78), we shall use the estimate (71). Observe first
that the domain of integration for the left-hand side of (78) is

D(C1,N , . . . , C2,N) =
{
λ =

l∑
j=1

λjωj ∈ a∗C : λj ∈ Cj,N for all j = 1, . . . , l
}

and
∞⋃
N=1

D(C1,N , . . . , C2,N) ⊂ B

where B is the set on which the estimate (71) holds.

Lemma 6.1. Let j ∈ {1, . . . , l} be fixed. For a positive integer N , let γj,N be the portion of
the contour Cj,N from iN to −iN , and let ηj,N be the vertical portion of Cj,N from −iN to
iN (see Figure 1). Let τ < 0 and σ < 0 be fixed constants. Then

lim
N→+∞

∫
γj,N

(1 + |z|)Meσ| Im z|+τ Re z dz = 0 ,

lim
N→+∞

∫
ηj,N

(1 + |z|)Meσ| Im z|+τ Re z dz =

∫ +∞

−∞
(1 + |y|)Meσ|y| dy <∞
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Figure 1. Cj,N = γj,N ∪ ηj,N

Write Cj,N = γj,N ∪ ηj,N as above. Then∮
C1,N

· · ·
∮
Cl,N

=

(∫
η1,N

−
∫
−γ1,N

)
· · ·

(∫
η1,N

−
∫
−γl,N

)

=

∫
η1,N

· · ·
∫
ηl,N

±
∑
ν

∫
ν1,N

· · ·
∫
νl,N

where the sum is over all possible combinations ν = (ν1,N , . . . , νl,N), with νj,N ∈ {ηj,N ,−γj,N},
which are different from (η1,N , . . . , ηl,N). In the following we write dλ for dλ1 · · · dλl and as-
sume that the integration is performed in that order. Then∮

C1,N

· · ·
∮
Cl,N

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ =

∫
η1,N

· · ·
∫
ηl,N

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ

±
∑
ν

∫
ν1,N

· · ·
∫
νl,N

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ . (79)

Here H ∈ a+ is fixed and we suppose that ‖H‖ < P/Ω. Lemma 6.1 and the estimate (71)
prove that the first integral on the right-hand side of (79) converges to∫

ia∗

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ

as N → +∞. The estimate (71) also shows that for every ν = (ν1,N , . . . , νl,N) we have∫
η1,N

· · ·
∫
ηl,N

∣∣∣∣ a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o)

∣∣∣∣ dλ ≤ Cν

l∏
j=1

∫
νj,N

(1 + |λj|)Meσ| Imλj |+τ Reλj dλj ,

with

σ = A− π < 0 and τ = ‖H‖Ω− P < 0 .

According to Lemma 6.1, for all j = 1, . . . , l, we have

lim
N→+∞

∫
νj,N

(1 + |λj|)Meσ| Imλj |+τ Reλj dλj =

{
0 if νj,N = γj,N∫∞
−∞(1 + |y|)Meσ|y| dy <∞ if νj,N = ηj,N
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Each ν = (ν1,N , . . . , νl,N) contains at least one index j for which νj,N = γj,N . So

lim
N→+∞

∫
ν1,N

· · ·
∫
νl,N

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ = 0 .

Thus

lim
N→+∞

∮
C1,N

· · ·
∮
Cl,N

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ =

∫
ia∗

a(λ)b(λ)

c(λ)c(−λ)
ϕλ(expH · o) dλ .

By the W -invariance of [c(λ)c(−λ)]−1 ϕλ, this concludes the proof of Part 2 of Theorem 2.1
in the case σ = 0.

To replace the integration along the imaginary axis ia∗ by the integration along any
translate σ + ia∗ with σ ∈ B(Tδ), it suffices to use (74) and the following lemma, which
is a consequence of Cauchy’s theorem.

Lemma 6.2. Let D ⊂ a∗ be nonempty, compact and connected, and let F : TD = D+ia∗ → C
be holomorphic. Suppose that, for every compact subset ω ⊂ D and every integer N ≥ 0, we
have

sup
Reλ∈D

(1 + ‖λ‖)N |F (λ)| <∞ .

Then, for any σ ∈ D, the integral
∫
ia∗
F (σ + λ) dλ exists and is independent of σ.

Proof. See e.g. [10], Lemma 6.6.2. �

We now prove that the function f(x) =
∫
ia∗
ã(λ)ϕλ(x)|c(λ)|−2 dλ extends as a KC-invariant

holomorphic function of x on a neighborhood of XG in XC. Here we have put

ã(λ) =
∑
w∈W

a(wλ)b(wλ) .

Recall that ϕλ(x) extends holomorphically as aKC-invariant function on the domainKC exp(2Ωπ)·
o with Ωπ given in (65). By KC-invariance, it therefore suffices to consider the holomorphic
extension of f inside exp(Ωπ) · o. On this domain, Opdam’s estimates (66) are available.

By estimates (72) and Remark 2.3, there is a constant Cδ > 0 so that

|ã(λ)||c(λ)|−2 ≤ Cδ(1 + ‖λ‖)Me(A−π)
∑l
j=1 | Imλj |

≤ Cδ(1 + ‖λ‖)Me(A−π)c2‖ Imλ‖

for all λ ∈ ia∗. For ε > 0 we set

Tε,π = {H ∈ aC : ‖ ImH‖ < ε} .
Suppose we have chosen ε so that (π−A)c2 > ε and Tε,π ⊂ Ωπ. By (b) of Lemma 5.1, there
is a constant Cδ,ε > 0 such that

|ã(λ)ϕλ(expH · o)||c(λ)|−2 ≤ Cδ,ε(1 + ‖λ‖)Me
(

(A−π)c2+ε
)
‖ Imλ‖ .

The right-hand side of this inequality is an exponentially decaying function of Imλ, hence
integrable on Q× ia∗ where Q is any compact subset of Tε,Ω. This allows us to apply to the
f(expH · o) the theorems of Morera and Fubini, and the claim follows.

Finally, to prove the third part of Ramanujan’s Master theorem, we use Lemma 5.6, which
states that if a ∈ H(A,P, δ) then ã(λ) ∈ S(a∗ε)

W for a certain ε ∈]0, 1[. This in fact implies
that F−1

G ã ∈ Sp(XG)K ⊂ Lp(XG)K ∩ L2(XG)K with p = 2/(ε + 1) ∈]1, 2[. Let f be the
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spherical Fourier series associated with a as in (40). Comparison of the inversion formula
(21) with (41) shows that F−1

G ã is a smooth K-invariant extension of f to all of G/K.
Formula (42) states then that ã is the spherical Fourier transform of F−1

G ã. The identity
holds pointwise for λ ∈ Tε and in L2 sense for λ ∈ ia∗. The right-hand side of (42) provides a
holomorphic extension of the spherical Fourier transform of F−1

G ã to all of TΣ,m∩Tδ. Finally
the equality of L2-norms of f and ã is an immediate consequence of the Plancherel theorem
for FG. This concludes the proof of Theorem 2.1.

7. The reductive case

In this section we extend Ramanujan’s Master Theorem to reductive Riemannian symmetric
spaces. As in Section 1, we consider Riemannian symmetric spaces in duality XU = U/K
and XG = G/K inside their complexification XC = GC/KC. We still assume that K is
connected, but we now remove the assumption that U is semisimple. References for the
following structures are Chapter II in [28], Part II §1 in [29], and Sections 1 and 2 in [6].

Let z be the center of the Lie algebra u of U . Then u = z ⊕ u′ where u′ = [u, u] is
semisimple. As in Section 1, let τ be the involution associated with XU , and let u = k⊕ ip
be the corresponding decomposition of u. Notice that τ preserves z and u′. We shall assume
that k ∩ z = {0}, i.e. that the symmetric pair (u, k) is effective. Hence u′ = k ⊕ ip′ with
p′ = p∩ (iu′) and ip = z⊕ (ip′). The Lie algebra g = k⊕ p of G is reductive, and g = iz⊕ g′

where iz is the center of g and g′ = [g, g] = k⊕ p′ is semisimple.
Set Γ0 = {X ∈ z : expX = e} where e is the identity of U . Then Γ0 is a full rank lattice in

z and T = z/Γ0 = exp z is isomorphic to the identity component of the center of U . Let U ′ be
the analytic subgroup of U with Lie algebra u′. Then U ′ is a compact connected semisimple
Lie group with finite center containing K. Moreover U = TU ′ ∼= T ×F U ′ where F = T ∩U ′
is a finite central subgroup of U . We shall assume for simplicity that F is trivial. Hence
U ∼= T × U ′.

The involutive automorphism τ leaves K invariant and XU ′ = U ′/K is a semisimple
Riemannian symmetric space of the compact type. Moreover

U/K ∼= T × U ′/K ∼= exp(z)× U ′/K . (80)

Let G′ be the analytic subgroup of G with Lie algebra g′. Then G′ is a noncompact connected
semisimple Lie group with finite center, and K is maximal compact in G′. The subgroup
V = exp(iz) is the split component of G. We have G = G′V with G′ ∩ V = {e}. Hence

G/K ∼= V ×G′/K = exp(iz)×G′/K . (81)

Furthermore, GC = (G′V )C ∼= VC ×G′C, where VC = exp(z⊕ iz). So

GC/KC ∼= VC ×G′C/KC . (82)

Let a ⊂ p be a maximal abelian subspace. Then a = iz ⊕ a′ where a′ ⊂ p′ is maximal
abelian. We fix an inner product 〈·, ·〉 on a by setting it on a′ equal to the one associated
with the Killing form, equal on iz to a fixed inner product, and by declaring that a′ and iz
are orthogonal in a. Extend then 〈·, ·〉 by duality on a∗ and by C-bilinearity on aC and a∗C.
We denote by ‖ · ‖ the norms on a and a∗ associated with the inner product 〈·, ·〉. If λ ∈ a∗C
and a = expH ∈ exp(aC) ⊂ GC, then we write aλ = eλ(H), provided this is well defined.

Let Σ be the set of restricted roots of (g′, a′). Denote by Σ+ a choice of positive roots
and by (a′)+ the corresponding positive Weyl chamber. Finally set a+ = iz ⊕ (a′)+. The
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Weyl group W of (g, a) is the finite group generated by the reflections relative to Σ. It acts

trivially on iz. A fundamental domain for the action of W on a is a+ = iz⊕ (a′)+.
The definitions of spherical functions on semisimple Riemannian symmetric spaces via

(12) and (16) extend to the reductive case. Notice also that, by Remark 2.6, we can suppose
that U ′/K is simply connected.

As proven in [6], Section 2, the set parametrizing the K-spherical representations of U is
in this case Λ+

K(U) = iΓ∗0 ⊕ Λ+
K(U ′) where

iΓ∗0 = {µ0 ∈ iz∗ : µ0(H) ∈ 2πiZ for all H ∈ Γ0} (83)

and Λ+
K(U ′) = {µ ∈ (a′)∗ : µα ∈ Z+ for all α ∈ Σ+} is as in (13). Here the direct sum symbol

means that every element µ ∈ Λ+
K(U) admits a unique decomposition as a sum of an element

of µ0 ∈ iΓ∗0 and an element of µ′ ∈ Λ+
K(U ′). If µ = µ0 +µ′, then d(µ) = d(µ′). Moreover, the

spherical function of spectral parameter µ = µ0 + µ′ is

ψµ(tu′) = tµ
0

ψµ′(u
′) , t ∈ T = exp(z), u′ ∈ U ′ , (84)

where ψµ′(u
′) is the spherical function of spectral parameter µ′ on the semisimple Riemannian

symmetric space of the compact type U ′/K. A similar property holds for the spherical
functions on G/K: if λ = λ0 + λ′ ∈ a∗C = z∗C ⊕ (a′)∗C, then the spherical function ϕλ on G/K
is given by

ϕλ(xg
′) = xλ

0

ϕλ′(g
′) , x ∈ V = exp(iz), g′ ∈ G′ , (85)

where ϕλ′(g
′) is the spherical function of spectral parameter λ′ on the semisimple Riemannian

symmetric space of the noncompact type G′/K. In particular, as in the semisimple case, the
spherical functions on U/K extend holomorphically to GC and

ψµ|G = ϕµ+ρ (86)

where ρ = 1/2
∑

α∈Σ+ mαα ∈ (a′)∗. Since 〈λ, α〉 = 0 for λ ∈ z∗C and α ∈ Σ, we can extend
the definition of the c-function to a∗C by the same formula (19) as in the semisimple case.
We then have c(λ) = c(λ′) if λ = λ0 + λ′ ∈ z∗C ⊕ (a′)∗C.

Formulas (84) and (85) reduce the spherical harmonic analysis on the pair of reductive
symmetric spaces U/K, G/K to the harmonic analysis on the abelian spaces T , V together
with the spherical harmonic analysis on the semisimple symmetric spaces U ′/K, G′/K.

Let v = dimV be the dimension of the split component of G. Since Γ0 is a full rank
lattice in z we can choose linearly independent vectors e1, . . . , ev ∈ z so that Γ0 =

∑v
k=1 Zek.

Define ε1, . . . , εv ∈ iΓ∗0 by εk(eh) = 2πiδk,h. Then {ε1, . . . , εv} is a basis of (iz)∗. We fix
{ε1, . . . , εv, ω1, . . . , ωl} as a basis of a∗ = (iz)∗ ⊕ (a′)∗. The corresponding decomposition of
λ = λ0 + λ′ ∈ a∗C = z∗C ⊕ (a′)∗C will be written either as

λ =
v∑
j=1

λjεj +
v+l∑

j=v+1

λjωj or as λ =
v∑
k=1

λ0
kεk +

l∑
j=1

λ′jωj . (87)

Define

Γ+
0 =

v∑
k=1

Z+ek , (88)

(iΓ∗0)+ = {µ0 ∈ iz∗ : µ0(H) ∈ 2πiZ+ for all H ∈ Γ+
0 } (89)
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and

Λ++ = (iΓ∗0)+ ⊕ Λ+
K(U ′) . (90)

If µ = µ0 + µ′ ∈ Λ++, then µ0
k ∈ Z+ for all k = 1, . . . , v and µ′j ∈ Z+ for all j = 1, . . . , l. We

set

|µ| = µ0
1 + · · ·+ µ0

v + µ′1 + · · ·+ µ′l .

Moreover, if x = expX with X = i
∑

kXkek ∈ iz and λ0 =
∑

k λ
0
kεk ∈ z∗C, then

xλ
0

=
v∏
k=1

eλ
0
kXk =

v∏
k=1

x
λ0
k
k with xk = eXk ∈]0,+∞[ .

Let A,P, δ be constants so that A < π, P > 0 and 0 < δ ≤ 1. Set

H(δ) =
{
λ = λ0 + λ′ ∈ a∗C : Reλ′β > −δρ̃β for β ∈ Σ+

∗ and Reλ0
k > −δ for k = 1, . . . , v

}
.

(91)
The Hardy class H(A,P, δ) is the space of all holomorphic functions a : H(δ)→ C satisfying
the growth condition: there exists a constant C > 0 so that

|a(λ)| ≤ C
v+l∏
j=1

e−P (Reλj)+A| Imλj | (92)

for all λ ∈ H(δ). Furthermore, set

b(λ) = b0(λ0)b′(λ′) , λ = λ0 + λ′ ∈ a∗C , (93)

where b′(λ′) is the function b of the semisimple Riemannian symmetric spaces U ′/K, G′/K,
as in (37), and

b0(λ0) =

(
i

2

)v v∏
k=1

1

sin(πλ0
k)
. (94)

Observe that, since W acts trivially on z∗C, we have∑
w∈W

a(wλ)b(wλ) = b0(λ0)
∑
w∈W

a(wλ)b′(wλ′) , λ = λ0 + λ′ . (95)

Let T ′δ be the tube domain in (a′)∗C defined by (29), and let

T 0
δ = {λ0 ∈ z∗C : 0 < Reλ0

k < δ for all k = 1, . . . , v}.

Consider the tube domain in a∗C given by

Tδ = T 0
δ ⊕ T ′δ . (96)

Its base in a∗ is B(Tδ) = {λ0 ∈ (iz)∗ : 0 < λ0
k < δ for all k = 1, . . . , v} ⊕ B(Tδ). Finally, let

T ′Σ,m be as in (38) and let TΣ,m = z∗C ⊕ T ′Σ,m.
The following theorem combines the semisimple and the multivariable abelian versions

of Ramanujan’s Master Theorem. Because of formulas (87) to (96), its proof reduces to a
straightforward combination of the arguments used in these two cases, and is omitted.

Theorem 7.1 (Ramanujan’s Master Theorem for reductive Riemannian symmetric spaces).
Keep the above assumptions and notation, and let a ∈ H(A,P, δ). Then the following prop-
erties hold:
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(1) The spherical Fourier series

f(x) =
∑
µ∈Λ++

(−1)|µ|d(µ)a(µ+ ρ)ψµ(x) (97)

converges normally on compact subsets of DP/Ω = U exp
(
(P/Ω)B

)
· oC where B =

{H ∈ a : ‖H‖ < 1} is the open unit ball in a. Its sum is a K-invariant holomorphic
function on the neighborhood DP/Ω of XU in XC.

(2) Let Tδ be the tube domain in (96) and let σ ∈ B(Tδ). Then for x = expH ∈ A with
‖H‖ < P/Ω, we have

f(x) =
1

|W |

∫
σ+ia∗

(∑
w∈W

a(wλ)b(wλ)

)
ϕλ(x)

dλ

c(λ)c(−λ)
. (98)

(3) The formula ∫
XG

f(x)ϕ−λ(x) dx =
∑
w∈W

a(wλ)b(wλ) (99)

holds for the extension of f to XG and for all λ ∈ Tδ ∩ TΣ,m = T 0
δ ⊕ T ′Σ,m.

8. Further remarks and open problems

In [4], Bertram presents an interesting alternative approach to Ramanujan’s Master Theorem

for the rank-one case, by means of the kernel function k(u,w) =
(
z(u) + z(w)

)−2ρ
. In

this formula, z is the holomorphic continuation to XC of the function defined on XU by
z(x) = cos(d(x,K)), where d(x,K) is the distance of the point x from the base point in XU .
Moreover, 2ρ = mβ/2/2+mβ for the unique root β ∈ Σ+

∗ . The function z is natural, as every
K-invariant function on XU factors through z. By considering k(x, y) = kx(y) = ky(x),
Bertram proves analogues to Mehler’s and Neumann’s formulas, stating that there exists
meromorphic functions d(λ) = d(−λ) and e(λ) (explicitly given as ratios of products of
gamma functions) so that

(FGky)(λ) = d(λ)ϕλ(y) for |Reλβ| < ρ

and

(FUkx)(µ+ ρ) = (−1)µe(µ+ ρ)Φ−µ−ρ(x) for µ ∈ Z+ .

Here Φλ denotes Harish-Chandra’s series. By means of Harish-Chandra’s relation ϕλ =

c(λ)Φλ + c(−λ)Φ−λ, he finds b(λ) = d(λ)
e(λ)

c(−λ). The explicit formulas for d, e and c allow

him to recover the formula for b. It would be interesting to find a similar approach in higher
rank as well. Unfortunately, we do not know higher dimensional analogues neither of the
kernel function nor of the formulas by Mehler or Neumann, and the knowledge of b provides

information only on the ratio d(λ)
e(λ)

.

Another open question is on the nature of the functions on XG, XU and XC satisfying the
assumptions stated in Ramanujan’s theorem. For instance, what are the functions on XU

having Fourier coefficients coming from elements of H(A,P, δ)? This kind of questions are
related to theorems of Paley-Wiener type. Notice that one can use Laplace transforms to
obtain elements of H(A,P, δ). Indeed, identify a∗C with Cl by means of the basis Π∗, as in
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section 1.6. Let h : a∗C ≡ Cl → C be integrable and having support inside a domain of the
form [P,R]l with P < R < +∞, and set

Lh(λ) =

∫ +∞

0

. . .

∫ +∞

0

h(x)e−
∑l
j=1 λjxj dx .

Then Lh(λ) is an entire function on a∗C. Moreover, for every d > 0 there is a constant

Cd > 0 so that |(Lh)(λ)| ≤ Cde
−P

∑l
j=1 Reλj for all λ ∈ a∗C with Reλj > −d for all j. Thus

Lh ∈ H(A,P, δ) for all 0 ≤ A < π.
Finally, the spherical Fourier transform on Riemannian symmetric spaces of the noncom-

pact and of the compact type has been extended by the works of Heckman, Opdam and
Cherednik to the setting of hypergeometric functions associated with root systems. See [24],
[25] and references therein. A natural question is therefore a generalization of Ramanujan’s
Master Theorem in this setting. The necessary Lp-harmonic analysis on root systems needed
for instance to generalize the proof of the final part of Theorem 2.1 has been recently de-
veloped in [20]. There are nevertheless technical difficulties, for instance the fact that at
some points we use the classification of the root multipliticies, listed at the beginning of
section 4. These kinds of arguments have to be replaced. A root system situation where all
problems should be easily overpassed corresponds to the even multiplicity case. Indeed, the
shift operators techniques developed by Opdam allow in this case a reduction to a Euclidean
W -invariant situation where a multivariable analogue of the classical Ramanujan’s theorem
can be easily proven. See [12], Part 1, and [21, 22]. We will come back to these issues in
future work.
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[3] W. Bertram: Généralisation d’une formule de Ramanujan dans le cadre de la transformation de Fourier
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