
HAL Id: hal-01234466
https://hal.science/hal-01234466v1

Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energetic reasoning and mixed-integer linear
programming for scheduling with a continuous resource

and linear efficiency functions
Margaux Nattaf, Christian Artigues, Pierre Lopez, David Rivreau

To cite this version:
Margaux Nattaf, Christian Artigues, Pierre Lopez, David Rivreau. Energetic reasoning and mixed-
integer linear programming for scheduling with a continuous resource and linear efficiency functions.
OR Spectrum, 2016, 38 (2), pp. 459-492. �10.1007/s00291-015-0423-x�. �hal-01234466�

https://hal.science/hal-01234466v1
https://hal.archives-ouvertes.fr

Energetic reasoning and mixed-integer linear programming
for scheduling with a continuous resource and linear

efficiency functions

Margaux Nattaf1,3, Christian Artigues2,3, Pierre Lopez2,3, and David Rivreau 4

1Univ. de Toulouse, UPS, F-31400 Toulouse France, Email: mnattaf@laas.fr
2Univ. de Toulouse, LAAS, F-31400 Toulouse France, Email: {artigues,lopez}@laas.fr

3CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
4LUNAM Université, Université Catholique de l’Ouest, LISA, 3 Place André Leroy, F-49008 Angers, France,

Email : david.rivreau@uco.fr

Abstract

This paper addresses a scheduling problem with a continuously-divisible, cumulative and renew-
able resource with limited capacity. During its processing, each task consumes a part of this resource,
which lies between a minimum and a maximum requirement. A task is finished when a certain amount
of energy is received by it within its time window. This energy is received via the resource and an
amount of resource is converted into an amount of energy with a non-decreasing and continuous func-
tion. The goal is to find a feasible schedule, which is already NP-complete, and then to minimize the
resource consumption. For the case where all functions are linear, we present two new Mixed Inte-
ger Linear Programs (MILP), as well as improvements of an existing formulation. We also present
a detailed version of the adaptation of the well-known “left-shift/right-shift” satisfiability test for the
cumulative constraint and the associated time-window adjustments to our problem. For this test, three
ways of computing relevant intervals are described. Finally, a hybrid branch-and-bound using both the
satisfiability test and the MILP is presented with a new heuristic for choosing the variable on which
the branching is done. Computational experiments on randomly generated instances are reported in
order to compare all of these solution methods.

Keywords. continuous scheduling, continuous resources, linear efficiency functions, energy constraints,
energetic reasoning, branching scheme, mixed-integer programming

1 Introduction
This paper deals with a scheduling problem involving a set of tasks and a continuously-divisible renew-
able resource of limited capacity shared by the tasks. Each task must be processed between a release date
and a due date. During its time window, each task must receive a given total amount of resource units
that we will refer to as a required energy amount. The resource is of the cumulative type1, in the sense
that, at each time, each task requires a certain intensity of the resource and that the sum of the intensities
cannot exceed the resource capacity. We consider the case where the resource amount (intensity) that
a task requires during its processing is not fixed. More precisely, the resource usage is a continuous
function of time that must be determined. Once the task is started this resource usage must lie within an

1Note that some authors define a cumulative resource with other meanings, such as storage resource [18]. In this paper a
resource is called cumulative in the Constraint Programming literature sense [3, 8], i.e. a synonym of a renewable resource with
an availability larger than or equal to one.

1

interval until the total required energy has been received by the task. Furthermore we consider that the
total energy received by the task is not equal to the total amount of the resource used by the task. Instead
we have efficiency functions2 that translate the resource usage into energy. Consequently, the duration
of the task is not fixed neither but is determined by the resource usage function as the task is finished
once the necessary energy has been received.

As typical examples, we cite energy-consuming production scheduling problems. In [1], a foundry
application is presented where a metal is melted in induction furnaces. The electrical power of the fur-
naces that can be adjusted at any time to avoid exceeding a maximum prescribed power limit, can be
seen as a continuous function of time to be determined. However the function must lie within a limit;
thus, a minimum and a maximum power level must be satisfied for the melting operation. Moreover, the
amount of energy received is not in reality proportional to the power used, as efficiency functions must
be considered for the furnaces. Finally the duration of the melting operation can be stopped once the
necessary energy has been received, depending of the selected power function. Due to the complexity of
the problem, the solution method proposed in [1] considers a time discretization, which can lead to sub-
optimal or infeasible solutions by over-constraining the problem, as shown in Section 3.1. Furthermore,
efficiency functions were not considered. In a continuous time setting but still without considering the
efficiency functions, constraint propagation algorithms based on the energetic reasoning concept were
proposed in [2]. Note that when non-identity efficiency functions are considered, the total amount of
energetic resource used is no more constant and can be an objective to minimize. In this paper we ex-
tend the constraint propagation algorithm to the case of linear efficiency functions. We also perform an
analysis of the structural properties of the problem and we propose mixed-integer linear programming
(MILP) formulations as well as a hybrid branch-and-bound method.

This paper extends the results presented in [16, 17] with the consideration of the preemptive case,
two new mixed-integer programming formulations, as well as improvements of the existing one, full
details on the energetic reasoning computations, consideration of the total resource usage minimization
objective and extended computational results.

The problem definition, related work and structural properties of the problem are given in Section
2. Section 3 introduces the proposed MILP formulations. The constraint propagation algorithms based
on energetic reasoning are presented in Section 4. Section 5 presents the hybrid branch-and-bound
procedure. Experimental results are reported in Section 6. Concluding remarks are drawn in Section 7.

2 Problem statement, related work and structural properties

2.1 Problem definition
The considered continuous energy-constrained scheduling problem (CECSP) can be defined as follows.
A set of tasks A = {1, . . . ,n}, consuming a continuous, cumulative and renewable resource of capacity
B, has to be scheduled. We suppose there is no precedence constraints between these tasks. At each time
t, a task i ∈ A consumes a variable amount of the resource, bi(t). The objective is to find, for each task
i ∈ A, its start time sti, its end time eti and its resource allocation function bi(t). These quantities have to
satisfy the following constraints.

First, each task i has to be executed during its time window [ri,di], ri 6= di, i.e.

ri ≤ sti < eti ≤ di (1)

Tasks of 0-duration are not considered as they do not set any constraints in the problem and can be
scheduled anywhere in their time window.

Then, if a task i is in process at time t, then bi(t) has to lie between a minimum and maximum

2Some authors call these functions the power processing rate functions [4, 11, 19], so we may use both terms indifferently.

2

requirement, bmin
i and bmax

i respectively, and has to be equal to zero otherwise, i.e.

bmin
i ≤ bi(t)≤ bmax

i ∀t ∈ [sti,eti] (2)
bi(t) = 0 ∀t 6∈ [sti,eti] (3)

Note that the case where bmin
i = 0 corresponds to the preemptive case. Thus, preemption can be allowed

in the considered problem. To ensure feasibility, we suppose 0≤ bmin
i ≤ bmax

i ≤ B, ∀i ∈ A.
Furthermore, during its processing, a task receives an energy quantity from the resource. Thus,

each task consumes a part of the same resource but the energy type received from the resource might
be different for each task. In this sense, each task has is own conversion function, also called power
processing rate function, fi and a task is finished when it has received a required amount of energy Wi,
i.e. ∫ eti

sti
fi(bi(t))dt =Wi (4)

Thus, function fi has to be integrable. In this paper, we only consider non-decreasing, continuous and
linear functions. Indeed, the main goal is to approximate real non-linear efficiency function by linear
ones. In [2], an example of such approximation is provided and a variant of this example is described
later in this paper. Efficiency functions fi can be defined as follows:

fi(b) =

 0 if b = 0
ai ∗b+ ci if bmin

i = 0 and b ∈]bmin
i ,bmax

i]
ai ∗b+ ci if bmin

i 6= 0 and b ∈ [bmin
i ,bmax

i]

with ai > 0 and −ai ∗bmin
i ≥ ci to ensure that fi(b)≤ 0, ∀b ∈ [bmin

i ,bmax
i].

The last constraint is the resource capacity constraint. At each time t, the resource consumed by all
tasks can not exceed the resource capacity, i.e.

∑
i∈A

bi(t)≤ B ∀t (5)

In the following, we are mostly interested in finding a feasible solution for the CECSP. However, in
some cases, since it might be interesting in some practical cases to minimize the total resource consump-
tion, we consider the following objective function:

minimize ∑
i∈A

∫ eti

sti
bi(t)dt (6)

We will denote by CECSP the problem without objective function and by CECSPob j the problem with
objective function (6).

We start by presenting an example of an instance with non-linear efficiency functions and we show
how we transform them in order to have only linear efficiency functions.

Example Consider the following instance with n = 4 and B = 2:

• r = [0,2,0,5]

• d = [6,10,9,13]

• bmin = [0,0.5,2,1]

• bmax = [1,1,2,1.5]

• W = [1,5,7,8]

• f (b) = [b,
√

b,b,
√

b]

3

b

fi(b)

1
√

0.5

10.5

Figure 1: Non-linear efficiency curve: Example of approximation by a linear function.

We have to approximate f2(b) and f4(b) with linear functions. For task 2, we calculate the slope
of the tangent at the middle point of [bmin

i ,bmax
i], which is 0.75. This slope is equal to 1

2
√

0.75
, and then,

f ′2(b) =
1

2
√

0.75
∗b+

√
0.75
2 (see Fig. 1).

Similarly, for task 4, we have f ′4(b) =
1

2
√

1.25
∗b+

√
1.25
2 .

With this approximation, it can happen that an efficiency function does not satisfy bmin
i = 0 ⇒

fi(bmin
i) = 0. In this case, we set fi(0) to 0. Therefore, the function is continuous everywhere except in

0. Hence, we can replace equation (4) by:∫ eti

sti
1NZ(t) fi(bi(t))dt =Wi (4’)

where 1NZ(t) :=
{

1 if t ∈ NZ := {t|bi(t) 6= 0}
0 otherwise

Now, we present an example of an instance I of CECSP and one feasible associate solution.

Example Consider an instance with n = 3 and B = 5. The other data are displayed in Table 1, and a
feasible solution is depicted in Fig. 2.

i ri di Wi bmin
i bmax

i fi(b)
1 0 6 28 1 5 2b+1
2 2 6 32 2 5 b+5
3 2 5 6 2 2 b

Table 1: An instance of CECSP (continuous energy-constrained scheduling problem).

This solution is feasible since each task lies in its time window, all the constraints of maximum
and minimum requirements are satisfied and the total resource usage at each time does not exceed the
availability of the resource. Furthermore, the required energy is received by each task. For example, the
energy received by task 1 is (2 ∗ 5+ 1)+ (2 ∗ 5+ 1)+ (2 ∗ 1+ 1)+ (2 ∗ 1+ 1) = 11+ 11+ 3+ 3 = 28,
while its total resource consumption is equal to 12.

2.2 Related work
In the literature, several authors considered different elements of the problem addressed in this paper, but
generally separately and/or in a discrete time setting. The general category of scheduling problems with
variable resource requirement and processing time of the tasks are referred to as scheduling problems
with multiple modes. In the state-of-the-art review of multi-mode scheduling problems [19], problems

4

21

3

B = 5

r1 r2
r3

d1
d2

d3
t

Figure 2: A solution for instance I of CECSP

with a finite number of modes are distinguished from problem with an infinite (e.g. uncountable) number
of modes. In the first category, tasks have generally a rectangular shape in the time×resource space,
although each mode defines for each task a particular rectangle with the general requirement that the
resource usage increases as the duration decreases. Wȩglarz et al. [19] call this model the processing
time vs resource amount model that applies to the multi-mode resource-constrained project scheduling
problem and the discrete time/resource tradeoff models.

Our problem belongs to the category of problems with infinite modes where the resource usage may
vary continuously and such that the amount of resource required by a task may vary over time. Wȩglarz
et al. [19] call this model the processing rate vs resource amount model, as the processing rate of the task
is a continuous increasing function of the allotted resource amount at a time, which corresponds to the
efficiency function (see also [4]). Providing a general framework for solving mixed discrete/continuous
problems with concave processing rate functions, Józefowska et al. [11] show that once the sequence of
sets of tasks to be scheduled in parallel is determined, the continuous resource allocation can be made
by a convex non-linear optimization problem. In the literature on parallel processor scheduling, the
malleable task model also considers the possibility of changing the number of processors assigned to a
task over time, with non-linear processing rate functions but these problems are generally preemptive [5].
A related work has also been carried out by Kis [12] for a discretized time problem with variable-
intensity tasks, who established polyhedral results and proposed a branch-and-cut procedure. Besides
time discretization, the problem does not involve efficiency functions. To the best of our knowledge, the
existing literature on continuously divisible resources does not consider minimum amount of resource
used by a task once it is started.

To complete the presentation of the relevant literature on the subject, the project scheduling problem
with work-content constraint is also of interest. The problem considered in [9] involves among other
constraints a minimum amount and a maximum amount of resource usage once the task is started. The
resource requirement takes discrete values and the model does not involve efficiency functions. There
is a single work-content resource and other resources (called dependent resources in [14]) such that the
resource requirement of a task on any dependent resource at a given time is a non-decreasing function of
the resource requirement on the work-content resource. Naber and Kolisch [14] present several discrete-
time MILP models for such problems, considering linear “dependency” functions. A continuous-time
formulation based on events is proposed in [15]. The formulation involves events corresponding to task
start times, end times and resource usage changes.

In the following section, we present some properties of this problem that show among others that the
“change” event is not necessary in our case.

5

2.3 Problem properties
This problem, as it is a generalization of the Cumulative Scheduling Problem (CuSP) [3], is NP-complete.
In CuSP, given a set of n tasks and a discrete, renewable and cumulative resource available in a limited
quantity B, the goal is to find a feasible schedule of the tasks where each task consumes a fixed amount
of resource bi, has a duration pi and has to lie in its time window.

The following theorem states on the NP-completeness of CECSP by proving that CuSP is a particular
case of this problem.

Theorem 1 CECSP is NP-complete.

Proof Let I be an instance of CuSP. We construct an instance I ′ of CECSP in the following way:

• bmin
i = bmax

i = bi, ∀i ∈ A

• fi(bi(t)) = bi(t), ∀i ∈ A

• Wi = pibi, ∀i ∈ A

• all other data being equal.

Instance I is feasible if and only if instance I ′ is feasible. Indeed, if I ′ is a feasible instance of
CECSP, then it exists a feasible schedule of the tasks satisfying (1)–(5) and it is also a feasible schedule
for CuSP and reciprocally. 2

Now, we present a property of the CECSP, which will be helpful for solving it. Actually, we prove
that if a solution S exists, then another solution S′ can be created from S with the property that each
function bi(t) is piecewise constant. This is the statement of the following theorem:

Theorem 2 ([17]) Let I be a feasible instance of CECSP, with linear functions fi, ∀i ∈ A. A solution
such that, for all i ∈ A, bi(t) is piecewise constant, exists. Furthermore, ∀i ∈ A the only breakpoints of
bi(t) can be restricted to the start and end times of the tasks.

Proof Let S be a feasible solution of I and let (tq){q∈Q} be the increasing series of distinct start time
and end time values (|Q| ≤ 2n). We construct a new solution S′ in the following way:

• st ′i = sti and et ′i = eti, ∀i ∈ A

• b′i(t) = b′iq =
∫ tq+1
tq bi(t)dt

tq+1−tq
, ∀q ∈ {1, . . . ,Q−1} and ∀i ∈ A.

As S is a feasible solution, S′ clearly verifies constraints (1) and (3). So, we only have to prove that
S′ satisfies constraints (2), (4’) and (5).

First, we prove that S′ satisfies constraint (2). Indeed, since S verifies:

bmin
i ≤ bi(t)≤ bmax

i ∀i ∈ A and ∀t ∈ [sti,eti]

then, ∀q ∈ {1, . . . ,Q−1} with [tq, tq+1]⊆ [sti,eti], we have:∫ tq+1

tq
bmin

i dt ≤
∫ tq+1

tq
bi(t)dt ≤

∫ tq+1

tq
bmax

i dt

⇒ (tq+1− tq)bmin
i ≤

∫ tq+1

tq
bi(t)dt ≤ (tq+1− tq)bmax

i

⇒ bmin
i ≤

∫ tq+1

tq
bi(t)dt/(tq+1− tq)≤ bmax

i

6

and therefore, S′ satisfies constraint (2).
Now, in order to prove that S′ satisfies (4’), we show that:

∀tq ∈ {1, . . . ,Q−1} and ∀i ∈ A,
∫ tq+1

tq
1NZ(t) fi(bi(t))dt =

∫ tq+1

tq
fi(b′iq)dt

We have two cases to consider:

• if bi(t) = 0,∀t ∈ [tq, tq+1] then b′iq = 0 and clearly, the condition holds.

• else we have: ∫ tq+1

tq
fi(b′iq)dt =

∫ tq+1

tq
(aib′iq + ci)dt

= ai(tq+1− tq)

∫ tq+1
tq bi(t)dt

tq+1− tq
+ ci(tq+1− tq)

=
∫ tq+1

tq
1NZ(t) fi(bi(t))dt

Therefore, S′ satisfies constraint (4’).
Finally, for constraint (5), since we have:

∑
i∈A

bi(t)≤ B

by integrating over [tq, tq+1], we obtain:

∑
i∈A

∫ tq+1

tq
bi(t)dt ≤ B(tq+1− tq)

⇒∑
i∈A

∫ tq+1

tq
bi(t)dt/(tq+1− tq)≤ B

2

Actually, the same theorem can be established for the case of CECSPob j. Indeed, the theorem states
that, if a solution for CECSP exists, we can construct a solution in which each task received exactly the
same amount of energy and consumes the same amount of resource. So, if the first solution is optimal
for objective (6), the modified solution is also optimal for this objective.

An interesting corollary can be derived from Th. 2:

Corollary 3 ([17]) For fixed (sti,eti)i∈A the satisfiability of CECSP can be checked polynomially in func-
tion of the input length.

Indeed, for each interval composed of two consecutive start/end times, i.e. [sti, f t j], [f ti,st j], [sti,st j]
or [f ti, f t j] (at most 2n), we have to decide how much resource we give to tasks, i.e. find biq for each
such interval s.t. (1)–(5). This problem can easily be modeled by a linear program.

Let (tq)q=1..Q be the series defined in the proof of Th. 2, biq (resp. wiq) the resource usage of (resp.

7

the energy received by) task i in [tq, tq+1]. The linear program can be written as follows:

min ∑
i∈A

Q−1

∑
q=1

biq (7)

∑
ı∈A

biq ≤ B ∀q ∈ {1..Q−1} (8)

biq ≤ bmax
i ∀i ∈ A; ∀q ∈ {1..Q−1}| tq ∈ [sti,eti[(9)

biq ≥ bmin
i ∀i ∈ A; ∀q ∈ {1..Q−1}| tq ∈ [sti,eti[(10)

biq = 0 ∀i ∈ A; ∀q ∈ {1..Q−1}| tq 6∈ [sti,eti[(11)
Q−1

∑
q=1

wiq(tq+1− tq) =Wi ∀i ∈ A (12)

wiq ≤ aibiq + ci ∀i ∈ A; ∀q ∈ {1..Q−1} (13)

wiq ≤Mbiq ∀i ∈ A; ∀q ∈ {1..Q−1} (14)

with M some large enough constant. In this program, constraints (8) set the capacity of the resource to
B. Constraints (9) and (10) require that the resource usage of task i lies in [bmin

i ,bmax
i] during its execution

and constraints (11) set the resource usage to 0 if the task is not in process. Constraints (12) make sure
that each task received the required energy. Finally, constraints (13) and (14) ensure energy conversion.
Indeed, constraints (14) ensure that fi(0) = 0.

Note that, if ∀i∈ A, bmin
i = 0, then the problem is polynomial. Indeed, let (tq)q=1..Q be the increasing

series of distinct release date and deadline values. Then the linear program gives a feasible solution.

Theorem 4 The preemptive CECSP (∀i ∈ A, bmin
i = 0) can be solved in polynomial time.

In the following, we consider that ∃i ∈ A such that bmin
i 6= 0.

Another interesting remark can be made about Th. 2. Actually, in order to find a solution to CECSP,
we only have to find, for each task, its start time sti, its end time eti and the quantity of resource allocated
to i between two consecutive start/end time biq. This allows us to model this problem with Mixed Integer
Linear Programming (MILP). Different such MILPs are presented in the following section.

3 Mixed Integer Linear Programs
In this section, we present three different Mixed Integer Linear Programs to solve CECSPob j. The first
one is based on a time-indexed formulation and the two other ones on an event-based formulation.

3.1 Time-indexed formulation
The first formulation we propose is a time-indexed formulation. In this formulation, the planning horizon
is discretized in intervals of size one. Thus now, T = {0, . . . , |T |} (by translation, we can assume that
mini∈A ri = 0). For each t ∈ T and ∀i ∈ A, we define two binary variables xit and yit , which represent the
start and end time of task i, respectively. That is, xit (resp. yit) is set to 1 if t is the start (resp. end) time
of task i. We also define, for each interval [t, t +1] and ∀i ∈ A, two variables bit and wit , which stand for
the quantity of resource and energy received by task i in the corresponding interval. This formulation
has 4n|T | variables. This yields the following formulation:

8

min ∑
i∈A

∑
t∈T

bit (15)

di−1

∑
t=ri

xit = 1 ∀i ∈ A (16)

di

∑
t=ri+1

yit = 1 ∀i ∈ A (17)

(
t

∑
τ=ri

xiτ −
t

∑
τ=ri+1

yiτ)bmin
i ≤ bit ∀t ∈ {0, . . . ,di−1} ;∀i ∈ A (18)

(
t

∑
τ=ri

xiτ −
t

∑
τ=ri+1

yiτ)bmax
i ≥ bit ∀t ∈ {ri, . . . ,di−1} ;∀i ∈ A (19)

di

∑
t=ri

wit ≥Wi ∀i ∈ A (20)

wit = aibit + ci(
t

∑
τ=ri

xiτ −
t

∑
τ=ri+1

yiτ) ∀t ∈ T ;∀i ∈ A (21)

∑
i∈A

bit ≤ B ∀t ∈ T (22)

bit = 0 ∀t 6∈ {ri, . . . ,di−1} ;∀i ∈ A (23)

xit = 0 ∀t 6∈ {ri, . . . ,di−1} ;∀i ∈ A (24)

yit = 0 ∀t 6∈ {ri +1, . . . ,di} ;∀i ∈ A (25)

bit ≥ 0 ∀t ∈ T ;∀i ∈ A (26)

wit ≥ 0 ∀t ∈ T ;∀i ∈ A (27)

xit ∈ {0,1}, yit ∈ {0,1} ∀t ∈ T ;∀i ∈ A (28)

The objective is described by (15). Constraints (16)-(17) ensure that a task starts and ends once
and only once. Constraints (18)-(19) enforce that, during its execution, a task satisfies its minimum and
maximum requirement. Constraints (19) also ensure that no resource is consumed by a task whenever
it is not in process, i.e. bit = 0. Note that these constraints also ensure that the start time of i occurs
before its end time (otherwise bit = 0,∀t). Constraints (20) make sure that the energy requirement is
satisfied. Constraints (21) convert the resource usage in energy. Constraints (22) impose that the resource
demand at each time does not exceed the availability of the resource. Constraints (23) set the resource
consumption of task i to 0 if t 6∈ [ri,di]. Constraints (24)-(25) ensure that a task is processed during its
time window.

Actually, the CECSP can be seen as a relaxation of this formulation. Indeed, in CECSP, we have a
continuously-divisible resource and in this program, as the planning horizon is discretized, the resource
is discretely divisible. Furthermore, in some case, even if all data are integer and function fi is the identity
function, there is possibly no integer solution, only fractional ones. This is the case of the example of
Fig. 3 where the unique solution is fractional.

i ri di Wi bmin
i bmax

i fi(bi(t))
1 0 2 3 2 2 bi(t)
2 1 3 3 1 2 bi(t)

0 1.5 3

1 2
B = 2

Figure 3: A fractional solution for integer data and identity efficiency function

Based on this observation, we propose two event-based formulations for CECSPob j.

9

3.2 Event-based formulation
In this section, we propose two different event-based formulations. Both formulations are inspired by
the event-based formulations for the Resource-Constrained Project Scheduling Problem [13]. In these
formulations, an event corresponds either to a task start or a task end time. These events are represented
by a set of continuous variables te. Let E = {1, . . . ,2n} be the index set of these events. We also define
two continuous variables Bie and Wie which stand for the quantity of resource and energy received by task
i between events te and te+1. The main difference between our two formulations lies in the definitions
of the binary variables used to assign an event either to a task start time or to a task end time. The
first formulation is called a start/end event-based formulation and the second one is called an off/on
formulation.

In the start/end formulation, two binary decision variables xie and yie are used to represent the start
and end time of a task. The variable xie (resp. yie) is equal to 1 if task i starts (resp. ends) at event e. Since
there are 2n events, this model has 8n2 variables (4n2 binary). This yields the following formulation:

min ∑
i∈A

∑
e∈E \{2n}

Bie (29)

te ≤ te+1 ∀e ∈ E \{2n} (30)

∑
e∈E

xie = 1 ∀i ∈ A (31)

∑
e∈E

yie = 1 ∀i ∈ A (32)

xieri ≤ te ∀i ∈ A ;∀e ∈ E (33)

te ≤ xiesmax
i +(1− xie)Dmax ∀i ∈ A ;∀e ∈ E (34)

te ≥ yieemin
i ∀i ∈ A ;∀e ∈ E (35)

diyie +(1− yie)Dmax ≥ te ∀i ∈ A ;∀e ∈ E (36)

∑
i∈A

Bie ≤ B(te+1− te) ∀e ∈ E \{2n} (37)

t f ≥ te +(xie + yi f −1)Wi/ fi(bmax
i) ∀i ∈ A ;∀e, f ∈ E ; f > e (38)

Wie ≤ aiBie + ci(te+1− te) ∀i ∈ A ;∀e ∈ E \{2n} (39)

Wie ≤Wi(
e

∑
f=0

xi f −
e

∑
f=0

yi f) ∀i ∈ A ;∀e ∈ E \{2n} (40)

∑
e∈E \{2n}

Wie =Wi ∀i ∈ A (41)

Bie ≥ bmin
i (te+1− te)−bmin

i (max
j∈A

(d j− r j))(1−
e

∑
f=0

xi f +
e

∑
f=0

yi f) ∀i ∈ A ;∀e ∈ E \{2n} (42)

Bie ≤ bmax
i (te+1− te) ∀i ∈ A ;∀e ∈ E \{2n} (43)

(
e

∑
f=0

xi f −
e

∑
f=0

yi f)(bmax
i (di− ri))≥ Bie ∀i ∈ A ;∀e ∈ E \{2n} (44)

te ≥ 0 ∀e ∈ E (45)

Bie ≥ 0 ∀i ∈ A ;∀e ∈ E \{2n} (46)

Wie ≥ 0 ∀i ∈ A ;∀e ∈ E \{2n} (47)

xie ∈ {0,1}, yie ∈ {0,1} ∀i ∈ A ;∀e ∈ E (48)

where smax
i = di−Wi/ fi(bmax

i) (resp. emin
i = ri +Wi/ fi(bmax

i)) is the latest start (resp. earliest end) time
of task i and Dmax = maxi∈A di.

The objective is described by (29). Constraints (30) order the events. Constraints (31) (resp. (32))
require that a task has one and only one start event (resp. end event). Constraints (33)–(36) state that,

10

∀i, ri ≤ sti ≤ smax
i and emin

i ≤ eti ≤ di. Constraints (37) limit the demand of resource during [te, te+1]
to the availability of the resource during this interval. Constraints (38) are valid inequalities stating
that the events corresponding to a start and an end time of a task must be separated by, at least, the
minimal duration of this task. Constraints (39)–(41) ensure that the required energy is received by
the tasks. Indeed, notice that ∑

e
f=0 xi f −∑

e
f=0 yi f = 1 if and only if task i is in process in [te, te+1].

Furthermore, with the objective function (29), the inequality of constraint (39) is always satisfied with
equality. Constraints (42) (resp. (43)) impose that, during its execution, a task satisfies its minimum
(resp. maximum) resource requirement. Constraints (44) set the resource consumption of task i to 0 if
the task is not in process. Note that these constraints also ensure a task cannot end before it has started
(otherwise, Bie = 0, ∀e ∈ E).

This formulation is similar to the one in [17]. The main difference lies in the values given to the
big-M constants. In constraints (40), M is set to Wi, in (42) to bmin

i (max j∈A(d j − r j)) and in (44) to
bmax

i (di− ri).
Notice that this model is also valid for the CECSP without objective function. Indeed, the value of

variables Wie can not be set to a value greater than the real quantity of energy received by task i in [te, te+1]
with resource usage equals to Bie. So, if a solution for the model is found, it can be used to compute a
feasible solution for CECSP in polynomial time (same sti, eti set to the time when the required energy is
received by the task).

We now describe the on/off event-based formulation. In this formulation, a binary variable zie is
equal to 1 if task i is in process during interval [te, te+1]. This model has only 6n2 variables and yields to
the following formulation:

min ∑
i∈A

∑
e∈E \{2n}

Bie (49)

te ≤ te+1 ∀e ∈ E \{2n} (50)

∑
e∈E

zie ≥ 1 ∀i ∈ A (51)

rizie ≤ te ≤ smax
i (zie− zie−1)+(1− (zie− zie−1))Dmax ∀e ∈ E \{1}; ∀i ∈ A (52)

emin
i (zie−1− zie)≤ te ≤ di(zie−1− zie)+(1− (zie−1− zie))Dmax ∀e ∈ E \{1}; ∀i ∈ A (53)

t f ≥ te +((zie− zie−1)− (zi f − zi f−1)−1)Wi/ fi(bmax
i) ∀e, f ∈ E \{1}; f > e; ∀i ∈ A (54)

e

∑
e′=1

zie′ ≤ e(1− (zie− zie−1)) ∀e ∈ E \{1}; ∀i ∈ A (55)

2n

∑
e′=e

zie′ ≤ (2n− e)(1+(zie− zie−1)) ∀e ∈ E \{1}; ∀i ∈ A (56)

∑
i∈A

Bie ≤ B(te+1− te) ∀e ∈ E \{2n} (57)

Wie ≤ aiBie + ci(te+1− te) ∀e ∈ E \{2n}; ∀i ∈ A (58)

Wie ≤Wizie ∀e ∈ E \{2n} ;∀i ∈ A (59)

∑
e∈E \{2n}

Wie =Wi ∀i ∈ A (60)

Bie ≥ bmin
i (te+1− te)− (bmin

i (max
j∈A

(d j− r j))(1− zie) ∀e ∈ E \{2n} ;∀i ∈ A (61)

Bie ≤ bmax
i (te+1− te) ∀e ∈ E \{2n} ;∀i ∈ A (62)

zie(bmax
i (di− ri))≥ Bie ∀e ∈ E \{2n} ;∀i ∈ A (63)

te ≥ 0 ∀e ∈ E (64)

Bie ≥ 0 ∀i ∈ A ;∀e ∈ E \{2n} (65)

Wie ≥ 0 ∀i ∈ A ;∀e ∈ E \{2n} (66)

zie ∈ {0,1} ∀i ∈ A ;∀e ∈ E (67)

11

In this formulation, constraints are similar to constraints of the start/end formulation. The only
difference lies in constraints (55) and (56). These constraints ensure that there is no preemption in the
processing of tasks.

Proposition 5 ([13]) Constraints (55) and (56), called contiguity constraints, ensure non-preemption.

A proof of this proposition for the RCPSP can be found in [13] and is still valid for the CECSP.
Experiments have been done on randomly generated instances to compare these three models (see

Section 6.1) with the hybrid branch-and-bound procedure proposed in Section 5.

4 Energetic reasoning
In this section we propose a polynomial satisfiability test for CECSP. This test is based on the so-called
energetic reasoning [10] and is an adaptation on the well-known “left-shift/right-shift” test of Baptiste
et al. [3] for the CuSP. We also extend to the CECSP the results of Derrien and Petit [8]. A previous
version of the test for the CECSP with identity function was proposed in [2].

This part extends the results of [17] by providing a much more detailed explanation, a description of
all the results and by considering the case where some tasks can be preempted.

4.1 Mandatory consumption
We start by presenting an elementary necessary condition to check the data consistency and then, we
present our energetic reasoning based satisfiability test.

First, we can observe that, since fi is a non-decreasing function, processing the task at bmax
i during

an interval [t1, t2] gives the most possible energy in this interval. Based on this observation, we can state
the following proposition:

Lemma 6 Let I be an instance of CECSP. If it exists a task i ∈ A for which the condition Wi >
fi(bmax

i)(di− ri) is satisfied, then I is infeasible.

Indeed, since task i has to be processed in interval [ri,di], if this interval is not sufficiently large for
task i to received its required energy, then CECSP can not have a solution.

Now, in order to present our satisfiability test, we define the minimum resource consumption (resp.
energy requirement) of a task i over an interval [t1, t2], b(i, t1, t2) (resp. w(i, t1, t2)). These quantities are
expressed by the following equations:

b(i, t1, t2) = min
S

∫ t2

t1
bi(t)dt S = {bi(t)|bi(t) satisfies (1)− (4′)} (68)

w(i, t1, t2) = min
S

∫ t2

t1
1NZ fi(bi(t))dt (69)

These two quantities are used to compute the slack function of the interval [t1, t2] defined by SL(t1, t2) =
B(t2− t1)−∑i∈A b(i, t1, t2). These definitions allow us to provide the following necessary condition for
CECSP:

Theorem 7 ([2]) Let I be an instance of CECSP. If it exists (t1, t2) ∈ T 2 such that SL(t1, t2) < 0 then
I is infeasible.

Proof By contradiction, suppose that it exists (t1, t2) ∈ T 2 such that SL(t1, t2) < 0 and I is feasible.
Then, by definition of b(i, t1, t2), we have

∫ t2
t1 bi(t)≥ b(i, t1, t2). It implies ∑i∈A

∫ t2
t1 bi(t)≥∑i∈A b(i, t1, t2)≥

B(t2− t1), which contradicts (5). 2

12

In order to have a complete polynomial satisfiability test, we prove that the slack function can be
computed in a polynomial time and that it is sufficient to perform the test on a polynomial number of
intervals.

To compute the slack function in polynomial time, we have analyzed the possible configurations of
minimum resource consumption. First, since fi(b) is a non-decreasing function, we can observe that,
given an interval [t1, t2], the minimum consumption always corresponds to a configuration where task i
is either:

• left-shifted (Figs 4(a),(b),(d),(g)): the task starts at ri and is scheduled at its maximum requirement
between ri and t1,

• right-shifted (Figs 4(b),(c),(f),(i)): the task ends at di and is scheduled at its maximum requirement
between t2 and di,

• or both-shifted (Figs 4(e),(h)): when scheduling at minimum requirement inside [t1, t2] implies to
have a non-zero requirement both in [ri, t1] and in [t2,di].

These configurations are displayed in Fig. 4.

bmin
i

bmax
i

t1ri t2 t

(a)

bmin
i

bmax
i

t1 ri t2di t

(b)

bmin
i

bmax
i

t1 t2 di t

(c)

bmin
i

bmax
i

t1 t2diri t

(d)

bmin
i

bmax
i

t1ri t2 di t

(e)

bmin
i

bmax
i

dit1 ri t2 t

(f)

bmin
i

bmax
i

t1 t2 diri t

(g)

bmin
i

bmax
i

t1ri t2 di t

(h)

bmin
i

bmax
i

dit1ri t2 t

(i)

Figure 4: Possible configurations for minimal resource consumptions of task i over interval [t1, t2].

We will denote ω
+
i (t1, t2) (resp. ω

−
i (t1, t2) and ωi(t1, t2)) the minimum energy requirement of task i

inside [t1, t2] if the task is left-shifted (resp. right-shifted or both-shifted). We have:

• ω
+
i (t1, t2) = max

(
0 , Wi−max(0, t1− ri) fi(bmax

i)
)

• ω
−
i (t1, t2) = max

(
0 , Wi−max(0,di− t2) fi(bmax

i)
)

• ωi(t1, t2) = max
(

fi(bmin
i)(t2− t1) , Wi− fi(bmax

i)(t1− ri +di− t2)
)

Therefore, the minimum energy requirement in [t1, t2] is:

w(i, t1, t2) = min
(

ω
+
i (t1, t2),ω−i (t1, t2),ωi(t1, t2)

)
(70)

13

We still have to compute the minimum required resource consumption. For this, let I be the interval
over which task i has to received an energy w(i, t1, t2), i.e. I = [t1, t2]∩ [ri,di].

We treat separately the case where bmin
i = 0 and the case where bmin

i 6= 0.
First, suppose that bmin

i 6= 0. Then, we can observe that processing a task i at its minimum requirement,
bmin

i , has the best efficiency ratio, i.e. maxx∈[bmin
i ,bmax

i] f (x)/x = f (bmin
i)/bmin

i . So, we have two cases to
consider :

• I is sufficiently large to schedule the task at bmin
i , i.e. |I| ≥ w(i,t1,t2)

fi(bmin
i)

, and then b(i, t1, t2)= bmin
i

w(i,t1,t2)
fi(bmin

i)

• I is not large enough to schedule the task at bmin
i and finding b(i, t1, t2) is equivalent to solving:

minimize
∫

I
bi(t)dt

subject to
∫

I
fi(bi(t))dt ≥ w(i, t1, t2)

By simplifications, we obtain: b(i, t1, t2) = 1
ai
(w(i, t1, t2)−|I|ci).

And, the expression of the minimum resource consumption of i inside [t1, t2] is:

b(i, t1, t2) =

{
0 if w(i, t1, t2) = 0
1
ai
(w(i, t1, t2)−|I|ci)) otherwise

(71)

Example Consider the instance of Example 2.1 with W1 = 31 (instead of 28) and let [t1, t2] = [2,5].
Then we have:

• w(1,2,5) = min(31−11∗2 , 3∗3 , 31−11∗1) = 9 and
b(1,2,5) = max(1∗ 9

3 , 1
2 (9−3∗1)) = 3

• w(2,2,5) = min(32−10∗0 , 32− (10∗ (0+1)) , 32−10∗1) = 22 and
b(2,2,5) = max(2∗ 22

7 , 1
1 (22−3∗5)) = 7

• w(3,2,5) = min(6−2∗0 , 2∗3 , 6−0∗2) = 6 and
b(3,2,5) = max(2∗ 6

2 , 1
1 (6−3∗2)) = 6

Thus, in [2,5], ∑i∈A b(i,2,5) = 3+7+6 = 16 > 5∗ (5−2) = 15. Then the instance is infeasible.

4.2 Time-window adjustments
In this section, we describe some time-adjustments that can be deduced from the satisfiability test. These
adjustments are an adaptation of the adjustments of Baptiste et al. [3].

We start by defining some notations. We denote by β
+
i (t1, t2) (resp. β

−
i (t1, t2) and βi(t1, t2)) the

minimal resource consumption corresponding to ω
+
i (t1, t2) (resp. ω

−
i (t1, t2) or ωi(t1, t2)).

We have:

β
+
i (t1, t2) =

{
0 if ω

+
i (t1, t2) = 0

1
ai
(ω+

i (t1, t2)−|I|ci)) otherwise

and similar expressions for β
−
i (t1, t2) and βi(t1, t2).

Now, we are able to describe our time-window adjustments. Here, we only present the adjustments
on smax

i and di, the adjustments on ri and emin
i can be defined in a similar way.

Given a task i and an interval [t1, t2] the goal is to decide whether i can start after t1.

14

Lemma 8 If it exists [t1, t2] such that:

∑
j∈A
j 6=i

b(j, t1, t2)+β
−
i (t1, t2)> B(t2− t1) (72)

then
smax

i ≤ t1−
1

bmax
i

(∑
j∈A
j 6=i

b(j, t1, t2)+β
−
i (t1, t2)−B(t2− t1)))

Indeed, the only configuration for which task i starts after t1 and leading to the minimum resource
consumption inside [t1, t2] is if the task is right-shifted. Therefore, ∑ j∈A; j 6=i b(j, t1, t2)+β

−
i (t1, t2) is the

total minimum resource consumption in [t1, t2] when task i starts after t1. Hence, if this quantity is greater
than the quantity of available resource in [t1, t2], i has to start before t1 otherwise ∑ j∈A; j 6=i b(j, t1, t2)+∫ t2

t1 bi(t)≥ ∑ j∈A; j 6=i b(j, t1, t2)+β
−
i (t1, t2)≥ B(t2− t1).

Furthermore, ∑ j∈A; j 6=i b(j, t1, t2)+ β
−
i (t1, t2)−B(t2− t1) is the minimum amount of resource that

has to be allocated to i before t1. Hence, we can divide this number by bmax
i to obtain a valid upper bound

of the start time of i.
Similarly, we have the following adjustment on the end time of a task.

Lemma 9 If bmin
i 6= 0 and it exists [t1, t2] such that:

∑
j∈A
j 6=i

b(j, t1, t2)+min(βi(t1, t2),β−i (t1, t2))> B(t2− t1) (73)

then
di ≤ t1 +

1
bmin

i
(B(t2− t1)−∑

j∈A
j 6=i

b(j, t1, t2))

In this case, we have to divide B(t2− t1)−∑ j∈A; j 6=i b(j, t1, t2) by bmin
i instead of bmax

i because we are
looking for a lower bound on the start time of task i. So this bound has to be as far as possible from t1.

Example Consider the instance described in Example 2.1. Let i = 1 and [t1, t2] = [2,5]. We have:

• b(2,2,5) = 7

• b(3,2,5) = 6

• β
−
1 (2,5) = 7 and β1(2,5) = 3

Then, ∑ j∈A; j 6=i b(j,2,5) + β
−
i (2,5) = 7+ 7+ 6 = 20 > 5(5− 2) = 15. Therefore smax

1 can be set to
2− 1

5 (20−15) = 1 and di to 2+(15−13) = 4. Indeed, the available resource quantity in [2,5] for task 1
is equal to 15−7−6 = 2. If task 1 starts after t1 , we need either β

−
1 (2,5) = 7 (the task is right-shifted)

or β
−
1 (2,5) = 7 (the task is right-shifted) units of resource. So, task 1 cannot start after t1. Since bmin

i 6= 0,
the task cannot be interrupted so we have to schedule task 1 before t1. Furthermore, since only 2 units of
resource are available in [2,5], smax

i can be set to 2−1 = 1.

In our algorithm (see Section 6), we perform these adjustments (on smax
i and di) and their symmetric

(on ri and emin
i) over the intervals on which we perform the satisfiability test. So for each interval [t1, t2]

and for each task i, we check whether condition (73) holds (or its symmetric) and if so, we adjust the time
window according to Lemma 9. An interesting question is to know whether these intervals are sufficient
to perform a complete satisfiability test, i.e. to make all possible time-window adjustments.

15

4.3 Relevant intervals
In this section, we start by proving that it is sufficient to perform the satisfiability test on a polynomial
number of intervals and then, we present three ways of computing these intervals.

4.3.1 Complexity

Theorem 10 ([2]) The energetic reasoning (Th. 7) needs only to be applied on O(n2) intervals (with n
the number of tasks).

Proof Since the slack function is the difference of one linear function B(t2 − t1) and a sum of two-
dimensional piecewise linear functions, it is a two-dimensional piecewise linear function. Therefore, its
minimum is reached on an extreme point of one of the convex polygons on which it is linear. As the
breakline segments of the slack function are the same as the ones of the sum of the individual mini-
mum consumption functions, an extreme point of the slack function is the intersection of two breakline
segments of an individual task minimum consumption.

Thus, we only have to perform the satisfiability test over the intervals corresponding to these inter-
section points and, since for each task there is a constant number of breakline segments, there is at most
O(n2) such points and then O(n2) intervals to consider. 2

For each of such intersection points (intervals), we compute the slack function in O(n). Hence, the
satisfiability test and the time-window adjustments take O(n) time. Since the test is performed on a
quadratic number of intervals, the total time complexity is O(n3).

Now, we present three ways of computing these intervals. The first and second one are based on
an analysis of task breakline segments of the individual task minimum consumption function, as done
in [2]. The last one, which is an adaptation of the work of Derrien et al.[8], is based on an analysis of
the derivative of the slack function.

In our analysis, we have considered the following three cases:

• bmin
i = 0

• Wi ≤ fi(bmin
i)(di− ri)

• Wi ≥ fi(bmin
i)(di− ri)

Although the results for all of these cases are displayed in Fig. 5 and Table 2, we only explain how
we get the results for the case where Wi ≥ fi(bmin

i)(di− ri). All other cases are treated in a similar way.

4.3.2 Breakline segment analysis

As the relevant intervals for the satisfiability test correspond to intersection points of two task breakline
segments, we have analyzed the different breakline segments of a task. In [2], this analysis is provided
for function w(i, t1, t2). Therefore, we briefly present their results before explaining how we get similar
results for b(i, t1, t2).

First, an analysis of expression of w(i, t1, t2) depending on the value of (t1, t2) is performed. These
results are displayed in Fig. 5.

For case Wi ≥ fi(bmin
i)(di− ri), we have:

• in the red polygon, w(i, t1, t2) =Wi

• in both green ones w(i, t1, t2) =Wi− (di− t2) fi(bmax
i)

• in blue ones w(i, t1, t2) =Wi− (t1− ri) fi(bmax
i)

• in the yellow one w(i, t1, t2) =Wi− (di− t2 + t1− ri) fi(bmax
i))

• and, in the white one w(i, t1, t2) = (t2− t1) fi(bmin
i)

16

(1) bmin
i = 0

Rmin

•di

Dmax

Rmin ri Dmax

•smax
i

emin
i

• •
•A

•F

•F ′

t1

t2

(2) Wi ≤ fi(bmin
i)(di− ri)

(a) emin
i ≤ smax

i (b) emin
i ≥ smax

i

•
B

•smax
i

emin
i

•

Rmin

•di

Dmax

Rmin ri Dmax

•
•A

t1

t2

•
C

• C′• E

•smax
i

emin
i

•

Rmin

•di

Dmax

Rmin ri Dmax

•
•A

t1

t2

(3) Wi ≥ fi(bmin
i)(di− ri)

(a) emin
i ≤ smax

i (b) emin
i ≥ smax

i

•
D

•D′

•E

•
B

•smax
i

emin
i

••

•

Rmin

•di

Dmax

Rmin ri Dmax

•
•A

t1

t2

•
D

•D′

•
C

• C′

•smax
i

emin
i

••

•

Rmin

•di

Dmax

Rmin ri Dmax

•
•A

t1

t2

Figure 5: Analysis of a task breakline segments

All the other areas correspond to w(i, t1, t2) = 0.
For ease of notation, we define the following set of points:

• A = (ri,di), B = (emin
i ,smax

i), C = (smax
i ,smax

i) and C′ = (emin
i ,emin

i)

• D = (ri,
di fi(bmax

i)−ri fi(bmin
i)−Wi

fi(bmax
i)− fi(bmin

i)
), D′ = (

ri fi(bmax
i)−di fi(bmin

i)+Wi
fi(bmax

i)− fi(bmin
i)

,di)

17

• E = (
ri(fi(bmax

i)− fi(bmin
i))−di fi(bmin

i)+Wi
fi(bmax

i)−2 fi(bmin
i)

,
di(fi(bmax

i)− fi(bmin
i))−ri fi(bmin

i)−Wi
fi(bmax

i)−2 fi(bmin
i)

)

In order to perform the same analysis for function b(i, t1, t2), we have to consider, for each polygon,
the following inequality:

w(i, t1, t2)≤ fi(bmin
i)|I| (74)

i.e. knowing whether the interval |I|= [ri,di]∩ [t1, t2] is large enough to execute i at bmin
i .

In the red polygon, since Wi ≤ fi(bmin
i)(di− ri) is never satisfied, b(i, t1, t2) = 1

ai
(Wi− ci|I|).

For the green polygon, the inequality (74) gives

di fi(bmax
i)− t1 fi(bmin

i)−Wi

fi(bmax
i)− fi(bmin

i)
≤ t2

In case t1 ≤ ri, this inequality is equal to the abscissa of point D and, in the opposite case, the equation
of segment DE. So, the green polygon is divided into two parts:

• the light one where b(i, t1, t2) = bmin
i (w(i, t1, t2)/ fi(bmin

i))

• the dark one where b(i, t1, t2) = 1
ai
(w(i, t1, t2)− ci|I|)

The same results holds for the blue polygon.
By applying the same reasoning, we obtain that, in the yellow polygon b(i, t1, t2) = 1

ai
(Wi− (di−

t2 + t1− ri) fi(bmax
i)− ci(t2− t1)) and in the white one b(i, t1, t2) = (t2− t1)bmin

i . All these results are
displayed in Fig. 5.

Hence, in the case where Wi ≥ fi(bmin
i)(di− ri) the breakline segments to consider are (we denote by

Dt1 (resp. Dt2) the x-coordinate (resp. y-coordinate) of point D):

• for case emin
i ≤ smax

i : (ri,Dmax)A, (Rmin,di)A, (Rmin,smax
i)B,

B(emin
i ,Dmax), AD, AD′, D(0,Dt2), D′(D′t1 ,Dmax), DD′, DE, D′E and EB.

• for case emin
i ≥ smax

i : (ri,Dmax)A, (Rmin,di)A, (Rmin,smax
i)C,

C′(emin
i ,Dmax), AD, AD′, D(0,Dt2), D′(D′t1 ,Dmax), DD′, DC and D′C.

In order to compute the relevant intervals on which we have to perform the satisfiability test, we
have to find, for each pair of breakline segments, their intersection point, if it exists. To achieve this,
we can use either a naive enumeration algorithm or we can use the sweep line algorithm of Bentley-
Ottmann [6]. In the first case, the total complexity of our test will be O(n3) and, in the second case, since
the complexity of the sweep line algorithm is O((n+ k) logn) (with k the total number of intersection
points), the complexity will be O((n2 +nk) logn). Even if the theoretical complexity is higher with the
sweep line algorithm (k may be in O(n2)), in practice, the algorithm may be faster than the naive one
(see Section 6.1).

4.3.3 Slack function analysis

The last way of computing relevant intervals is an adaptation of work of Derrien et al. [8] and is based
on the following theorem:

Theorem 11 The slack function is locally minimum in interval [t1, t2] only if it exists two tasks i and j
such that the following conditions are satisfied:

δ+b(i, t1, t2)
δ t1

<
δ−b(i, t1, t2)

δ t1
(75)

δ+b(j, t1, t2)
δ t2

<
δ−b(j, t1, t2)

δ t2
(76)

with δ+b(j,t1,t2)
δ t2

(resp. δ−b(j,t1,t2)
δ t2

) the right (resp. left) derivative of b(j, t1, t2) w.r.t. t2.

18

Proof By contradiction, suppose (t1, t2) is a local minimum of the slack function and equation (75) is
satisfied for all tasks. Then, SL(t1, t2) has its left derivative greater than or equal to its right. Since, by the
second derivative test, minimal value of a function can only be reached at a point where its left derivative
is lower than its right, (t1, t2) can not be a local minimum of the slack function. The proof for condition
(76) is similar. 2

As for the breakline segment analysis, we only describe our results for the case where Wi≥ fi(bmin
i)(di−

ri) although the results for the other cases are displayed in Table 2.

Theorem 12 Let i be a task. Then, for any fixed t1, at most two intervals [t1, t2] satisfying (76) exist and
are as displayed in Table 2 with:

∆′(t2) =
t2(fi(bmin

i)− fi(bmax
i))+di fi(bmax

i)−Wi
fi(bmin

i)
; Γ′(t2) =

Wi−t2 fi(bmin
i)+ri fi(bmax

i)

fi(bmax
i)− fi(bmin

i)

being breakpoints of function t1→ b(i, t1, t2) and

Γ(t1) =
Wi−t1(fi(bmin

i)− fi(bmax
i))+ri fi(bmax

i)

fi(bmin
i)

; ∆(t1) =
Wi− fi(bmin

i)di+t1 fi(bmax
i)

fi(bmax
i)− fi(bmin

i)

of function t2→ b(i, t1, t2).

Proof Since all cases are treated in a similar way, we only prove the result for the case corresponding to
the eighth column of the left table of Table 2.

In order to prove the lemma, we analyze the variation of t2 → b(i, t1, t2). Fig. 6 represents these
variations. The color corresponds to its expression w.r.t. Fig. 5.

smax
i ∆(t1) Γ(t1) di t2

Figure 6: Relevant intervals for a particular case

The only intervals for which condition (76) is satisfied are [t1,di] and [t1,∆(t1)]. 2

If we apply the symmetric reasoning for fixed t2, we obtain a list of relevant intervals, which is
described in Lemma 13.

Lemma 13 Suppose tasks i and j satisfy: Wl ≥ fl(bmin
l)(dl − rl), l = i, j. Then the slack function is

19

bm
in

i
=

0
W

i
≤

f i(
bm

in
i

)(
d i
−

r i
)

W
i
≥

f i(
bm

in
i

)(
d i
−

r i
)

t 1
≤

em
in

i
t 1
≤

r i
r i
≤

t 1
≤

em
in

i
t 1
≤

r i
r i
≤

t 1
≤

em
in

i

emin
i ≤ smax

i or t1 ≤ Et1

t1 ≥ smax
i

smax
i ≥ t1 ≥ Et1

t1 ≥ D′t1 and (t1 ≤ smax
i or t1 ≤ Et1)

t1 ≤ D′t1

t1 ≥ smax
i

t1 ≥ Et1

[t 1
,d

i]
[t 1
,d

i]
[t 1
,r

i+
d i
−

t 1
][

t 1
,Γ
(t

1)
]

[t 1
,Γ
(t

1)
]

[t 1
,d

i]
[t 1
,Γ
(t

1)
]

[t 1
,d

i]
[t 1
,Γ
(t

1)
]

[t 1
,r

i+
d i
−

t 1
]

[t 1
,∆

(t
1)
]

[t 1
,∆

(t
1)
]

[t 1
,∆

(t
1)
]

bm
in

i
=

0
W

i
≤

f i(
bm

in
i

)(
d i
−

r i
)

W
i
≥

f i(
bm

in
i

)(
d i
−

r i
)

t 2
≥

sm
ax

i
t 2
≥

d i
d i
≥

t 2
≥

sm
ax

i
t 2
≥

d i
d i
≥

t 2
≥

sm
ax

i

emin
i ≤ smax

i or t2 ≥ Et2

t2 ≤ emin
i

emin
i ≤ t2 ≤ Et2

t2 ≥ Dt2 and (t2 ≥ emin
i or t2 ≥ Et2)

t2 ≥ Dt2

t2 ≤ emin
i

t2 ≤ Et2

[r
i,

t 2
]

[r
i,

t 2
]

[r
i+

d i
−

t 2
,t

2]
[∆
′ (

t 2
),

t 2
]

[∆
′ (

t 2
),

t 2
]

[r
i,

t 2
]

[∆
′ (

t 2
),

t 2
]

[r
i,

t 2
]

[∆
′ (

t 2
),

t 2
]

[r
i+

d i
−

t 2
,t

2]
[Γ
′ (

t 2
),

t 2
]

[Γ
′ (

t 2
),

t 2
]

[Γ
′ (

t 2
),

t 2
]

Table 2: Relevant intervals depending of values of t1 and t2

20

locally minimum in (t1, t2) only if it is one of the following intervals:

[r j,di] if (r j ≤ ri∨ (r j ≤ emin
i ∧ r j ≤ D′t1))∧

(di ≥ d j ∨ (di ≥ smax
j ∧di ≥ Dt2))

[∆′(di),di] if (∆′(di)≤ ri∨ (∆′(di)≤ emin
i ∧∆

′(di)≤ D′t1))∧
d j ≥ di ≥ smax

j ∧di ≤ Dt2 ∧di ≥ Et2

[Γ′(di),di] if (Γ′(di)≤ ri∨ (Γ′(di)≤ emin
i ∧Γ

′(di)≤ D′t1))

∧d j ≥ di ≥ smax
j ∧ (di ≥ emin

j ∨di ≥ Et2)

[d j + r j−di,di] if (d j + r j−di ≤ ri∨ (d j + r j−di ≤ emin
i ∧d j + r j−di ≤ D′t1))∧

d j ≥ di ≥ smax
j ∧di ≤ Et2

[r j,Γ(r j)] if ri ≤ r j ≤ emin
i ∧ r j ≥ D′t1 ∧ r j ≤ Et1∧

(Γ(r j)≥ d j ∨ (Γ(r j)≥ smax
j ∧Γ(r j)≥ Dt2))

[r j,∆(r j)] if (∆(r j)≥ d j ∨ (∆(r j)≥ smax
j ∧∆(r j)≥ Dt2))∧

ri ≤ r j ≤ emin
i ∧ (smax

i ≥ r j ∨ r j ≤ Et1)

[r j,di + ri− r j] if (di + ri− r j ≥ d j ∨ (di + ri− r j ≥ smax
j ∧di + ri− r j ≥ Dt2))∧

ri ≤ r j ≤ emin
i ∧ r j ≥ Et1

Lemma 13 By contradiction, suppose the slack function is locally minimum in (t1, t2) and [t1, t2] is not
one of the intervals defined by the lemma. Then, either condition (75) or (76) is not satisfied. Then, by
Th. 11, the slack function can not be locally minimum in (t1, t2). 2

We have described only the case where i and j are such that Wl ≥ fl(bmin
l)(dl−rl), l = i, j. The other

cases to consider are:

• bmin
i = 0 and bmin

j = 0

• bmin
i = 0 and Wj ≤ f j(bmin

j)(d j− r j)

• bmin
i = 0 and Wj ≥ f j(bmin

j)(d j− r j)

• Wl ≤ fl(bmin
l)(dl− rl), l = i, j

• Wi ≥ fi(bmin
i)(di− ri) and Wj ≥ f j(bmin

j)(d j− r j)

These cases are not described in this paper since they are similar to the case we have presented.
In terms of complexity, since three cases of Lemma 13 can not happen simultaneously, we have only,

for all couples of tasks (i, j), at most two intervals to consider. So, the total complexity of the satisfiability
test is still O(n3) but the hidden constant is much smaller than the one of the naive algorithm.

Experimentations have been done on randomly generated instances to compare these three methods
(see Section 6.1).

5 Hybrid Branch and Bound
In this section, we present a hybrid branch-and-bound algorithm to solve the CECSP. First, we use a
branch-and-bound algorithm to reduce the size of possible start and end intervals (until their size is less
than a given ε > 0) and, then, we use our on/off event-based MILP in order to find exact task start and
end times and to determine the quantity of resource allocated to i between two consecutive events, i.e.
Bie, ∀i ∈ A; ∀e ∈ E .

21

The branching procedure is inspired by the work of Carlier et al. [7]. At the beginning, a task can
start (resp. end) at any time sti ∈ [ri,smax

i] (resp eti ∈ [emin
i ,di]). The idea is, at each node, to reduce the

size of one of these intervals. Suppose that we choose to reduce the start time interval of i, then we create
two nodes: one with constraint sti ∈ [ri,(ri + smax

i)/2] and one with constraint sti ∈ [(ri + smax
i)/2,smax

i]
(see Fig. 7).

Problem P
sti ∈ [2,6]

Problem P1
sti ∈ [2,4]

Problem P2
sti ∈ [4,6]

Figure 7: Example of branching procedure

At each node, we apply our satisfiability test and, if the test does not fail, we perform the associated
time-window adjustments. We continue this procedure until all intervals are smaller than an ε , i.e. until
arriving on a leaf of the search tree. When the algorithm is on a leaf, the remaining solution space is
searched via the on/off event-based MILP.

We follow a depth-first strategy in the search tree and we choose the variable on which we will
branch with the following heuristic: we choose the smallest interval among all [ri,smax

i] and [emin
i ,di].

We backtrack when the satisfiability test fails, i.e. the node is infeasible, or when the algorithm is on a
leaf and the MILP fails to provide a solution.

Experimental results, with different values of ε , are provided in Section 6.3.

6 Computational results
In this section, we start by presenting the results of the experiments for the complete satisfiability test
(including time-window adjustments), the MILP models and the hybrid branch-and-bound algorithm.
Then, we compare the results of the branch-and bound algorithm with the ones of the On/Off MILP
formulation and we also compare our results with the ones of [17].

The experiments are conducted on an Intel Core i7-4770 processor with 4 cores and 8 gigabytes of
RAM under the 64-bit Ubuntu 12.04 operating system. We use IBM CPLEX 12.6 with one thread and
a time limit of 7200 seconds for solving the MILP models. The hybrid branch-and-bound algorithm is
coded in C++ and uses CPLEX for solving the On/Off event-based model at each leaf. The total time
limit of the algorithm is set to 7200 seconds.

We generated 15 instances of 10 and 60 tasks respectively, and 30 instances of 20, 25 and 30 tasks
respectively. One third of these instances are instances with identical function fi and the other instances
are generated from these ones by randomly generating ai and ci, ∀i ∈ A, within interval [1,10] and we
set Wi to a random number within [0, fi(Wi)].

6.1 Satisfiability test
We start by presenting the results of the comparison of the three ways for computing relevant intervals
(see Section 4.3). These results are displayed in Table 3. The first column correspond to the naive
algorithm, the second one to the sweep-line algorithm and the last one to the adaptation of [8]. The
sweep line algorithm is the one from the CGAL C++ library 3. The time is set in milliseconds and
corresponds to the time needed to perform the satisfiability test and the time-window adjustments.
As expected, the best way of computing relevant intervals is the third method. The performance of the

3CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.

22

tasks naive sweep-line adaptation of [8]
10 0.462 1.586 0.39
20 3.898 6.195 1.052
25 7.182 7.504 1.731
30 11.544 11.783 3.056
60 45.968 62.824 14.408

Table 3: Results of experiments for computing relevant intervals

sweep-line algorithm is disappointing compared to the naive one. In the remaining experiments, we use
the adaptation of method [8] to perform the energetic reasoning satisfiability test.

6.2 MILP formulation
Table 4 presents the results of the three MILP models. For each model, three columns sum up the results.
The first one corresponds to the time needed to solve instances (if solved), the second one corresponds to
the percentage of solved instances4, and the last one corresponds to the percentage of instances proved
feasible. This last column is set in order to show that the time-indexed MILP model may conclude that
no integer solution exists whereas a fractional solution exists.

Time-indexed On/off event-based Start/End event-based
#tasks time(s) %solved %feasible time(s) %solved %feasible time(s) %solved %feasible

10 0.03 100 86.67 0.23 100 100 0.77 100 100

20 0.2 100 81.82 69.50 96.97 100 592.88 84.85 100

25 0.46 100 81.48 1080.23 92.59 100 1591.93 50 100

30 1.06 100 83.33 1918.33 63.33 100 2441.39 20 100

60 324.46 100 80 – 0 0 – 0 0

Table 4: Results of experiments for the three MILP models

As we can see, the time-indexed model is faster than the event-based models but it cannot be seen as
an exact solution method since, for some instances, only fractional solution exists. Note that among the
two event-based formulations, the On/Off formulation performs better than the Start/End one. Therefore,
this is the formulation used in the hybrid branch-and-bound algorithm. Table 5 shows how many of the
instances proved infeasible by the time-indexed formulation are proved feasible by one of the event-based
formulations.

#tasks %of error of time-indexed model
10 100
20 83.33
25 80
30 80
60 0

Table 5: Comparison of time-indexed and event-based formulations

Table 6 presents the results of both the On/Off and the time-indexed model on CECSPob j. For each
formulation, the first column shows the time spent on solving the MILP. The second column represents
the percentage of instances solved optimally and the third one the percentage of instances for which a
feasible solution has been found. Finally, the last column of the table stands for the average difference

4such that a feasible solution has been found or a proof that no feasible solution exists was obtained

23

of the objective value between the two models. For example, the first value of this column shows that,
for 20-task instances, the objective value returned by the time-indexed formulation is 10% higher than
the one returned by the On/Off formulation.

On/Off model Time-indexed model
#tasks time (s) %optimal %feasible time(s) %optimal %feasible %obj. dev.

20 7200 0 100 7200 0 100 10.08
25 7200 0 44.44 7200 0 66.67 10.11

Table 6: Comparison of the On/Off and the time-indexed formulation for CECSPob j

First, notice that the time-indexed formulation can find feasible solutions for more instances than the
On/Off one. However, none of the two models is able to solve the instances to optimality. Finally, the
On/Off formulation clearly finds solutions with better objective values, i.e. lower resource consumption.

6.3 Hybrid branch-and-bound
In this section, we present the results of the experiments for the hybrid branch-and-bound algorithm. We
present the results of the algorithm with a branching heuristic that chooses the smallest interval [ri,smax

i]
or [emin

i ,di] and split this interval.
Table 7 presents these results for different values of ε (see Section 5), that is 5,10,15. The first

column corresponds to the time needed to solve the instances (if solved), the second one corresponds to
the percentage of solved instances, and the third one is the average number of nodes of the search tree.

ε = 5 ε = 10 ε = 15
#tasks time(s) %solved #nodes time(s) %solved #nodes time(s) %solved #nodes

10 0.28 100 15.07 0.29 100 6.6 0.32 100 3.4

20 85.21 87.88 37.69 26.41 96.97 19.13 52.81 96,97 12

25 519.26 74.07 53.7 124.75 88.89 29 472.11 77.78 19.33

30 570.54 66.67 70.15 782.16 76.67 39.4 670.12 63.33 27.8

60 0.01 13.33 1 0.01 13.33 1 0.01 13.33 1

Table 7: Results of experiments for the hybrid branch-and-bound algorithm

We can see that among all values of tested ε , the value ε = 10 is the one for which the algorithm
performs best. It solves more instances and takes less time on four cases out of five. The only case
where it takes more time is for the instance set of 30 tasks but it solves more instances. Note that for the
60-task instances, the results are similar. This is due to the fact that one of the instances has been proved
infeasible by the energetic reasoning at the root node.

6.4 Comparison of the MILP formulations with hybrid branch-and-bound
In this section, we compare the performance of the MILP formulations with the hybrid branch-and-
bound algorithm. Since we use the On/Off event-based formulation in our algorithm, we start by the
comparison with this formulation.

Table 8 shows the results of the On/Off MILP model and the hybrid branch-and-bound algorithm for
ε = 10. For each solution method, the first column shows the time spent on solving the instances and the
second column presents the percentage of solved instances.

As shown by Table 8 our hybrid branch-and-bound runs faster and solves more instances than the
On/Off MILP model except for the 25-task instances where the hybrid branch-and-bound runs faster but
solves a little less instances.

24

On/Off formulation branch-and-bound
#tasks time(s) %solved time(s) %solved

10 0.23 100 0.29 100
20 69.5 96.97 26.41 96.97
25 1080.23 92.6 124.75 88.89
30 1918.32 63.33 782.16 76.67
60 – 0 0.01 13.33

Table 8: Comparison of the On/Off formulation and the hybrid branch-and-bound

In conclusion, we can see that among all solution methods, the time-indexed MILP provides the
best results but it is not an exact method. If we restrict the experiments to exact methods, the hybrid
branch-and-bound provides the best results.

In the next section, we tested our methods on the instances of [17] and we compare our results with
the ones previously obtained in [17].

6.5 Comparison with existing methods
In this section, we have tested our algorithms on the instances of [17]. Five instances of 10 and 60
tasks and 10 instances of 20, 25 and 30 tasks have been generated with identical power processing rate
functions according to the following framework. The resource availability B is set to 10 and all other
data are randomly generated in their corresponding interval: Wi ∈ [1,1.25 ∗ B], bmin

i ∈ [0,0.25 ∗Wi],
bmax

i ∈ [bmin
i ,2 ∗ bmin

i], ri ∈ [0,0.5 ∗ n] and di ∈ [emin
i ,emin

i + n]. Then, the instances are transformed in
order to obtain two families of instances with power processing rate functions in the following way: the
parameters of the function, ai and ci, ∀i ∈ A, are randomly generated within interval [1,10] and, for the
first family (Family 1), Wi is set to a random number within [0, fi(Wi)] and, for the second family (Family
2), Wi is set to fi(Wi). Experiments are conducted on all instances of Family 1, a subset of instances of
Family 2 (5 instances with 20, 25 and 30 tasks respectively) and on the family with identity functions
(Family 3).

Table 9 presents the results of the comparison of the event-based MILP model proposed in this paper
against the previously existing Start/End event-based model [17]. In this table, the first column describes
the number of tasks, the second and third columns correspond to the result of the existing model, the
fourth and fifth present the result of the new Start/End model and the two last columns set the results of
the On/Off model.

For each of these models, the first column corresponds to the time needed to solve the instances. The
time, set in seconds, is computed in the following way: when one run of the branch-and-bound reaches
the time limit, we set the execution time of this run at 7200 seconds (this execution time is playing the
role of a penalty). The second column shows the percentage of solved instances, i.e. the MILP either
find a solution or prove no solution exists.

First, we can see that our Start/End model solves more instances and finds a solution faster than the
Start/End model of [17]. We can also see that, among all the models, the On/Off one obtains the best
results, as already shown by Table 4.

Table 10 presents the results of the hybrid branch-and-bound algorithm of [17] (first sub-table) and
of the hybrid branch-and-bound proposed in the paper (second sub-table). Both algorithms have been
tested on the three families of instances and with ε = 5.

In this table, the first column describes the number of tasks. The second column represents the
average time (arithmetic mean) needed to solve the instances. The time is computed with the penalty of
7200s whenever a run of the algorithm failed to solve the instance or to prove its infeasibility. The third
and fourth columns show the comparison of the time spent to solve the MILPs in leaves and the time
spent in the tree. The fifth column corresponds to the percentage of solved instances. The sixth column
corresponds to the average number of nodes of the branching tree and, finally, the seventh column shows

25

Start/End [17] Start/End On/Off
#tasks time(s) %solved time(s) %solved time(s) %solved

Family 1
10 0.62 100 0.63 100 0.10 100

20 295.44 100 73.87 100 50.4 100

25 2060.64 77 1980.96 77 554.40 100

30 5418.2 40 5325.92 40 1842.03 90

60 7200 0 7200 0 7200 0

Family 2
20 4788 40 3182.95 60 405.5 100

25 7200 0 7200 0 6020.65 20

30 7200 0 7200 0 7200 0

Family 3
10 0.94 100 0.69 100 0.16 100

20 2237.76 77 2210.48 77 699.41 90

25 5508.41 33 4986.32 33 2636.74 66

30 6509.03 10 6481.32 33 4806.98 40

60 7200 0 7200 0 7200 0

Table 9: Results of experiments for the event-based MILP models on the three families of instances

the percentage of nodes on which either the instance is proved infeasible by the energetic reasoning test
or some time-window adjustments are performed.

From these results, we can see that, due to the use of the On/Off formulation instead of the Start/End
one and of another branching heuristic, our hybrid branch-and-bound works better than the one in [17]
except for the 10-task instances of the third family. Thus, for the small-size instances, using just the
MILP formulation can bring better results than using the branch-and-bound algorithm. Another remark
we can make about these results is that a lot of time is spent in solving the MILP model comparing to
the time spent in the tree. Therefore, improving the model can be an interesting direction for further
research.

7 Conclusions and Perspectives
In this paper, we have presented a polynomial satisfiability test and time-window adjustments for the
CECSP. We have recalled the three different ways for computing relevant intervals for this test and
confirmed that the most efficient ways of doing it is with the adaptation of the slack function analysis of
Derrien et al. [8, 17]. In a second time, we have used these results to design an efficient hybrid branch-
and-bound for our problem, incorporating an event-based MILP formulation that significantly improved
the method proposed in [17]. We also showed that a time-indexed MILP can provide good approximated
solutions in reasonable computational times.

In the near future, the improvement of the hybrid branch-and-bound with a better branching heuristic,
both for choosing the branching variable and the interval cutting point, appears as an important follow-up
of this work.

In a second time, the adaptation of the incremental algorithm of Baptiste et al. [3] for energetic
reasoning as well as the research of the minimal set of interval necessary to perform all time-window
adjustments, as done in [8], seems to be an interesting research direction.

Another improvement of these research works is to include valid inequalities, directly deduced from
energetic reasoning or from a polyhedral analysis, to the linear programs.

Finally, in order to provide better applications to actual scheduling problems under energy con-
straints, it will be interesting to study the case where efficiency function are no longer linear.

26

References
[1] C. Artigues, P. Lopez, and A. Haı̈t (2013). The energy scheduling problem: Industrial case study and

constraint propagation techniques. International Journal of Production Economics, 143(1):13-23.

[2] C. Artigues and P. Lopez. Energetic reasoning for energy-constrained scheduling with a continuous
resource. Journal of Scheduling, In press, DOI:10.1007/s10951-014-0404-y.

[3] P. Baptiste, C. Le Pape and W. Nuijten (2001). Constraint-based scheduling, Kluwer Academic
Publishers, Boston/Dordrecht/London.

[4] J. Błażewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Wȩglarz (2001). Scheduling computer and
manufacturing processes, Springer-Verlag, Berlin/Heidelberg.

[5] J. Błażewicz, M. Machowiak, J. Wȩglarz, M. Kovalyov and D. Trystram (2004). Scheduling mal-
leable tasks on parallel processors to minimize the makespan. Annals of Operations Research, 129(1-
4): 65–80.

[6] J.L. Bentley and T.A. Ottmann (1979). Algorithms for reporting and counting geometric intersec-
tions. IEEE Transactions on Computers, 28(9): 643–647.

[7] J. Carlier and B. Latapie (1991). Une méthode arborescente pour résoudre les problèmes cumulatifs.
RAIRO. Recherche opérationnelle, 25(3): 311–340.

[8] A. Derrien and T. Petit (2014). A new characterization of relevant intervals for energetic reasoning.
Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, 8656, pp.
289–297.

[9] C.-U. Fündeling and N. Trautmann (2010). A priority-rule method for project scheduling with work-
content constraints. European Journal of Operational Research, 203(3): 568–574.

[10] J. Erschler and P. Lopez (1990). Energy-based approach for task scheduling under time and re-
sources constraints. 2nd International Workshop on Project Management and Scheduling, pp. 115-
121, Compiègne, France.

[11] J. Józefowska, M. Mika, R. Różycki, G. Waligóra and J. Wȩglarz (1999). Project scheduling under
discrete and continuous resources. In: J. Wȩglarz (Ed.), Project Scheduling: Recent Models, Algo-
rithms, and Applications. Kluwer Academic Publishers, Boston, pp. 289–308.

[12] T. Kis (2005). A branch-and-cut algorithm for scheduling of project with variable-intensity activi-
ties. Mathematical Programming, Series A, 103: 515–539.

[13] O. Koné, C. Artigues, P. Lopez and M. Mongeau (2011). Event-based MILP models for resource-
constrained project scheduling problems. Computers & Operations Research, 38(1): 3–13.

[14] A. Naber and R. Kolisch (2014). MIP models for resource-constrained project scheduling with
flexible resource profiles. European Journal of Operational Research, 239: 335–348.

[15] A. Naber and R. Kolisch (2014). A continuous time model for the resource-constrained project
scheduling with flexible resource profiles. Proceedings of the 14th International Conference on
Project Management and Scheduling, pp. 166–168, Munich, Germany.

[16] M. Nattaf, C. Artigues and P. Lopez (2014). A polynomial satisfiability test using energetic rea-
soning for energy constraint scheduling. 14th International Workshop on Project Management and
Scheduling, pp. 169–172, Munich, Germany.

[17] M. Nattaf, C. Artigues and P. Lopez (2015). A hybrid exact method for a scheduling problem with
a continuous resource and energy constraints. Constraints, 20(3): 304–324.

27

[18] C. Schwindt (2005). Resource allocation in project management. Springer, Berlin.

[19] J. Wȩglarz, J. Józefowska, M. Mika and G. Waligóra (2009). Project scheduling with finite or
infinite number of activity processing modes - A survey. European Journal of Operational Research,
208: 177–205.

28

#tasks Hybrid Branch-and-Bound [17]
ε = 5

Family 1
Total time(s) CPLEX time(s) Tree time(s) %sol #nodes %cons./adj.

10 0.52 0.51 0.01 100 13.1 5.50

20 111.58 11.49 0.08 100 26.35 5.44

25 1434.84 1434.71 0.14 100 43.65 11

30 3684.34 3684.14 0.22 60 58.77 7.08

Family 2
20 3637.63 3637.59 0.07 40 25.33 61.44

25 5086.14 5086.13 0.01 20 1.5 75

30 7200 7200 – 0 – –

Family 3
10 0.48 0.47 0.01 100 16 26.1

20 2079.57 2079.52 0.05 73 21.64 61.38

25 3523.38 3523.32 0.06 56 27.28 77.78

30 5193.32 5193.28 0.06 10 35.5 63.04

60 5760 5760 0.01 20 1 100

#tasks Hybrid Branch-and-Bound
ε = 5

Family 1
Total time(s) CPLEX time(s) Tree time(s) %sol #nodes %cons./adj.

10 0.14 0.13 0.01 100 15.8 0

20 10.33 10.27 0.06 100 38.72 11.03

25 30.81 30.67 0.14 100 54.22 9.22

30 330.59 330.32 0.28 100 54.22 5.02

Family 2
20 1613.49 1613.43 0.07 80 37.25 69.13

25 5060 5060 <0.01 20 1 100

30 5842.3 5842.24 0.3 20 70 68.57

Family 3
10 860.02 1.34 858.68 100 26.8 32.09

20 2008.62 2008.57 0.06 73 34.36 69.45

25 3345.08 3345.05 0.08 56 27 88.9

30 4315.42 4315.32 0.2 50 43.4 55.3

60 4320 4320 <0.01 40 1 100

Table 10: Results of experiments for the hybrid branch-and-bound on the three families of instances.

29

