
Self-triggered control via dynamic high-gain scaling

(long version)

Johan Peralez a Vincent Andrieu a,b Madiha Nadri a Ulysse Serres a
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Abstract

This paper focuses on the construction of self-triggered state feedback laws. The approach followed is a high-gain approach.
The event which triggers an update of the control law is based on an dynamical system which state is the high-gain parameter.
This approach allows to design control laws ensuring convergence to the origin for nonlinear systems with triangular structure
an a specific upper bound on the nonlinearities.
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1 Introduction

The implementation of a control law on a process re-
quires the use of an appropriate sampling scheme. In
this regards, periodic control (with a constant sampling
period) is the usual approach that is followed for prac-
tical implementation on digital platforms. Indeed, pe-
riodic control benefits from a huge literature, provid-
ing a mature theoretical background (see e.g. [8, 15, 2])
and numerous practical examples. The use of a constant
sampling period makes easier the closed-loop analysis
and the implementation, allowing solid theoretical re-
sults and a wide deployment in the industry. However,
the rate of control execution being fixed by a worst case
analysis (the chosen period must guarantee the stability
for all possible operating conditions), this may lead to
an unnecessary fast sampling rate and then to an over-
consumption of available resources.

The recent growth of shared networked control systems
for which communication and energy resources are of-
ten limited goes with an increasing interest in aperiodic
control design. This can be observed in the comprehen-
sive overview on event-triggered and self-triggered con-
trol presented in [11]. Event-triggered control strategies

? This work was supported by ANR LIMICOS contract
number 12 BS03 005 01.

introduce a triggering condition assuming a continuous
monitoring of the plant (that requires a dedicated hard-
ware) while in self-triggered strategies, the control up-
date time is based on predictions using previously re-
ceived data. The main drawback of self-triggered control
is the difficulty to guarantee an acceptable degree of ro-
bustness, especially in the case of uncertain systems.

Most of the existing results on event-triggered and self-
triggered control for nonlinear systems are based on the
input-to-state stability (ISS) assumption which implies
the existence of a feedback control law ensuring an ISS
property with respect to measurement errors ([19, 7, 1,
16]).

In this ISS framework, an emulation approach is fol-
lowed: the knowledge of an existing robust feedback law
in continuous time is assumed then some triggering con-
ditions are proposed to preserve stability under sam-
pling.

Another proposed approach consists in the redesign of
a continuous time stabilizing control. For instance, the
authors of [14] adapted the original universal formula
introduced by Sontag for nonlinear systems affine in the
control. The relevance of this method was experimen-
tally shown in [20] where the regulation of an omnidi-
rectional mobile robot was addressed.



Although aperiodic control literature has proved an in-
teresting potential, important fields still need to be fur-
ther investigated to allow a wider practical deployment.

The high-gain approach is a very efficient tool to address
the stabilizing control problem in the continuous time
case. It has the advantage to allow uncertainties in the
model and to remain simple.

Different approaches based on high-gain techniques have
been followed in the literature to tackle the output feed-
back problem in the continuous-time case (see for in-
stance [4], [13]) and more recently for the (periodic)
discrete-in-time case (see [18]). In the context of observer
design, [6] proposed the design of a continuous discrete
time observer, revisiting high-gain techniques in order
to give an adaptive sampling stepsize.

In this work, we extend the results obtained in [6] to self-
triggered state feedback control. In high-gain designs,
the asymptotic convergence is obtained by dominating
the nonlinearities with high-gain techniques. In the pro-
posed approach, the high-gain is dynamically adapted
with respect to time varying nonlinearities in order to
allow an efficient trade-off between the high-gain param-
eter and the sampling step size. Moreover, the proposed
strategy is shown to ensure the existence of a minimum
inter-execution time.

The paper is organized as follows. The control problem
and the class of system considered is given in Section 2.
In Section 3, some preliminary results concerning linear
system are given. The main result is stated in Section
4 and its proof is given in Section 5. Finally Section 6
contains an illustrative example.

2 Problem Statement

2.1 Class of considered systems

In this work, we consider the problem of designing a
self-triggered control for the class of uncertain nonlinear
systems described by the dynamical system

ẋ(t) = Ax(t) +Bu(t) + f(x(t)), (1)

where the state x is in Rn; u : R→ R is the control signal
in L∞(R+,R), A is a matrix in Rn×n, B is a vector in
Rn×1 and f : Rn×R is a vector field having the following
triangular structure

A =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

0 · · · · · · 0 1

0 · · · · · · · · · 0


, B =



0
...

0

0

1


, (2)

f(x) =


f1(x1)

f2(x1, x2)
...

fn(x1, x2, . . . , xn)

 . (3)

We consider the case in which the vector field f satisfies
the following assumption.

Assumption 1 (Nonlinear bound) There exist a
non-negative continuous function c, positive real num-
bers c0, c1 and q such that for all x ∈ Rn, we have

|fj(x(t))| ≤c(x1) (|x1|+ |x2|+ · · ·+ |xj |) , (4)

with

c(x1) =c0 + c1|x1|q. (5)

Notice that Assumption 1 is more general than the in-
cremental property introduced in [18] since the function
c is not constant but depends on x1. This bound can be
related also to [17, 13] in which continuous output feed-
back law are designed. Note however that in these works
no bounds are imposed on the function c. Note moreover
that in our context we don’t consider inverse dynamics.

2.2 Updated sampling time controller

The design of a self-triggered controller involves to com-
pute the sequence of control values u(tk) where (tk)k≥0
is a sequence of times to be selected. We refer to the in-
stants tk as execution times. The existence of a minimal
inter-execution time, which is some bound δ > 0 such
that tk+1 − tk ≥ δ for all k ≥ 0, is needed to avoid zero
inter-sampling time leading to Zeno phenomena.

In the sequel, we restrict ourselves to a classic sample-
and-hold implementation. Hence, the input is constant
between any two execution times:

u(t) =u(tk), ∀ t ∈ [tk, tk+1).

Hence, in addition to a feedback controller that com-
putes the control input, event-triggered and self-
triggered control systems need a triggering mechanism
that determines when the control input has to be up-
dated again. This rule is said to be static if it only
involves the current state of the system, and dynamic if
it uses an additional internal dynamic variable [10].

For simplicity, we also assume that the process of mea-
surement, computing the control u(tk) and updating the
actuators can be neglected. This assumption reflects that
in many implementations this time is much smaller than
the time elapsed between the instants tk and tk+1 ([12]).
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2.3 Notation

In this paper, we denote by 〈·, ·〉 the canonical scalar
product in Rn and by ‖ · ‖ the induced Euclidean norm;
we use the same notation for the corresponding induced
matrix norm. Also, we use the symbol ′ to denote the
transposition operation.

In the following, the notation ξ(t−) stands for lim
τ→t
τ<t

ξ(τ).

Also, to simplify the presentation, we introduce the no-
tations ξk = ξ(tk) and ξ−k = ξ(t−k ).

3 Preliminary results: the linear case

In high-gain design, the idea is to consider the nonlinear
terms (the fi’s) as disturbances. A first step consists in
synthesizing a robust control for the linear part of the
system, neglecting the effects of the nonlinearities. Then,
the convergence and robustness are amplified through a
high gain parameter to deal with the nonlinearities.

Therefore, let us first focus on a general linear dynamical
system

ẋ(t) = Ax(t) +Bu(t), (6)

where the state x evolves in Rn and the control u is in R.
The matrixA is in Rn×n andB is a column vector in Rn.

In this preliminary case, we review a well known re-
sult concerning periodic sampling approaches. Indeed,
an emulation approach is adopted for the stabilization
of the linear part: a feedback law is designed in continu-
ous time and a triggering condition is chosen to preserve
stability under sampling.

It is well known that if there exists a feedback control
law (continuous-in-time) u(t) = Kx(t) that asymptot-
ically stabilizes the system then there exists a strictly
positive inter-execution time δk = tk+1 − tk such that
the discrete-in-time control law u(t) = Kx(tk) for t in
[tk, tk+1) renders the system asymptotically stable. This
result is rephrased in the following Lemma 1 whose proof
is postponed in Appendix A.1 and for which we do not
claim any originality.

Lemma 1 Suppose the pair (A;B) is stabilizable, that
is there exists a matrix K in Rn rendering (A + BK)
Hurwitz. Then there exists a strictly positive real number
δ∗ such that for all δ in [0; δ∗) the state feedback

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N, (7)

where (tk)k∈N is the sequence defined as tk+1 = tk + δ
makes the origin of the dynamical system (6) a globally
and asymptotically stable equilibrium.

This result which is based on robustness is valid for gen-
eral matrices A and B. The proof is based on the fact
that if A+BK is Hurwitz, the origin of the discrete time
linear system defined for all k in N as

xk+1 =

[
exp(Aδ) +

∫ δ

0

exp(A(δ − s))BKds

]
xk, (8)

is asymptotically stable for δ sufficiently small.

However, when we consider the particular case in which
A and B satisfy the triangular form as in (1) (integrator
chain), it is shown in the following theorem that the
inter-execution time can be selected arbitrarily large as
long as the control is modified.

Theorem 1 (Chain of integrator) Suppose the ma-
trices A and B have the structure stated in (2). Then for
all gain matrix K in Rn such that A + BK is Hurwitz
there exists a strictly positive real number α∗ such that
for all α in [0, α∗) and for all δ > 0 the state feedback
control law

u(t) = KLx(tk), ∀t ∈ [tk, tk+1),∀k ∈ N (9)

L = diag(Ln, Ln−1, ..., L), (10)

L =
α

δ
, (11)

where (tk)k∈N is the sequence defined as tk+1 = tk + δ
makes the origin of the dynamical system (6) a globally
asymptotically stable equilibrium.

Before proving this theorem, we would like to emphasize
that in the particular case of the chain of integrator the
sampling period time δ can be selected arbitrarily large.

Proof of Theorem 1 : In order to analyze the behavior
of the closed-loop system, let us mention the following
algebraic properties of the matrix L:

LA = LAL, LBK = LBK. (12)

Let us introduce the following change of coordinates:

X =
L

Ln+1
x =

[x1
L

x2
L2
· · · xn

Ln

]′
. (13)

Employing (12), it yields that in the new coordinates the
closed-loop dynamics are for all t in [tk, tk+1):

Ẋ(t) = L(AX(t) +BKXk). (14)

By integrating the previous equality and employing (11)
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it yields for all k in N:

Xk+1 =

[
exp(ALδ) +

∫ δ

0

exp(AL(δ − s))LBKds

]
Xk,

=

[
exp(Aα) +

∫ α

0

exp(A(α− s))BKds
]
Xk.

In other word this is the same discrete dynamics then
the one given in (8) for system (6) in closed loop with
the state feedback KXk. Consequently, from Lemma 1,
there exists a strictly real number α∗ such that X = 0
(and thus x = 0) is a GAS equilibrium for the system
(14) provided Lδ is in [0, α∗). 2

4 Main result: the nonlinear case

We consider now the nonlinear system (1). Let K and α
be chosen to stabilize the linear part of the system and
consider the control

u(t) = KLkx(tk), ∀t ∈ [tk, tk + δk) (15)

L(t) = diag
(
L(t)n, L(t)n−1, ..., L(t)

)
. (16)

It remains to select the sequences Lk and δk to deal with
the nonlinearities.

In the context of a linear growth condition (i.e. if the
bound c(x1) defined in Assumption 1 is replaced by a
constant c), the authors of [18] have shown that a (well
chosen) constant parameter Lk can guarantee the global
stability, provided that Lk is greater than a function of
the bound. Here, we need to adapt the high-gain param-
eter to follow a function of the time varying bound.

Following the idea presented in [6] in the context of ob-
server design, we consider the following update law for
the high-gain parameter:

L̇(t) = a2L(t)M(t)c(x1(t)), ∀t ∈ [tk, tk + δk) (17)

Ṁ(t) = a3M(t)c(x1(t)), ∀t ∈ [tk, tk + δk) (18)

Lk = L−k (1− a1α) + a1α (19)

Mk = 1, (20)

with initial condition L(0) ≥ 1, M(0) ≥ 1 and where
a1, a2, a3 are positive real numbers to be chosen. For a
justification of this type of high-gain update law, the in-
terested reader may refer to [6] where is it shown that
this update law is a continuous discrete version of the
high-gain parameter update law introduced in [17]. Fi-
nally, the execution times tk are given by the following
relations,

t0 = 0, tk+1 = tk + δk, (21)

δk = min{s ∈ R+ | sL((tk + s)−) = α}. (22)

Equations (21)-(22) constitute the triggering mechanism
of the self-triggered strategy. It not directly involves the
state value x but the additional dynamic variable L and
so can be referred as a dynamic triggering mechanism
([10]). The relationship between Lk and δk comes from
equation (11). It highlights the trade-off between high-
gain value and inter-execution time (see [9, 18]).

We are now ready to state our main result which proof
is given in Section 5.

Theorem 2 (Global attractivity via self-triggered
control) Consider the class of uncertain nonlinear sys-
tems described by (1) such that the nonlinear functions
fi’s satisfy Assumption 1. Then there exist positive num-
bers a1, a2, a3, a gain matrix K and α∗ such that for all
α in [0, α∗], the self-triggered feedback (15)-(22) initiated
from L(0) ≥ 1 and M(0) ≥ 1 renders x = 0 a globally at-
tractive equilibrium. Moreover there exists a positive real
number δmin such that δk > δmin for all k and so ensures
the existence of a minimal inter-execution time.

5 Proof of Theorem 2

5.1 Selection of the gain matrix K

Let b be a positive real number such that b < 1
q with q

given in Assumption 1. Let D be the diagonal matrix in
Rn×n defined by D = diag(b, 1 + b, . . . , n+ b− 1). Let P
be a symmetric positive definite matrix and K a vector
in Rn such that (always possible, see [5])

P (A+BK) + (A+BK)TP ≤ −I, (23)

p1I ≤ P ≤ p2I, (24)

p3P ≤ PD +DP ≤ p4P, (25)

with p1, . . . , p4 positive real numbers.

With the matrix K selected it remains to select the pa-
rameters a1, a2, a3 and α∗. This is done in Proposition
1 and 2. Proposition 1 focuses on the existence of the se-
quence (xk, Lk) for all k in N, whereas, based on a Lya-
punov analysis, Proposition 2 shows that a sequence of
quadratic function of scaled coordinates is decreasing.
Based on these two propositions, the proof of Theorem
2 is given in Section 5.4 where it is shown that the time
function L is bounded.

5.2 Existence of the sequence (tk, xk, Lk)k∈N

The first step of the proof is to show that the sequence
(xk, Lk)k∈N = (x(tk), L(tk))k∈N is well defined. Note
that it doesn’t imply that x(t) is defined for all t since
for the time being it has not been shown that the se-
quence tk is unbounded. This is obtained in Section 5.4
when proving Theorem 2.
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Proposition 1 (Existence of the sequence) For all
a1 > 0, a2 ≥ 2n

p3
, a3 > 0 and α > 0 the sequence

(tk, xk, Lk)k∈N is well defined.

Proof of Proposition 1: To show that the sequence is
well defined let us assume that this is not the case and
that there exists k∗ such that (tk, xk, Lk) is well defined
but not (tk+1, xk+1, Lk+1). This implies that there exists
a time t∗ > tk such that x(·) and L(·) are well defined
for all t in [tk, t

∗) and such that

lim
t→t∗
|x(t)|+ |L(t)| = +∞. (26)

Since for all t in [tk, t
∗) we have with (22) L(t) ≤ α

(t−tk) ,

this implies:

L∗ = lim
t→t∗

L(t) ≤ α

(t∗ − tk)
< +∞. (27)

On another hand, let us introduce the following scaled
coordinates for system (1) (see also equation (13))

X(t) = S(t)x(t), (28)

S(t) = diag

(
1

L(t)b
, · · · , 1

L(t)n+b−1

)
=
L(t)

L(t)n+b
.

(29)

Denoting V (X) = X(t)′PX(t), we have along the solu-
tion of (1) and for all t in [tk, t

∗)

˙︷ ︷
V (X) = Ẋ(t)′PX(t) +X(t)′PẊ(t), (30)

where
Ẋ(t) = Ṡ(t)x(t) + S(t)ẋ(t)

= − L̇(t)

L(t)
DS(t)x(t)

+ S(t) [Ax(t) +BKLkxk + f(x(t))]

= − L̇(t)

L(t)
DX(t)

+ L(t)AX(t) + L(t)BKXk + S(t)f(x(t)).
With the preceding equality, (30) becomes for all t in
[tk, t

∗)

˙︷ ︷
V (X) = − L̇(t)

L(t)
X(t)′(PD +DP )X(t)

+ L(t)[X(t)′(A′P + PA)X(t) + 2X(t)′PBKXk]

+ 2X(t)′PS(t)f(x(t)). (31)

Since M > 1, we have with (25) for all t in [tk, t
∗)

− L̇(t)

L(t)
X(t)′(PD +DP )X(t) ≤− p3

L̇(t)

L(t)
X(t)′PX(t)

=− p3a2Mc(x1(t))V (X)

≤− p3a2c(x1(t))V (X).

Moreover, using Young’s inequality, we have

2X(t)′PBKXk ≤ X(t)′PX(t)+Xk(K ′B′P+PBK)Xk.

Hence we have, for all t in [tk, t
∗)

˙︷ ︷
V (X) ≤ −p3a2c(x1(t))V (X) +L[X(t)′(A′P +PA)X(t)

+X ′k(K ′B′P + PBK)Xk] + 2nc(x1(t))V (X)

≤ (−p3a2c(x1(t)) + L(t)λ1 + 2nc(x1(t)))V (X)

+ L(t)λ2Vk,

where 1 λ1 = max{0, λmax(A
′P+PA)

λmin(P ) } and

λ2 = max{0, λmax(K
′B′P+PBK)
λmin(P ) }.

Bearing in mind that L(t) ≤ L∗ for all t in [tk, t
∗) and

since a2 ≥ 2n
p3

, the previous inequality becomes

˙︷ ︷
V (X) ≤ L∗λ1V (X) + L∗λ2Vk.

This gives for all t in [tk, t
∗)

V (t) ≤ exp(λ1L
∗(t− tk))Vk

+

∫ t−tk

0

exp(λ1L
∗(t− tk − s))λ2Vkds

≤ exp(λ1α)Vk + (exp(λ1α)− 1)
λ2
λ1
Vk.

Hence, limt→t∗ |X(t)| < +∞. This, with (27), contradict
(26). Hence, there exist (tk+1, xk+1, Lk+1) and proves
that the sequence is well defined for all k in N. 2

5.3 Lyapunov analysis

This section is devoted to the Lyapunov analysis. It is
shown that a good selection of the parameters a1, a2
and a3 in the high-gain update law (17)-(20) yields the
decrease of the sequences V (Xk)k≥0.

Remark 1 Due to the jumps of the high-gain L at in-
stants tk in equation (19), the Lyapunov function t 7→
V (X(t)) does not decrease continuously as illustrated in
Fig. 1. However, the sequences V (Xk)k≥0 is decreasing.

Fig. 1. Time evolution of Lyapunov function V .

1 If Z is a symmetric matrix, λmax(Z) and λmin(Z) denotes
respectively its largest and its smallest eigenvalue.
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Remark 2 Using the results obtained in [17] on lower
triangular systems, the dynamic scaling (29) includes a
number b. Although the decreases of V (Xk) can be ob-
tained with b = 1, it will be required that bq < 1 in order
to ensure the boundedness of L(·) (see equation (46) in
Section 5.4).

The aim of this subsection is to show the following in-
termediate result.

Proposition 2 (Decrease of scaled coordinates)
There exist positive numbers a1 (sufficiently small), a2
(sufficiently large), and α∗ such that with a3 = 2n and
for all α in [0, α∗] the following property is satisfied:

V (Xk+1)− V (Xk) ≤ −αp1
4p22

∥∥S−k+1S
−1
k

∥∥2 V (Xk). (32)

Proof of Proposition 2 : First of all, we assume that
a2 ≥ 2n

p3
. Hence, with Proposition 1, we know that the

sequence (tk, xk, Lk) is well defined for all k in N. Let k
be in N. The nonlinear system (1) with the control (15)
gives the closed-loop dynamics

ẋ(t) = Ax(t) +BKLkxk + f(x(t)), ∀t ∈ [tk, tk + δk).

Integrating the preceding equality between tk and tk+1

yields

xk+1 = exp(Aδk)xk +

∫ δk

0

exp(A(δk − s))BKLkxkds

+

∫ δk

0

exp(A(δk − s))f(x(tk + s))ds. (33)

Let us first mention the following algebraic properties
satisfied by the matrix function L(·):

L(s)A = L(s)AL(s), (34)

L(s) exp(As) = exp(L(s)As)L(s), (35)

L(s)BK = L(s)BK. (36)

Employing the algebraic properties (34)-(36) we get,
when left multiplying (33) by S−k+1,

S−k+1xk+1 = R+Q(α)S−k+1xk, (37)

where

R =

∫ δk

0

exp(L−k+1A(δk − s))S−k+1f(x(tk + s))ds,

(38)

Q(α) = exp(Aα) + L−k+1

∫ δk

0

exp(L−k+1A(δk − s))BKds

= exp(Aα) +

∫ α

0

exp(A(α− τ))BKdτ, (39)

by the time scaling τ = L−k+1s.

Note that, since we have Xk+1 = ΨS−k+1xk+1 with Ψ =

Sk+1(S−k+1)−1, (37) yields

V (Xk+1) =X ′k+1PXk+1

=(ΨS−k+1xk+1)′PΨS−k+1xk+1

=V (Xk) + T1 + T2,

with

T1 =X ′kS−1k S
−
k+1Q(α)′ΨPΨQ(α)S−k+1S

−1
k Xk − V (Xk),

T2 =2X ′kS−1k S
−
k+1Q(α)′ΨPΨR+R′ΨPΨR.

The following two steps are devoted to upper bound
the two terms T1 and T2. The fact that the Lyapunov
function is decreasing is due to the term T1 which will
be shown to be negative. The second term is handled by
robustness.

Lemma 2 Let a1 = 1
2p2p4

. There exists α∗ > 0 suffi-

ciently small such that for all α in [0, α∗)

T1 ≤ −

[
p3p1a2
a3

(
exp

(
a3

∫ tk+δk

tk

c(r)dr

)
− 1

)
+
αp1
4p2

]
× ‖S−k+1xk‖

2, (40)

where c(r) = c(x1(r)).

The proof of Lemma 2 is inspired from [6] in which sim-
ilar computations are derived. This one is postponed in
Appendix A.2.

Lemma 3 There exist two real positive continuous func-
tions N1 and N2 such that the following inequality holds

T2 ≤ ‖S−k+1xk‖
2N1(α)

[
exp

(
n

∫ δk

0

c(tk + r)dr

)
− 1

]2

+
∥∥S−k+1xk

∥∥2N2(α)

[
exp

(
n

∫ δk

0

c(tk + r)dr

)
− 1

]
.

The proof of Lemma 3 is postponed in Appendix A.3.

With the two bounds obtained for T1 and T2, we get

V (Xk+1)− V (Xk) ≤
∥∥S−k+1xk

∥∥2 [N1(α)
[
eβ − 1

]
+N2(α)

[
eβ − 1

]2 − p3p1a2
a3

[
e

a3
n β − 1

]
− αp1

4p2

]
,
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where we have put

β = n

∫ δk

0

c(tk + r)dr.

If we take a3 = 2n, the previous inequality becomes

V (Xk+1)− V (Xk) ≤
∥∥S−k+1xk

∥∥2 [− αp1
4p2

+
[
eβ − 1

] [
N1(α) +N2(α)

[
eβ − 1

]
− p3p1a2

2n

[
eβ + 1

]] ]
≤
∥∥S−k+1xk

∥∥2 [− αp1
4p2

+
[
eβ − 1

] [
eβ + 1

] [
N1(α) +N2(α)− p3p1a2

2n

] ]
.

For a2 ≥= 2n
N1(α) +N2(α)

p3p1
it yields

V (Xk+1)− V (Xk) ≤ −αp1
4p2

∥∥S−k+1xk
∥∥2 ,

≤ −αp1
4p22

∥∥S−k+1S
−1
k

∥∥2 V (Xk).

2

5.4 Boundedness of L and proof of Theorem 2

Although the construction of the updated law for the
high-gain parameter (17)-(20) follows the idea developed
in [6], the study of the behavior of the high-gain param-
eter is more involved. Indeed, in the context of observer
design of [6], the nonlinear function c was assumed to
be essentially bounded while in the present work, c is
depending on x1. This implies that the interconnection
structure between state and high-gain dynamics must
be further investigated.

Proof of Theorem 2 : Assume a1, a2, a3 and α∗ have
been selected as in Proposition 1 and 2. With Proposi-
tion 1, it yields that for all k in N, the triple (tk, Xk, Lk)
is well defined. Moreover, in the proof of Proposition 1,
it has been shown that the following inequality holds for
all s in [0, δk)

V (tk + s) ≤
[
exp(λ1α) + (exp(λ1α)− 1)

λ2
λ1

]
Vk. (41)

With Proposition 2, (Vk)k∈N is a non increasing se-

quence, hence V (t) and |x1(t)|
L(t)b

= X1(t) are also bounded

on the time of existence of the solution.

With this result in hand, let us analyze the high-gain
dynamics. We have for all k and all t in [tk, tk+1), L̇(t) =

a2
a3
L(t)Ṁ(t). This implies that for all s in [tk, tk+1)

L(s) = exp

(
a2
a3

∫ s

tk

Ṁ(ν)dν

)
Lk,

= exp

(
a2
a3
M(s)− a2

a3

)
Lk. (42)

Consequently, from (19) and (22)

Lk+1 = exp

(
a2
a3

(M−k+1 − 1)

)
Lk(1− a1α) + a1α,

(43)

and δk satisfies

exp

(
a2
a3

(M−k+1 − 1)

)
δkLk = α.

SinceM−k+1 ≥ 1, a2 ≥ 0 and a3 ≥ 0 the previous equality
implies

δkLk ≤ α . (44)

Moreover, we have

Ṁ(s) = a3M(s)c(x1(s)),

= a3M(s)(c0 + c1|x1|q),

= a3M(s)

(
c0 + c1

(
|x1(s)|
L(s)b

)q
L(s)bq

)
,

≤ a3M(s)(c0 + c1c∞L(s)bq),

where c∞ is a bound which comes from the Lyapunov
analysis and the fact that as long as the solution ex-

ists |x1(s)|
L(s)b

is bounded. Since L(s) ≥ 1, this implies that

Ṁ(s) ≤ a3(c0 + c1c∞)M(s)L(s)bq, giving with (42)

Ṁ(s) ≤ CM(s) exp

(
a2
a3
bq(M(s)− 1)

)
Lbqk ,

where C = a3(c0 + c1c∞). Let ψ(s) be a solution to the
scalar dynamical system

ψ(0) = 1 , ψ̇ = Cψ exp

(
a2
a3
bq(ψ − 1)

)
.

This dynamical system is defined in [0, T ). Note that we
have employing Gronwall Lemma that for all s such that

0 ≤ (s− tk)Lbqk < T

M(s) ≤ ψ((s− tk)Lbqk ).

Consequently for all s such that 0 ≤ (s− tk)Lbqk < T

M−k+1 = M(tk + δ−k ) ≤ ψ
(
δkL

bq
k

)
.
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From this we get employing (44) that for all k such that

Lbq−1k < T
α

1 ≤M−k+1 ≤ ψ
(
αLbq−1k

)
, (45)

and we get employing (43) that for all k such that

Lbq−1k < T
α

Lk+1 ≤ F (Lk), (46)

where

F (Lk) = exp
(
ψ
(
αLbq−1k

)
− 1
)
Lk(1− a1α) + a1α.

Note that since bq < 1 and ψ(0) = 1, it yields that for L
large enough Lbq−1 < T

α and

lim
L→+∞

F (L)

L
= 1− a1α < 1.

Consequently, there exists L̄ such that for all L > L̄,
F (L̄) < L̄. To show that the sequence Lk is bounded, it
remains to look the maximal value that can be reached
starting from Lk < L̄ in one iteration. From (43) and
(45), we get that Lk+1 is a continuous function of Lk
and then admit a maximum.

Hence there exists a positive real number Lmax such that
for all t, 1 ≤ L(t) ≤ Lmax. This implies that for all k,
Lk

L−
k+1

≥ 1
Lmax

. Consequently inequality (32) becomes

V (Xk+1)− V (Xk) ≤ −αp1
4p22

1

Ln+b−1∞
V (Xk).

Hence, with (41), this implies

lim
t→+∞

V (X(t)) = 0.

Employing the fact that L(·) is bounded once again, this
yields

lim
t→+∞

‖x(t)‖ = 0.

Moreover, from inequality (44) we can conclude that
there exists a positive real number δmin = α

Lmax
such

that δk > δmin for all k.

6 Illustrative example

We apply our approach to the following uncertain third-
order system proposed in [13]

ẋ1 = x2
ẋ2 = x3

ẋ3 = θx21x3 + u

(47)

where θ is a constant parameter which only a magnitude
bound θmax is known. The stabilization of this problem
is not trivial even in the case of a continuous-in-time
controller. The difficulties come from the nonlinear term
x21x3 that makes x3 dynamics not globally Lipschitz, and
from the uncertainty on θ value, preventing the use of a
feedback to cancel the nonlinearity.

However, system (47) belongs to the class of systems (1)
and the Assumption 1 is satisfied with c(x1) = θmaxx

2
1.

Hence, by Theorem 2, self-triggered feedback controller
(15)-(22) can be constructed. Simulation were conducted
with gain matrix K and coefficient α selected as

K =
[
−1 −3 −3

]′
, α = 0.4

to stabilize the linear part of the system (47). Parameters
a1, a2 and a3 have then been selected through a trial
and error procedure as follows:

a1 = 1, a2 = 1, a3 = 1.

Simulation results are given in Fig. 2 and Fig. 3. The
evolution of the control and state trajectories are dis-
played in Fig. 2 for a particular initial condition. The
corresponding evolution of the Lyapunov function V and
the high-gain L are shown in Fig. 2. We can see how the
inter-execution times δk adapts to the nonlinearity. In-
terestingly, it allows a significant increase of δk when the
state is close to the origin: L(t) then goes to 1 and con-
sequently δk increases toward α value (that was selected
as α = 0.4 in this simulation).

−30

−20

−10

0

10

 

 

x1
x3
x3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−100

0

100

200

300

 

 

u

Fig. 2. Control signal and state trajectories of (47) with
(x1, x2, x3) = (5, 5, 10) as initial conditions.

7 conclusion

In this paper a novel self-triggered state feedback law
has been given. This one is based on a high-gain method-
ology. The event which triggers an update of the con-
trol law is based on an dynamical system which state
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Fig. 3. Simulation results

is the high-gain parameter. This approach allows to de-
sign control laws ensuring convergence to the origin for
nonlinear systems with triangular structure an a specific
upper bound on the nonlinearities.

A Proofs of Lemmas

A.1 Proof of Lemma 1

Let P be a symmetric positive definite matrix. K ren-
dering (A+BK) Hurwitz, we have

P (A+BK) + (A+BK)TP ≤ −λP, (A.1)

pI ≤ P ≤ I, (A.2)

with λ, p and some positive real numbers.

For all τ in [0; δ), the solution of the closed loop is

x(tk+τ) =

[
exp(Aτ) +

∫ τ

0

exp(A(τ − s))BKds
]
x(tk).

(A.3)
In order to proof that the origin is the GAS equilibrium,
we shall show that the Lyapunov function V (x(t)) =
x(t)′Px(t) is decreasing toward zero along the solution
to the system. From (A.3), it comes for all τ in [0; δ)

V (tk + τ) = x(tk + τ)′Px(tk + τ)

= x(tk)′Ψ(τ)′PΨ(τ)x(tk)

where

Ψ(τ) = exp(Aτ) +

∫ τ

0

(exp(A(τ − s))BK)ds.

Given v in Sn−1 = {v ∈ Rn | ‖v‖ = 1}, consider the
function

ν(τ, v) = v′Ψ(τ)′PΨ(τ)v.

We have

ν(0, v) = v′Pv,

∂ν

∂τ
(0, v) = v′[P (A+BK) + (A+BK)′P ]v

≤ −λv′Pv. (A.4)

Now, we can write

ν(τ, v) = v′Pv + τ
∂ν

∂τ
(0, v) + ρ(τ, v),

with limτ→0
ρ(τ,v)
τ = 0. This equality together with

(A.4) imply that

ν(τ, v) ≤ (1− τλ)v′Pv + ρ(τ, v).

The vector v being in a compact set and the function ρ
being continuous, there exists δ∗ such that for all δ in
[0; δ∗) we have ρ(δ, v) ≤ δλ

2 v
′Pv for all v. This gives

ν(δ, v) ≤
(

1− δλ

2

)
v′Pv, ∀ δ ∈ [0, δ∗),∀ v ∈ Sn−1.

This property being true for every v in Sn−1, we have

Ψ(δ)′PΨ(δ) ≤
(

1− δλ

2

)
P,

and there exists δ∗ such that for all δ in [0; δ∗) we have

V (tk + δ) ≤
(

1− δλ

2

)
x(tk)′Px(tk)

=

(
1− δλ

2

)
V (tk).

A.2 Proof of Lemma 2

The proof of Lemma 2 uses the following lemma whose
proof is given in Appendix A.4.

Lemma 4 Taking a1 sufficiently small, there exists
α1 > 0 such that for all α < α1 we have

Q(α)′ΨPΨQ(α) ≤ P − α

4p2
P.

Proof of Lemma 2: We have, for all v in Rn

v′S−k+1PS
−
k+1v − vS

′
kPSkv =

v′
(∫ tk+1

tk

dS(s)

ds
PS(s) + SP dS(s)

ds
ds

)
v.
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However, we have for all s in [tk, tk+1)

dS(s)

ds
= − L̇(s)

L(s)
DS(s).

Consequently, it yields

v′S−k+1PS
−
k+1v − vS

′
kPSkv

= v′

(∫ tk+1

tk

− L̇(s)

L(s)
S(s)[DP + PD]S(s)ds

)
v.

Note that since L(0) > 1, it yields that L(t) > 1 on the
time of existence of the solution. Moreover, we have also
L̇ ≥ 0 and taking into account the bounds on P in (24)
and on DP + PD in (25), we get
v′S−k+1PS

−
k+1v − vS ′kPSkv

≤ v′
(
p3

∫ tk+1

tk

− L̇(s)

L(s)
S(s)PS(s)ds

)
v

= v′
(
p3

∫ tk+1

tk

−a2M(s)c(s)S(s)PS(s)ds

)
v

= v′

(
p3

∫ tk+1

tk

−a2 exp

(
a3

∫ tk+1

tk

c(r)dr

)
× c(s)S(s)PS(s)ds

)
v

≤ −p3p1a2v′
(∫ tk+1

tk

exp

(
a3

∫ tk+1

tk

c(r)dr

)
× c(s)‖S(s)‖2ds

)
v.

Note that since Lk ≤ L−k+1, we finally get

v′S−k+1PS
−
k+1v − vS ′kPSkv

≤ −p3p1a2v′
(∫ tk+1

tk

exp

(
a3

∫ tk+1

tk

c(r)dr

)
c(s)

× ‖S−k+1‖
2ds

)
v

= −p3p1a2
a3

v′
(

exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

)
‖S−k+1‖

2v

≤ −p3p1a2
a3

(
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

)
‖S−k+1v‖

2.

The previous inequality with v = xk, together with
Lemma 4, ensures the bound (40). This ends the proof
of Lemma 2. 2

A.3 Proof of Lemma 3

First, we seek for an upper bound of the norm of
S−k+1f(x(tk + s)). We have

‖S−k+1f(x(tk + s))‖2

=

n∑
j=1

(
(L−k+1)−b−j+1fj(x(tk + s))

)2
≤

n∑
j=1

(L−k+1)2(−b−j+1)

(
j∑
i=1

c(tk + s)|xi(tk + s)|

)2

= c(tk + s)2
n∑
j=1

(
j∑
i=1

(L−k+1)−b−j+1|xi(tk + s)|

)2

.

Since L−k+1 ≥ 1, we have (L−k+1)−b−j+1 ≤ (L−k+1)−b−i+1

whenever 1 ≤ i ≤ j. It yields

‖S−k+1f(x(tk + s))‖2

≤ c(tk + s)2
n∑
j=1

(
n∑
i=1

(L−k+1)−b−i+1|xi(tk + s)|

)2

≤ c(tk + s)2
n∑
j=1

n‖S−k+1x(tk + s)‖2

= n2c(tk + s)2‖S−k+1x(tk + s)‖2. (A.5)

Hence, from (38) and (A.5), we get

‖R‖ ≤
∫ δk

0

exp
(
L−k+1‖A‖(δk − s)

)
nc(tk + s)

× ‖S−k+1x(tk + s)‖ds

= exp(‖A‖α)

∫ δk

0

exp
(
−L−k+1‖A‖s

)
nc(tk + s)

× ‖S−k+1x(tk + s)‖ds.
(A.6)

Moreover, we have for all s in [0; δk)

S−k+1ẋ(tk + s)

= S−k+1Ax(tk + s) + S−k+1BKLkxk + S−k+1f(x(tk + s)).

Denoting byw(s) the expression S−k+1x(tk+s), this gives

d

ds
‖w(s)‖ =

〈ẇ(s), w(s)〉
‖w(s)‖

≤ ‖ẇ(s)‖

≤
∥∥L−k+1Aw(s)

∥∥+
∥∥S−k+1BKLkxk

∥∥
+
∥∥S−k+1f(x(tk + s)

∥∥
≤ (L−k+1 ‖A‖+ nc(tk + s)) ‖w(s)‖

+
∥∥BK(L−k+1)−b−n+1Lkxk

∥∥ , by (A.5)

≤ (L−k+1 ‖A‖+ nc(tk + s)) ‖w(s)‖
+ ‖BK‖ ‖w(0)‖ .
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Hence, integrating the previous inequality, we obtain

‖w(s)‖ ≤
∫ s

0

(L−k+1‖A‖+ nc(tk + s))‖w(s)‖ds

+ ‖BK‖‖ ‖w(0)‖ s+ ‖w(0)‖ .

Since (L−k+1‖A‖+nc(tk+s)) is a continuous non-negative
function and (‖BK‖ s+1) ‖w(0)‖ is non-decreasing, ap-
plying a variant of the Gronwall-Bellman inequality (see
[3, Theorem 1.3.1]), it comes

‖w(s)‖ ≤ (‖BK‖ s+ 1) ‖w(0)‖

× exp

(∫ s

0

(L−k+1‖A‖+ nc(tk + r)dr

)
,

and we have

‖S−k+1x(tk + s)‖ ≤(‖BK‖ s+ 1) exp

(∫ s

0

L−k+1‖A‖

+nc(tk + r)dr

)∥∥S−k+1xk
∥∥

=(‖BK‖ s+ 1) exp
(
L−k+1‖A‖s

)
× exp

(∫ s

0

nc(tk + r)dr

)∥∥S−k+1xk
∥∥ .

(A.7)

Consequently, according to (A.6) and (A.7), we get

‖R‖ ≤ exp(‖A‖α)

∫ δk

0

nc(tk + s)(‖BK‖ s+ 1)

× exp

(∫ s

0

(nc(tk + r)dr

)∥∥S−k+1xk
∥∥ ds

≤ exp(‖A‖α)

∫ δk

0

nc(tk + s)(‖BK‖ δk + 1)

× exp

(∫ s

0

(nc(tk + r)dr

)∥∥S−k+1xk
∥∥ ds

≤ exp(‖A‖α)(α ‖BK‖+ 1)

∫ δk

0

nc(tk + s)

× exp

(∫ s

0

(nc(tk + r)dr

)
ds
∥∥S−k+1xk

∥∥
= exp(‖A‖α)(α ‖BK‖+ 1)

×

[
exp

(∫ δk

0

(nc(tk + r)dr

)
− 1

]∥∥S−k+1xk
∥∥ .

Hence, employing Lemma 5 this gives the existence of
two continuous function N1 and N2 such that

T2 =R′ΨPΨR+ 2X ′kS−1k S
−
k+1Q(α)′ΨPΨR,

≤‖S−k+1xk‖
2N1(α)

[
exp

(
n

∫ δk

0

c(tk + r)dr

)
− 1

]2

+
∥∥S−k+1xk

∥∥2N2(α)

[
exp

(
n

∫ δk

0

c(tk + r)dr

)
− 1

]
,

where

N1(α) = exp(2‖A‖α)(α ‖BK‖+ 1)2
‖P‖

(1− a1α)2(n−b+1)
,

N2(α) = 2 exp(‖A‖α)(α ‖BK‖+ 1)
‖Q(α)‖ ‖P‖

(1− a1α)2(n−b+1)
.

A.4 Proof of Lemma 4

In order to prove Lemma 4, we need the following lemma
which will be proved in the next section. and which is
an adaptation du lemme 2 de [6].

Lemma 5 The matrix P satisfies the following property
for all a1 and α such that a1α < 1

ΨPΨ ≤ ψ0(α)Pψ0(α), (A.8)

where

ψ0(α) = diag

(
1

(1− a1α)b
, . . . ,

1

(1− a1α)n+b−1

)
.

Given v in Sn−1 = {v ∈ Rn | ‖v‖ = 1}, consider the
function

ν(α, v) = v′Q(α)′ψ0(α)Pψ0(α)Q(α)v.

We have

Q(α) = exp(Aα) +

∫ α

0

exp(A(α− s))BKds,

Q(0) = I,

∂Q

∂α
(0) = A+BK,

ψ0(0) = I,

∂ψ0

∂α
(0) = a1D,

then

ν(0, v) = v′Pv,

∂ν

∂α
(0, v) = v′ [P [A+BK + a1D] + [A+BK + a1D]′P ] v.
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So using the inequalities in (23)-(25) and setting a1 =
1

2p2p4
, we get

∂ν

∂α
(0, v) ≤ v′

(
a1p4P −

1

p2
P

)
v

= − 1

2p2
v′Pv. (A.9)

Now, we can write

ν(α, v) = v′Pv + α
∂ν

∂α
(0, v) + ρ(α, v)

with limα→0
ρ(α,v)
α = 0. This equality together

with (A.9) imply that

ν(α, v) ≤ v′Pv
[
1− α 1

2p2

]
+ ρ(α, v).

The vector v being in a compact set and the function r
being continuous, there exists α∗ such that for all α in
[0, α∗) we have r(α, v) ≤ α 1

4p2
v′Pv for all v. This gives

ν(α, v) ≤ v′Pv
[
1− α 1

4p2

]
,∀ α ∈ [0, α∗),∀ v ∈ Sn−1.

This property being true for every v, this ends the proof
of Lemma 4.

A.5 Proof of Lemma 5

Consider the matrix function defined as

P(s) = diag(sb, . . . , sn+b−1)P diag(sb, . . . , sn+b−1).

Note that for all v in Rn

d

ds
v′P(s)v =

1

s
v′ diag(sb, . . . , sn+b−1)(D′P + PD)

× diag(sb, . . . , sn+b−1)v

>0.

Hence, P is an increasing function. Furthermore, we
have

ΨPΨ =Sk+1(S−k+1)−1PSk+1(S−k+1)−1

= diag

(L−k+1

Lk+1

)b
, . . . ,

(
L−k+1

Lk+1

)n+b−1P

×diag

(L−k+1

Lk+1

)b
, . . . ,

(
L−k+1

Lk+1

)n+b−1
=P

(
L−k+1

L−k+1(1− a1α) + a1α

)
,

Hence, as

L−k+1

L−k+1(1− a1α) + a1α
≤ 1

1− a1α
,

we get the inequality of Lemma 5, i.e., ΨPΨ ≤
P
(

1
1−a1α

)
.
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