
HAL Id: hal-01234174
https://hal.science/hal-01234174v2

Preprint submitted on 19 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-triggered control via dynamic high-gain scaling
(long version)

Johan Peralez, Vincent Andrieu, Madiha Nadri, Ulysse Serres

To cite this version:
Johan Peralez, Vincent Andrieu, Madiha Nadri, Ulysse Serres. Self-triggered control via dynamic
high-gain scaling (long version). 2016. �hal-01234174v2�

https://hal.science/hal-01234174v2
https://hal.archives-ouvertes.fr


Self-triggered control via dynamic high-gain scaling (Long Version)

Johan Peralez, Vincent Andrieu, Madiha Nadri, Ulysse Serres ∗†‡

April 19, 2016

Abstract

This paper focuses on the construction of self-triggered state
feedback laws. The approach followed is a high-gain ap-
proach. The event which triggers an update of the control
law is based on an dynamical system in which the state is
the high-gain parameter. This approach allows to design a
control law ensuring convergence to the origin for nonlin-
ear systems with triangular structure and a specific upper
bound on the nonlinearities.

1 Introduction

The implementation of a control law on a process requires
the use of an appropriate sampling scheme. In this regards,
periodic control (with a constant sampling period) is the
usual approach that is followed for practical implementa-
tion on digital platforms. Indeed, periodic control benefits
from a huge literature, providing a mature theoretical back-
ground (see e.g. [10, 20, 2, 19, 12]) and numerous practical
examples. The use of a constant sampling period makes
easier the closed-loop analysis and the implementation, al-
lowing solid theoretical results and a wide deployment in the
industry. However, the rate of control execution being fixed
by a worst case analysis (the chosen period must guarantee
the stability for all possible operating conditions), this may
lead to an unnecessary fast sampling rate and then to an
overconsumption of available resources.

The recent growth of shared networked control systems
for which communication and energy resources are often
limited goes with an increasing interest in aperiodic control
design. This can be observed in the comprehensive overview
on event-triggered and self-triggered control presented in
[14]. Event-triggered control strategies introduce a trigger-
ing condition assuming a continuous monitoring of the plant
(that requires a dedicated hardware) while in self-triggered
strategies, the control update time is based on predictions
using previously received data. The main drawback of self-
triggered control is the difficulty to guarantee an acceptable
degree of robustness, especially in the case of uncertain sys-
tems.

Most of the existing results on event-triggered and self-
triggered control for nonlinear systems are based on the
input-to-state stability (ISS) assumption which implies the
existence of a feedback control law ensuring an ISS property
with respect to measurement errors ([26, 9, 1, 22]).
In this ISS framework, an emulation approach is followed:
the knowledge of an existing robust feedback law in contin-
uous time is assumed then some triggering conditions are
proposed to preserve stability under sampling (see also the
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approach of [25]).

Another proposed approach consists in the redesign of a
continuous time stabilizing control. For instance, the au-
thors of [18] adapted the original universal formula intro-
duced by Sontag for nonlinear systems affine in the control.
The relevance of this method was experimentally shown in
[27] where the regulation of an omnidirectional mobile robot
was addressed.

Although aperiodic control literature has proved an in-
teresting potential, important fields still need to be further
investigated to allow a wider practical deployment.

The high-gain approach is a very efficient tool to address
the stabilizing control problem in the continuous time case.
It has the advantage to allow uncertainties in the model and
to remain simple.

Different approaches based on high-gain techniques have
been followed in the literature to tackle the output feedback
problem in the continuous-time case (see for instance [6],
[16], [8]) and more recently for the (periodic) discrete-in-
time case (see [24]). In the context of observer design, [4]
proposed the design of a continuous discrete time observer,
revisiting high-gain techniques in order to give an adaptive
sampling stepsize.

In this work, we extend the results obtained in [4] to self-
triggered state feedback control. In high-gain designs, the
asymptotic convergence is obtained by dominating the non-
linearities with high-gain techniques. In the proposed ap-
proach, the high-gain is dynamically adapted with respect
to time varying nonlinearities in order to allow an efficient
trade-off between the high-gain parameter and the sampling
step size. Moreover, the proposed strategy is shown to en-
sure the existence of a minimum inter-execution time.

The paper is organized as follows. The control problem
and the class of considered systems is given in Section 2. In
Section 3, some preliminary results concerning linear sys-
tems are given. The main result is stated in Section 4 and
its proof is given in Section 5. Finally Section 6 contains an
illustrative example.

This is the long version of a paper which has been pub-
lished in [21].

2 Problem Statement

2.1 Class of considered systems

In this work, we consider the problem of designing a self-
triggered control for the class of uncertain nonlinear systems
described by the dynamical system

ẋ(t) = Ax(t) +Bu(t) + f(x(t)), (1)

where the state x is in Rn, u : R→ R is the control signal in
L∞(R+,R), A is a matrix in Rn×n, B is a vector in Rn×1 and
f : Rn → Rn is a vector field having the following triangular
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structure

A =


0 1 (0)

. . .
. . .
0 1

(0) 0

 , B =


0
...
0
1

 , (2)

f(x) =


f1(x1)

f2(x1, x2)
...

fn(x1, x2, . . . , xn)

 . (3)

We consider the case in which the vector field f satisfies the
following assumption.

Assumption 2.1 (Nonlinear bound) There exist a
non-negative continuous function c, positive real numbers
c0, c1 and q such that for all x ∈ Rn, we have

|fj(x(t))| 6c(x1) (|x1|+ |x2|+ · · ·+ |xj |) , (4)

with

c(x1) =c0 + c1|x1|q. (5)

Notice that Assumption 2.1 is more general than the incre-
mental property introduced in [24] since the function c is
not constant but depends on x1. This bound can be related
also to [23, 16] in which continuous output feedback law are
designed. However, in these works no bounds are imposed
on the function c. Note moreover that in our context we
don’t consider inverse dynamics.

2.2 Updated sampling time controller

The design of a self-triggered controller involves to compute
the sequence of control values u(tk) where (tk)k>0 is a se-
quence of times to be selected. We refer to the instants tk as
execution times. The existence of a minimal inter-execution
time, which is some bound δ > 0 such that tk+1 − tk > δ
for all k > 0, is needed to avoid zero inter-sampling time
leading to Zeno phenomena.

In the sequel, we restrict ourselves to a classic sample-and-
hold implementation, i.e., the input is constant between any
two execution times: u(t) = u(tk), ∀t ∈ [tk, tk+1). Hence,
in addition to a feedback controller that computes the con-
trol input, event-triggered and self-triggered control systems
need a triggering mechanism that determines when the con-
trol input has to be updated again. This rule is said to be
static if it only involves the current state of the system, and
dynamic if it uses an additional internal dynamic variable
(see [13]).

For simplicity, we also assume that the process of mea-
surement, computing the control u(tk) and updating the
actuators can be neglected. This assumption reflects that in
many implementations this time is much smaller than the
time elapsed between the instants tk and tk+1 ([15]).

2.3 Notation

We denote by 〈·, ·〉 the canonical scalar product on Rn and by
‖ · ‖ the induced Euclidean norm; we use the same notation
for the corresponding induced matrix norm. Also, we use
the symbol ′ to denote the transposition operation.

In the following, the notation ξ(t−) stands for lim
τ→t
τ<t

ξ(τ).

Also, to simplify the presentation, we introduce the nota-
tions ξk = ξ(tk) and ξ−k = ξ(t−k ).

3 Preliminary results: the linear
case

In high-gain designs, the idea is to consider the nonlinear
terms (the fi’s) as disturbances. A first step consists in syn-
thesizing a robust control for the linear part of the system,
neglecting the effects of the nonlinearities. Then, the con-
vergence and robustness are amplified through a high gain
parameter to deal with the nonlinearities.

Therefore, let us first focus on a general linear dynamical
system

ẋ(t) = Ax(t) +Bu(t), (6)

where the state x evolves in Rn and the control u is in R.
The matrix A is in Rn×n and B is a column vector in Rn.

In this preliminary case, we review a well-known result
concerning periodic sampling approaches. Indeed, an emu-
lation approach is adopted for the stabilization of the linear
part: a feedback law is designed in continuous time and
a triggering condition is chosen to preserve stability under
sampling.

It is well known that if there exists a feedback control law
(continuous-in-time) u(t) = Kx(t) that asymptotically sta-
bilizes the system then there exists a strictly positive inter-
execution time δk = tk+1− tk such that the discrete-in-time
control law u(t) = Kx(tk) for t in [tk, tk+1) renders the
system asymptotically stable. This result is rephrased in
Lemma 3.1 below whose proof is postponed in Appendix
A.1 and for which we do not claim any originality.

Lemma 3.1 Suppose the pair (A,B) is stabilizable, that is
there exists a matrix K in Rn rendering (A+BK) Hurwitz.
Then there exists a strictly positive real number δ∗ such that
for all δ in [0; δ∗) the state feedback

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N, (7)

where (tk)k∈N is the sequence defined as tk+1 = tk+δ makes
the origin of the dynamical system (6) a globally and asymp-
totically stable equilibrium.

This result which is based on robustness is valid for gen-
eral matrices A and B. The proof is based on the fact that
if A+BK is Hurwitz, the origin of the discrete time linear
system defined for all k in N as

xk+1 = Fc(δ)xk, (8)

where Fc(δ) = exp(Aδ) +
∫ δ
0

exp(A(δ − s))BKds is asymp-
totically stable for δ sufficiently small.

However, when we consider the particular case in which
A and B satisfy the triangular form as in (1) (integrator
chain), it is shown in the following theorem that the inter-
execution time can be selected arbitrarily large as long as
the control is modified.

Theorem 3.2 (Chain of integrator) Suppose the matri-
ces A and B have the structure stated in (2). Then, for all
gain matrix K in Rn such that A + BK is Hurwitz, there
exists a positive real number α∗ such that for all α in [0, α∗)
and for all δ > 0 the state feedback control law

u(t) = KLx(tk), ∀t ∈ [tk, tk+1),∀k ∈ N (9)

L = diag(Ln, Ln−1, . . . , L), (10)

L =
α

δ
, (11)

where the sequence (tk)k∈N defined as t0 = 0, tk+1 = tk + δ
renders the origin of the dynamical system (6) a globally
asymptotically stable equilibrium.
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Before proving this theorem, we emphasize that in the par-
ticular case of the chain of integrator the sampling period
time δ can be selected arbitrarily large.
Proof of Theorem 3.2 : In order to analyze the behav-
ior of the closed-loop system, let us mention the following
algebraic properties of the matrix L:

LA = LAL, LBK = LBK. (12)

Let us introduce the following change of coordinates:

X =
L

Ln+1
x =

[x1
L

x2
L2

· · · xn
Ln

]′
. (13)

Employing (12), it yields that in the new coordinates the
closed-loop dynamics are for all t in [tk, tk+1):

Ẋ(t) = L(AX(t) +BKXk). (14)

By integrating the previous equality and employing (11) it
yields for all k in N:

Xk+1 =

[
exp(ALδ) +

∫ δ

0

exp(AL(δ − s))LBKds

]
Xk

= Fc(α)Xk.

In other word, this is the same discrete dynamics than the
one given in (8) for system (6) in closed-loop with the state
feedback KXk. Consequently, according to Lemma 3.1,
there exists a positive real number α∗ such that X = 0
(and thus x = 0) is a GAS equilibrium for the system (14)
provided that Lδ is in [0, α∗). �

4 Main result: the nonlinear case

We consider now the nonlinear system (1). Let K and α be
chosen to stabilize the linear part of the system and consider
the control

u(t) = KLkx(tk), ∀t ∈ [tk, tk + δk) (15)

L(t) = diag
(
L(t)n, L(t)n−1, . . . , L(t)

)
. (16)

It remains to select the sequences Lk and δk to deal with
the nonlinearities.

In the context of a linear growth condition (i.e., if the
bound c(x1) defined in Assumption 2.1 is replaced by a con-
stant), the authors of [24] have shown that a (well-chosen)
constant parameter Lk can guarantee the global stability,
provided that Lk is greater than a function of the bound.
Here, we need to adapt the high-gain parameter to follow a
function of the time varying bound.

Following the idea presented in [4] in the context of ob-
server design, we consider the following update law for the
high-gain parameter:

L̇(t) = a2L(t)M(t)c(x1(t)), ∀t ∈ [tk, tk + δk) (17)

Ṁ(t) = a3M(t)c(x1(t)), ∀t ∈ [tk, tk + δk) (18)

Lk = L−k (1− a1α) + a1α, ∀k ∈ N (19)

Mk = 1, ∀k ∈ N (20)

with a1α < 1, initial conditions L(t0) > 1 and M(t0) = 1,
and where a1, a2, a3 are positive real numbers to be chosen.
For a justification of this type of high-gain update law, the
interested reader may refer to [4] where is it shown that this
update law is a continuous discrete version of the high-gain
parameter update law introduced in [23].

Remark 4.1 Notice that the functions L(·) and M(·) are
strictly increasing on any time interval [tk, tk + δk) and that
Lk > 1 for all k ∈ N.

Finally, the execution times tk are given by the following
relations:

t0 = 0, tk+1 = tk + δk, (21)

δk = min{s ∈ R+ | sL((tk + s)−) = α}. (22)

Equations (21)-(22) constitute the triggering mechanism of
the self-triggered strategy. This mechanism does not directly
involves the state value x but the additional dynamic vari-
able L and so can be referred as a dynamic triggering mecha-
nism ([13]). The relationship between Lk and δk comes from
equation (11). It highlights the trade-off between high-gain
value and inter-execution time (see [11, 24]).

We are now ready to state our main result which proof is
given in Section 5.

Theorem 4.2 (Global attractivity via self-triggered
control) Consider the class of uncertain nonlinear systems
described by (1) such that the nonlinear functions fi’s satisfy
Assumption 2.1. Then there exist positive numbers a1, a2,
a3, a gain matrix K and α∗ such that for all α in [0, α∗], the
self-triggered feedback (15)-(22) initiated from L(0) > 1 and
M(0) = 1 renders x = 0 a globally attractive equilibrium.
Moreover there exists a positive real number δmin such that
δk > δmin for all k and so ensures the existence of a minimal
inter-execution time.

5 Proof of Theorem 4.2

Let us introduce the following scaled coordinates along a
trajectory of system (1) (compare with (13)). They will be
used at different places in this paper.

X(t) = S(t)x(t), (23)

S(t) = diag

(
1

L(t)b
, · · · , 1

L(t)n+b−1

)
=
L(t)

L(t)n+b
, (24)

where b > 0 is such that bq < 1 with q given in Assump-
tion 2.1. Note that the matrix valued function L(·) satisfies:

L(t)A = L(t)AL(t), (25)

L(t) exp(At) = exp(L(t)At)L(t), (26)

L(t)BK = L(t)BK. (27)

5.1 Selection of the gain matrix K

Let D be the diagonal matrix in Rn×n defined by D =
diag(b, 1 + b, . . . , n + b − 1). Let P be a symmetric posi-
tive definite matrix and K a vector in Rn such that (always
possible, see [7]) (28), (29) and

P (A+BK) + (A+BK)′P 6 −I, (28)

p1I 6 P 6 p2I, (29)

p3P 6 PD +DP 6 p4P, (30)

with p1, . . . , p4 positive real numbers.
With the matrixK selected it remains to select the param-

eters a1, a2, a3 and α∗. This is done in Proposition 5.1 and
Proposition 5.3. Proposition 5.1 focuses on the existence of
(xk, Lk) for all k in N, whereas, based on a Lyapunov analy-
sis, Proposition 5.3 shows that a sequence of quadratic func-
tion of scaled coordinates is decreasing. Based on these two
propositions, the proof of Theorem 4.2 is given in Section
5.4 where it is shown that the time function L is bounded.
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5.2 Existence of the sequence (tk, xk, Lk)k∈N

The first step of the proof is to show that the sequence
(xk, Lk)k∈N = (x(tk), L(tk))k∈N is well defined. Note that
it does not imply that x(t) is defined for all t since for the
time being it has not been shown that the sequence tk is un-
bounded. This will be obtained in Section 5.4 when proving
Theorem 4.2.

Proposition 5.1 (Existence of the sequence) Let a1,
a3 and α be positive, and a2 > 2n

p3
. Then, the sequence

(tk, xk, Lk)k∈N is well defined.

Proof of Proposition 5.1: We proceed by contradiction.
Assume that k ∈ N is such that (tk, xk, Lk) is well defined
but (tk+1, xk+1, Lk+1) is not. This means that there exists
a time t∗ > tk such that x(·) and L(·) are well defined for
all t in [tk, t

∗) and such that

lim
t→t∗

(
|x(t)|+ |L(t)|

)
= +∞. (31)

Since L(·) is increasing and, in addition, for all t in [tk, t
∗)

we have (according to (22)) L(t) 6 α
(t−tk) , we get:

L∗ = lim
t→t∗

L(t) 6
α

(t∗ − tk)
< +∞. (32)

Consequently, limt→t∗ |x(t)| = +∞, which together with
(23) and (24) yields

lim
t→t∗
|X(t)| = +∞. (33)

On the other hand, denoting V (X(t)) = X(t)′PX(t), we
have along the solution of (1) and for all t in [tk, t

∗)

˙︷ ︷
V (X(t)) = Ẋ(t)′PX(t) +X(t)′PẊ(t), (34)

where Ẋ(t) = Ṡ(t)x(t) + S(t)ẋ(t)

= − L̇(t)

L(t)
DS(t)x(t)

+ S(t) [Ax(t) +BKLkxk + f(x(t))]

= − L̇(t)

L(t)
DX(t)

+ L(t)AX(t) + L(t)BKXk + S(t)f(x(t)).
With the previous equality, (34) becomes for all t in [tk, t

∗)

˙︷ ︷
V (X(t)) = − L̇(t)

L(t)
X(t)′(PD +DP )X(t)

+ L(t)[X(t)′(A′P + PA)X(t) + 2X(t)′PBKXk]

+ 2X(t)′PS(t)f(x(t)). (35)

Since M > 1, we have with (17) and (30) for all t in [tk, t
∗)

− L̇(t)

L(t)
X(t)′(PD +DP )X(t) 6− p3

L̇(t)

L(t)
X(t)′PX(t)

=− p3a2M(t)c(x1(t))V (X(t))

6− p3a2c(x1(t))V (X(t)).

Moreover, using Young’s inequality, we get

2X(t)′PBKXk 6 X(t)′PX(t) +Xk(K ′B′P + PBK)Xk.

Hence, we have, for all t in [tk, t
∗)

˙︷ ︷
V (X(t)) 6 − p3a2c(x1(t))V (X(t)) + L[X(t)′(A′P + PA)X(t)

+X ′k(K ′B′P + PBK)Xk] + 2nc(x1(t))V (X(t))

6 (−p3a2c(x1(t)) + L(t)λ1 + 2nc(x1(t)))V (X(t))
+ L(t)λ2Vk

where1 λ1 = max{0, λmax(A
′P+PA)

λmin(P ) } and

λ2 = max{0, λmax(K
′B′P+PBK)
λmin(P ) }.

Bearing in mind that L(t) 6 L∗ for all t in [tk, t
∗) and since

a2 > 2n
p3

, the previous inequality becomes

˙︷ ︷
V (X(t)) 6 L∗λ1V (X(t)) + L∗λ2Vk.

This gives for all t in [tk, t
∗)

V (t) 6 exp(λ1L
∗(t− tk))Vk

+

∫ t−tk

0

exp
(
λ1L

∗(t− tk − s)
)
λ2Vkds

6

[
exp(λ1α) + (exp(λ1α)− 1)

λ2
λ1

]
Vk. (36)

Hence, limt→t∗ |X(t)| < +∞ which contradicts (33) and
thus, ends the proof. �

5.3 Lyapunov analysis

This section is devoted to the Lyapunov analysis. It is shown
that a good choice of the parameters a1, a2 and a3 in the
high-gain update law (17)-(20) yields the decrease of the
sequence (V (Xk))k∈N.

Fig. 1: Time evolution of Lyapunov function V .

Remark 5.2 Drawing on the results obtained in [23] on
lower triangular systems, the dynamic scaling (24) includes
a number b. Although the decrease of V (Xk) can be obtained
with b = 1, it will be required that bq < 1 in order to ensure
the boundedness of L(·) (see equation (50) in Section 5.4).

The aim of this subsection is to show the following inter-
mediate result.

Proposition 5.3 (Decrease of scaled coordinates)
There exist positive real numbers a1 (sufficiently small), a2
(sufficiently large), and α∗ such that for a3 = 2n and for
all α in [0, α∗] the following property is satisfied:

Vk+1 − Vk 6 −
(
α

p2

)2

Vk (37)

1If Z is a symmetric matrix, λmax(Z) and λmin(Z) denote its largest
and its smallest eigenvalue respectively.
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Proof of Proposition 5.3 : Let a2 > 2n
p3

. Then, according

to Proposition 5.1, the sequence (tk, xk, Lk)k∈N is well de-
fined. Let k be in N. The nonlinear system (1) with control
(15) gives the closed-loop dynamics

ẋ(t) = Ax(t) +BKLkxk + f(x(t)), ∀t ∈ [tk, tk + δk).

Integrating the preceding equality between tk and tk+1

yields

xk+1 = exp(Aδk)xk +

∫ δk

0

exp(A(δk − s))BKLkxkds

+

∫ δk

0

exp(A(δk − s))f(x(tk + s))ds.

Employing the algebraic properties (25)-(27) and (23) we
get,

Sk

(
exp(Aδk)xk +

∫ δk

0

exp(A(δk − s))BKLkxkds

)
= Fc(αk)Xk (38)

where αk = δkLk and Fc is defined in (8). Hence,

xk+1 = (Sk)−1Fc(δkLk)

+

∫ δk

0

exp(A(δk − s))f(x(tk + s))ds. (39)

Employing the algebraic properties (25)-(27) we get, when
left multiplying (39) by S−k+1,

S−k+1xk+1 = R+ S−k+1(Sk)−1Fc(αk)Xk, (40)

where

R =

∫ δk

0

exp(L−k+1A(δk − s))S−k+1f(x(tk + s))ds. (41)

Note that, since we have Xk+1 = ΨS−k+1xk+1 with Ψ =

Sk+1(S−k+1)−1, (40) yields

V (Xk+1) =(ΨS−k+1xk+1)′PΨS−k+1xk+1

=V (Xk) + T1 + T2,

with

T1 =X ′kFc(αk)′S−1k S
−
k+1ΨPΨS−k+1S

−1
k Fc(αk)Xk − V (Xk),

T2 =2X ′kFc(αk)′S−1k S
−
k+1ΨPΨR+R′ΨPΨR.

The next two lemmas provide upper bounds for T1 and T2.
The term T1, which will be shown to be negative, guarantees
that the Lyapunov function decreases, whereas the term T2
is handled by robustness. Let β be defined by

β = n

∫ δk

0

c(x1(tk + s))ds. (42)

Lemma 5.4 Let a1 6 2
p4p2

and a3 = 2n. Then, there exists

α∗ > 0 sufficiently small such that for all α in [0, α∗)

T1 6 −
(
α

p2

)2

V (Xk)− ‖S−k+1xk‖
2(e2β − 1)

p3p1a2
2n

. (43)

Lemma 5.5 There exist a positive continuous real valued
function N such that the following inequality holds

T2 6 ‖S−k+1xk‖
2(e2β − 1)N(α).

The proofs of Lemma 5.4 and Lemma 5.5 are postponed in
Appendix A.2. and in Appendix A.4 respectively. With the
two bounds obtained for T1 and T2, we get

V (Xk+1)− V (Xk) 6 −
(
α

p2

)2

V (Xk)

+
∥∥S−k+1xk

∥∥2 (e2β − 1)
[
−p3p1a2

2n
+N(α)

]
.

For a2 > 2n
N(α)

p3p1
the result follows. �

5.4 Boundedness of L and proof of Theo-
rem 4.2

Although the construction of the updated law for the high-
gain parameter (17)-(20) follows the idea developed in [4],
the study of the behavior of the high-gain parameter is more
involved. Indeed, in the context of observer design of [4], the
nonlinear function c was assumed to be essentially bounded
while in the present work, c is depending on x1. This implies
that the interconnection structure between state and high-
gain dynamics must be further investigated.

Proof of Theorem 4.2 : Assume a1, a2, a3 and α∗

meet the conditions of Proposition 5.1 and Proposition 5.3.
Consider a solution (x(·), L(·),M(·)) for system (1) with
the self-triggered feedback (15)-(22) with initial condition
x(0) in Rn, L(0)) > 1 and M(0) = 1. With Proposition
5.1 the sequence (tk, xk, Lk)k∈N is well defined. Inequality
(37) of Proposition 5.3 implies that (Vk)k∈N is a nonincreas-
ing sequence. Consequently, being nonnegative, (Vk)k∈N is
bounded. One infers, using inequality (36), (obtained in the
proof of Proposition 5.1) that V (t) is bounded. Hence, by
the left part in inequality (29), we get that, on the time
Tx (=

∑
δk) of existence of the solution, X(t) (and conse-

quently so is x1(t)
L(t)b

= X1(t)) is bounded. Summing up, there

exists d > 0 such that

|x1(t)|
L(t)b

6 d, ∀t ∈ [0, Tx). (44)

Hence, notice that equations (17) and (18) may be written
as the following nonlinear system{

L̇(t) = a2L(t)M(t)
(
c0 + c1|X1(t)|qL(t)bq

)
Ṁ(t) = a3M(t)

(
c0 + c1|X1(t)|qL(t)bq

)
,

(45)

in which the input signal |X1(·)|q is bounded (by dq) and by
assumption bq < 1. Let us analyze the high-gain dynamics.
According to equations (17) and (18), we have, for all t < Tx,

L̇(t) = a2
a3
L(t)Ṁ(t), which implies that

L(t) = exp

(
a2
a3

∫ t

tk

Ṁ(s)ds

)
Lk

= exp

(
a2
a3
M(t)− a2

a3

)
Lk, ∀t ∈ [0, Tx). (46)

Consequently, from (19) and (22)

Lk+1 = exp

(
a2
a3

(M−k+1 − 1)

)
Lk(1− a1α) + a1α, (47)
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and δk satisfies

exp

(
a2
a3

(M−k+1 − 1)

)
δkLk = α.

Since M−k+1 > 1, a2 > 0 and a3 > 0 the previous equality
implies

δkLk 6 α . (48)

Moreover, we have

Ṁ(t) = a3M(t)c(x1(t))

= a3M(t)(c0 + c1|x1|q)
6 a3M(t)(c0 + c1d

qL(t)bq) (by (44))

6 a3(c0 + c1d
q)M(t)L(t)bq (since L(t) > 1)

6 c2M(t) exp

(
a2
a3
bq(M(t)− 1)

)
Lbqk , (by (46))

where c2 = a3(c0 + c1d
q). Let ψ(t) be the solution to the

scalar dynamical system

ψ̇(t) = c2ψ(t) exp

(
a2
a3
bq(ψ(t)− 1)

)
, ψ(0) = 1.

ψ(·) is defined on [0, Tψ) where Tψ is a positive real number
possibly equal to +∞. Note that we have (see e.g. [17,

Theorem 1.10.1]) that for all t such that 0 6 (t−tk)Lbqk < Tψ

M(t) 6 ψ
(

(t− tk)Lbqk

)
.

Consequently, for all k such that δkL
bq
k < Tψ

M−k+1 = M(tk + δ−k ) 6 ψ
(
δkL

bq
k

)
.

From this, we get employing (48) that, for all k such that

αLbq−1k < Tψ

1 6M−k+1 6 ψ
(
αLbq−1k

)
, (49)

and employing (47) that, for all k such that αLbq−1k < Tψ

Lk+1 6 F (Lk), (50)

where

F (Lk) = exp
(
ψ
(
αLbq−1k

)
− 1
)
Lk(1− a1α) + a1α.

Note that, since bq < 1,

lim
L→+∞

Lbq−1 = 0

and since moreover, ψ(0) = 1, we also get

lim
L→+∞

F (L)

L
= 1− a1α < 1.

Consequently, there exists L̄ such that

αLbq−1 < Tψ, F (L) < L, ∀L > L̄. (51)

On the other hand, let φs,t denotes the flow of (45) issued
from s, i.e., φs,t(a, b) is the solution of (45) that takes value

(a, b) at t = s. Let C1, C2, be the two compact subsets of
R2 defined by:

C1 = {1 6 L 6 L̄,M = 1}, C2 = {|L| 6 2L̄, |M | 6 2}.

Since X1(·) is bounded and because C1 is included in the
interior of C2, we have

∃t1, ∀k ∈ N, ∀t 6 t1, φtk,tk+t(C1) ⊂ C2. (52)

Now, we will prove by induction on k that

Lk 6 Lmax := max
{
L0, 2L̄,

α

t1

}
, ∀k ∈ N. (53)

By definition of Lmax, inequality (53) is clearly true for k =
0. Assume that inequality (53) holds for k0. Three cases
have to be distinguished.

1. If Lk0 > L̄. With (50) and (51), we get

Lk0+1 6 F (Lk0) 6 Lk0 6 Lmax.

2. If Lk0 6 L̄ and δk0 6 t1. Because L−k+1 > 1 and

a1α < 1, (19) implies that Lk0+1 6 L−k0+1. It follows,

using (52) (note that (Lk0 ,Mk0) ∈ C1), that

Lk0+1 6 L
−
k0+1 = L

(
(tk0 + δk0)−

)
6 2L̄ 6 Lmax.

3. If Lk0 6 L̄ and δk0 > t1. As for the previous case, we
have, Lk0+1 6 L−k0+1, and since, by (22), δkL

−
k0+1 = α,

it follows that

Lk0+1 6
α

δk
6
α

t1
6 Lmax.

This ends the proof of inequality (53). Finally, since for all
k in N and all t in [tk, tk+1)

L(t) 6 L−k+1 (since L̇(t) > 0)

=
Lk+1 − a1α

1− a1α
(by (19))

6
Lk+1

1− a1α

6
Lmax

1− a1α
, (54)

we get that

1 6 L(t) 6
Lmax

1− a1α
, ∀t ∈ [0, Tx).

From this, inequalities (37) and (36) imply that
limt→Tx

V (X(t)) = 0. Hence, with the boundedness of L, it
leads to limt→Tx

‖x(t)‖ = 0. Moreover, from (22) and (54),

one infers that for all k ∈ N δk >
(1−a1α)α
Lmax

> 0. In particular
Tx = +∞.

6 Illustrative example

We apply our approach to the following uncertain third-
order system proposed in [16]

ẋ1 = x2
ẋ2 = x3

ẋ3 = θx21x3 + u

(55)
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where θ is a constant parameter which only a magnitude
bound θmax is known. The stabilization of this problem is
not trivial even in the case of a continuous-in-time controller.
The difficulties arrise from the nonlinear term x21x3 that
makes the x3 dynamic not globally Lipschitz, and from the
uncertainty on the θ value, preventing the use of a feedback
to cancel the nonlinearity.

However, system (55) belongs to the class of systems (1)
and Assumption 2.1 is satisfied with c(x1) = θmaxx

2
1. Hence,

by Theorem 4.2, a self-triggered feedback controller (15)-
(22) can be constructed. Simulations were conducted with
a gain matrix K and a coefficient α selected as

K = [−1 −3 −3]
′
, α = 0.4

to stabilize the linear part of the system (55). Parameters
a1, a2 and a3 were then selected through a trial and error
procedure as follows:

a1 = 1, a2 = 1, a3 = 1.

Simulation results are given in Fig. 2 and Fig. 3. The evo-
lution of the control and state trajectories are displayed in
Fig. 2. The corresponding evolution of the Lyapunov func-
tion V and the high-gain L are shown in Fig. 2. We can
see how the inter-execution times δk adapts to the nonlin-
earity. Interestingly, it allows a significant increase of δk
when the state is close to the origin: L(t) then goes to 1
and consequently δk increases toward value α (α = 0.4 in
this simulation).
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Fig. 2: Control signal and state trajectories of (55) with
(x1, x2, x3) = (5, 5, 10) as initial conditions.

7 conclusion

In this paper, a novel self-triggered state feedback law has
been given. This law is based on a high-gain methodology.
The event which triggers an update of the control law is
based on an dynamical system which state is the high-gain
parameter. This approach allows to design control laws en-
suring convergence to the origin for nonlinear systems with
triangular structure and a specific upper bound on the non-
linearities. Current research line focus on the design of a
event-triggered output feedback (see [5]).

A Proofs of Lemmas

A.1 Proof of Lemma 3.1
The proof of Lemma 3.1 is based on this Lemma.
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Fig. 3: Simulation results

Lemma A.1 Let P be a positive definite matrix such that
(28) and (29) hold then there exists δm such that for all
δ 6 δm, we have

PFc(δ) + Fc(δ)
′P − P 6 − δ

2p2
P. (56)

Proof. Let v in Rn be such that ‖v‖ = 1. Consider the
mapping

ν(δ) = v′ (PFc(δ) + Fc(δ)
′P − P ) v.

Note that ν(0) = 0. Moreover, we have

dν

dδ
(0) = v′ (P (A+BK)− (A+BK)′P ) v,

6 −‖v‖2 .

This yields the existence of a positive real number δm such
that for all δ 6 δm, we have

ν(δ) 6 −δ
2
‖v‖2 ,

6 − δ

2p2
v′Pv.

This property being true for every v in Sn−1, we have

Fc(δ)
′PFc(δ) 6

(
1− δ

2p2

)
P.

�

To prove Lemma 3.1, let δ 6 δm and P be a positive
definite matrix such that (28) and (29) hold and consider
V (x) = x′Px. We have for all t in [tk, tk+1)

V (x(t)) 6

(
1− δ

2p2

)k (
1− t− tk

2p2

)
V (x0).

Hence, this yields that the origin is globally and asymptot-
ically stable.
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A.2 Proof of Lemma 5.4
In order to prove Lemma 5.4, we need the following lemma
which will be proved in the next section.

Lemma A.2 Let Ψ = Sk+1(S−k+1)−1. The matrix P satis-
fies the following property for all a1 and α such that a1α < 1

ΨPΨ 6
(

1 + α
a1p4

2

)
P. (57)

Applying Lemma A.2 to T1 yields the following inequality

T1 6
(

1 + α
a1p4

2

)
V
(
S−k+1S

−1
k Fc(αk)Xk

)
− V (Xk).

On another hand, we have, for all v in Rn

v′S−k+1PS
−
k+1v − vSkPSkv =

v′
(∫ tk+1

tk

dS(s)

ds
PS(s) + S(s)P

dS(s)

ds
ds

)
v.

However, we have for all s in [tk, tk+1)

dS
ds

(s) = − L̇(s)

L(s)
DS(s).

Consequently, it yields

v′S−k+1PS
−
k+1v − vSkPSkv

= v′

(∫ tk+1

tk

− L̇(s)

L(s)
S(s)[DP + PD]S(s)ds

)
v.

Note that since L(0) > 1, it yields that L(t) > 1 on the time

of existence of the solution. Moreover, we have also L̇ > 0
and taking into account the bounds on P in (29) and on
DP + PD in (30), we get
v′S−k+1PS

−
k+1v − vSkPSkv

6 v′
(
p3

∫ tk+1

tk

− L̇(s)

L(s)
S(s)PS(s)ds

)
v

= v′
(
p3

∫ tk+1

tk

−a2M(s)c(s)S(s)PS(s)ds

)
v

= v′

(
p3

∫ tk+1

tk

−a2 exp

(
a3

∫ tk+1

tk

c(r)dr

)
× c(s)S(s)PS(s)ds

)
v

6 −p3p1a2v′
(∫ tk+1

tk

exp

(
a3

∫ tk+1

tk

c(r)dr

)
× c(s)‖S(s)‖2ds

)
v.

Note that since Lk 6 L
−
k+1, we finally get

v′S−k+1PS
−
k+1v − vSkPSkv

6 −p3p1a2v′
(∫ tk+1

tk

exp

(
a3

∫ tk+1

tk

c(r)dr

)
c(s)

× ‖S−k+1‖
2ds

)
v

= −p3p1a2
a3

v′
(

exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

)
‖S−k+1‖

2v

6 −p3p1a2
a3

(
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

)
‖S−k+1v‖

2.

The previous inequality with v = S−1k Fc(αk)Xk, a3 = 2n
and the notation (42) yield

T1 6
(

1 + α
a1p4

2

)
V (Fc(αk)Xk)− V (Xk)

− p3p1a2
2n

(
e2β − 1

)
‖S−k+1S

−1
k Fc(αk)Xk‖2.

Note that αk 6 α. Consequently, with Lemma A.1 and α
sufficiently small, this yields

T1 6

[(
1 + α

a1p4
2

)(
1− α

p2

)
− 1

]
V (Xk)

− p3p1a2
2n

(
e2β − 1

)
‖S−k+1S

−1
k Fc(αk)Xk‖2.

With a1 6 2
p4p2

this yields

T1 6 −
(
α

p2

)2

V (Xk)

− p3p1a2
2n

(
e2β − 1

)
‖S−k+1S

−1
k Fc(αk)Xk‖2.

However, we have

S−k+1(Sk)−1Fc(αk)Xk =[
exp(Aα) +Rc(α)G(Lk, L

−
k+1)

]
S−k+1xk, (58)

where

Rc(α) =

∫ α

0

exp(A(α− s))dsBKc,

G(Lk, L
−
k+1) =

(
Lk

L−k+1

)n+1

Sk(S−k+1)−1.

Now, we have[
exp(Aα) +Rc(α)G(Lk, L

−
k+1)

]′[
exp(Aα) +Rc(α)G(Lk, L

−
k+1)

]
= exp((A+A′)α) + exp(A′α)Rc(α)G(Lk, L

−
k+1)

+G(Lk, L
−
k+1)Rc(α)′ exp(Aα)

+Rc(α)′Rc(α)G(Lk, L
−
k+1)2.

Note that L−k+1 > Lk. Hence,∥∥G(Lk, L
−
k+1)

∥∥ 6 1. (59)

Moreover, for all ε > 0, employing the continuity of the
mapping |R(·)| and | exp(A′·)| and the fact that |R(0)| = 0
we can find sufficiently small α, such that we have

‖Rc(α)‖ 6 ε , ‖exp(A′α)‖ 6 1 + ε , ‖exp(Aα)‖ 6 1 + ε,

and
exp((A+A′)α) > (1− ε)I.

Hence,[
exp(Aα) +Rc(α)G(Lk, L

−
k+1)

]′[
exp(Aα) +Rc(α)G(Lk, L

−
k+1)

]
> (1− 3ε− 3ε2)I
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So, select ε such that (1−3ε−3ε2) = 1
2 (for instance) yields

T1 6 −
(
α

p2

)2

V (Xk)

− p3p1a2
2n

(
e2β − 1

)
‖S−k+1xk‖

2

A.3 Proof of Lemma A.2

In order to prove Lemma A.2, we need the following lemma
which will be proved in the next section.

Lemma A.3 The matrix P satisfies the following property
for all a1 and α such that a1α < 1

ΨPΨ 6 ψ0(α)Pψ0(α),

where

ψ0(α) = diag

(
1

(1− a1α)b
, . . . ,

1

(1− a1α)n+b−1

)
.

Given v in Sn−1 = {v ∈ Rn | ‖v‖ = 1}, consider the function

ν(α, v) = v′ψ0(α)Pψ0(α)v.

We have

ψ0(0) = I ,
∂ψ0

∂α
(0) = a1D,

then

ν(0, v) = v′Pv,

∂ν

∂α
(0, v) = a1v

′ [PD +DP ] v.

So using the inequalities in (28)-(30)

∂ν

∂α
(0, v) 6 a1p4v

′Pv.

Now, we can write

ν(α, v) = v′Pv + α
∂ν

∂α
(0, v) + ρ(α, v),

with limα→0
ρ(α,v)
α = 0. This equality implies that

ν(α, v) 6 v′Pv [1 + αa1p4] + ρ(α, v).

The vector v being in a compact set and the function r being
continuous, there exists α∗ such that for all α in [0, α∗) we
have ρ(α, v) 6 αa1p42 v′Pv for all v. This gives

ν(α, v) 6 v′Pv
[
1 + α

a1p4
2

]
,∀ α ∈ [0, α∗),∀ v ∈ Sn−1.

This property being true for every v, this ends the proof of
Lemma A.2.

A.4 Proof of Lemma 5.5

First, we seek for an upper bound of the norm of
S−k+1f(x(tk + s)). We have

‖S−k+1f(x(tk + s))‖2

=

n∑
j=1

(
(L−k+1)−b−j+1fj(x(tk + s))

)2
6

n∑
j=1

(L−k+1)2(−b−j+1)

(
j∑
i=1

c(tk + s)|xi(tk + s)|

)2

= c(tk + s)2
n∑
j=1

(
j∑
i=1

(L−k+1)−b−j+1|xi(tk + s)|

)2

.

Since L−k+1 > 1, we have (L−k+1)−b−j+1 6 (L−k+1)−b−i+1

whenever 1 6 i 6 j. It yields

‖S−k+1f(x(tk + s))‖2

6 c(tk + s)2
n∑
j=1

(
n∑
i=1

(L−k+1)−b−i+1|xi(tk + s)|

)2

6 c(tk + s)2
n∑
j=1

n‖S−k+1x(tk + s)‖2

= n2c(tk + s)2‖S−k+1x(tk + s)‖2. (60)

Hence, from (41) and (60), we get

‖R‖ 6
∫ δk

0

exp
(
L−k+1‖A‖(δk − s)

)
nc(tk + s)

× ‖S−k+1x(tk + s)‖ds

= exp(‖A‖α)

∫ δk

0

exp
(
−L−k+1‖A‖s

)
nc(tk + s)

× ‖S−k+1x(tk + s)‖ds. (61)

Moreover, we have for all s in [0; δk)

S−k+1ẋ(tk + s)

= S−k+1Ax(tk + s) + S−k+1BKLkxk + S−k+1f(x(tk + s)).

Denoting by w(s) the expression S−k+1x(tk + s), this gives

d

ds
‖w(s)‖ =

〈ẇ(s), w(s)〉
‖w(s)‖

6 ‖ẇ(s)‖

6
∥∥L−k+1Aw(s)

∥∥+
∥∥S−k+1BKLkxk

∥∥
+
∥∥S−k+1f(x(tk + s)

∥∥
6 (L−k+1 ‖A‖+ nc(tk + s)) ‖w(s)‖

+
∥∥BK(L−k+1)−b−n+1Lkxk

∥∥ , by (60)

6 (L−k+1 ‖A‖+ nc(tk + s)) ‖w(s)‖
+ L−k+1 ‖BK‖ ‖w(0)‖ .

Hence, integrating the previous inequality, we obtain

‖w(s)‖ 6
∫ s

0

(L−k+1‖A‖+ nc(tk + r))‖w(r)‖dr

+ ‖BK‖‖ ‖w(0)‖L−k+1s+ ‖w(0)‖ .
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Since (L−k+1‖A‖ + nc(tk + s)) is a continuous non-negative

function and (‖BK‖L−k+1s + 1) ‖w(0)‖ is non-decreasing,
applying a variant of the Gronwall-Bellman inequality (see
[3, Theorem 1.3.1]), it comes

‖w(s)‖ 6 (‖BK‖L−k+1s+ 1) ‖w(0)‖

× exp

(∫ s

0

(L−k+1‖A‖+ nc(tk + r)dr

)
,

and we have

‖S−k+1x(tk + s)‖ 6(‖BK‖L−k+1s+ 1) exp

(∫ s

0

L−k+1‖A‖

+nc(tk + r)dr

)∥∥S−k+1xk
∥∥

=(‖BK‖L−k+1s+ 1) exp
(
L−k+1‖A‖s

)
× exp

(∫ s

0

nc(tk + r)dr

)∥∥S−k+1xk
∥∥ .

(62)

Consequently, according to (61) and (62), we get

‖R‖ 6 exp(‖A‖α)

∫ δk

0

nc(tk + s)(‖BK‖L−k+1s+ 1)

× exp

(∫ s

0

(nc(tk + r)dr

)∥∥S−k+1xk
∥∥ ds

6 exp(‖A‖α)

∫ δk

0

nc(tk + s)(‖BK‖α+ 1)

× exp

(∫ s

0

(nc(tk + r)dr

)∥∥S−k+1xk
∥∥ ds

6 exp(‖A‖α)(α ‖BK‖+ 1)

∫ δk

0

nc(tk + s)

× exp

(∫ s

0

(nc(tk + r)dr

)
ds
∥∥S−k+1xk

∥∥
= exp(‖A‖α)(α ‖BK‖+ 1)

×

[
exp

(∫ δk

0

(nc(tk + r)dr

)
− 1

]∥∥S−k+1xk
∥∥ .

On another hand, employing (58), we have∥∥S−k+1(Sk)−1Fc(αk)Xk

∥∥ 6[
‖exp(Aα)‖+ ‖Rc(α)‖

∥∥G(Lk, L
−
k+1

∥∥)
] ∥∥S−k+1xk

∥∥ .
Hence, employing Lemma A.3 and equation (59), this gives
the existence of two continuous function N1 and N2 such
that

T2 =R′ΨPΨR+ 2X ′kFc(αk)′S−1k S
−
k+1ΨPΨR,

6‖S−k+1xk‖
2N1(α)

[
exp

(
n

∫ δk

0

c(tk + r)dr

)
− 1

]2

+
∥∥S−k+1xk

∥∥2N2(α)

[
exp

(
n

∫ δk

0

c(tk + r)dr

)
− 1

]
,

where

N1(α) = exp(2‖A‖α)(α ‖BK‖+ 1)2
‖P‖

(1− a1α)2(n−b+1)
,

N2(α) = 2 exp(‖A‖α)(α ‖BK‖+ 1)
(‖exp(Aα)‖+ ‖Rc(α)‖) ‖P‖

(1− a1α)2(n−b+1)
.

A.5 Proof of Lemma A.3

Consider the matrix function defined as

P(s) = diag(sb, . . . , sn+b−1)P diag(sb, . . . , sn+b−1).

Note that for all v in Rn

d

ds
v′P(s)v =

1

s
v′ diag(sb, . . . , sn+b−1)(D′P + PD)

× diag(sb, . . . , sn+b−1)v

>0.

Hence, P is an increasing function. Furthermore, we have

ΨPΨ =Sk+1(S−k+1)−1PSk+1(S−k+1)−1

= diag

(L−k+1

Lk+1

)b
, . . . ,

(
L−k+1

Lk+1

)n+b−1P

× diag

(L−k+1

Lk+1

)b
, . . . ,

(
L−k+1

Lk+1

)n+b−1
=P

(
L−k+1

L−k+1(1− a1α) + a1α

)
,

Hence, as

L−k+1

L−k+1(1− a1α) + a1α
6

1

1− a1α
,

we get the inequality of Lemma A.3, i.e., ΨPΨ 6

P
(

1
1−a1α

)
.
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