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One-dimensional aggregation equation after blow up: existence,

uniqueness and numerical simulation

François James ∗†and Nicolas Vauchelet ‡§

Abstract

The nonlocal nonlinear aggregation equation in one space dimension is investigated. In the
so-called attractive case smooth solutions blow up in finite time, so that weak measure solutions
are introduced. The velocity involved in the equation becomes discontinuous, and a particular
care has to be paid to its definition as well as the formulation of the corresponding flux. When this
is done, the notion of duality solutions allows to obtain global in time existence and uniqueness
for measure solutions. An upwind finite volume scheme is also analyzed, and the convergence
towards the unique solution is proved. Numerical examples show the dynamics of the solutions
after the blow up time.

2010 AMS subject classifications: Primary: 35B40, 35D30, 35L60, 35Q92; Secondary:
49K20.

Keywords: Aggregation equation, Weak measure solutions, Transport equation, Blow up, Finite
volume scheme.

1 Introduction

This paper presents a survey of several results obtained by the authors concerning existence, unique-
ness and numerical simulation of measure solutions for the one-dimensional aggregation equation in
the attractive case. This equation describes aggregation phenomena in a population of individuals
interacting under a continuous potential W : R → R. If ρ denotes the density of individuals, its
dynamics is modelled by a nonlocal nonlinear conservation equation

∂tρ+ ∂x
(
a(∂xW ∗ ρ)ρ

)
= 0, t > 0, x ∈ R. (1.1)

This equation is complemented with the initial condition ρ(0, x) = ρini. Here a : R → R is a
smooth given function which depends on the actual model under consideration. This model appears
in many applications in physics and population dynamics. It is used for instance in the framework
of granular media [2], in the description of crowd motion [11, 25], and in the description of the
collective motion of cells or bacteria [27, 13, 14, 19], and the references therein. In many of these
examples, the potential W has a singularity at the origin. Due to this weak regularity, finite time
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blow up of regular solutions occurs and has caught the attention of several authors [24, 5, 3]. The
context of weak measure solution is natural here, because of this blow up property as well as the
conservative structure of the aggregation equation (1.1), which gives rise to a bound on the mass of
measure solutions.

In this paper, we focus on these singular attractive potentials, sometimes called mild singular.
More precisely, we introduce the following notion.

Definition 1.1 (pointy potential) The interaction potential W is said to be an attractive pointy
potential if it satisfies the following assumptions:

W is Lipschitz continuous, W (x) = W (−x), W (0) = 0,

and W is λ-concave for some λ ≥ 0, i.e. W (x)− λ
2x

2 is concave.
(1.2)

Depending upon the applications, the function a may be linear (a(x) = x) or nonlinear. In what
follows, we shall refer to the linear case when a = id and the potential W satisfies (1.2). In the
nonlinear case additional assumptions have to be made. First, to obtain an attractive model, a has
to be nondecreasing. This is related to the so-called one-sided Lipschitz estimates, see Section 4
below for details. Therefore we consider the following set of assumptions on the velocity field:

a ∈ C1(R), 0 ≤ a′ ≤ α, α > 0. (1.3)

Unfortunately, in this case, the class of admissible potentials has to be reduced, namely we are
limited to potentials W such that

W ∈ C2(R \ {0}) satisfies (1.2) and there exists w continuous, ‖w‖L1(R) = w0

such that W ′′ = −δ0 + w holds in the distributional sense.
(1.4)

The above assumptions include classical functions W such as W (x) = −|x| or W (x) = e−|x| − 1. As
we shall see, each case deserves its own definition of the velocity.

Several authors have studied existence of global in time weak measure solution for the aggregation
equation. In [9], global existence of weak measure solutions in the linear case, that is for W satisfying
(1.2), in Rd for any dimension d ≥ 1 has been obtained using the gradient flow structure of this
problem. In fact, for the aggregation equation in the case a = id, we can define the interaction
energy by

W(ρ) =
1

2

∫
Rd×Rd

W (x− y) ρ(dx)ρ(dy).

Then a gradient flow solution µ in the Wasserstein space is defined as a solution in the sense of
distributions of the continuity equation

∂tµ+ div
(
vµ
)

= 0, v ∈ ∂0W(µ),

where ∂0W(µ) denotes the element of minimal norm in ∂W(µ), which is the subdifferential of W at
the point µ, see [1] for more details. Such a solution is constructed by performing the JKO scheme
[22]. However this approach cannot be applied in the nonlinear case that is under assumptions
(1.3)-(1.4) and there is, up to our knowledge, no numerical result based on this approach allowing
to recover the dynamics of the solution after blow up.

An alternative strategy has been proposed by the authors, which consists in interpreting (1.1) as
a conservative transport equation with velocity a(∂xW ∗ ρ). Since solutions blow up in finite time,
eventually ρ become measure-valued, and care has to be taken of the product a(∂xW ∗ρ)ρ: typically
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Dirac masses may appear and the velocity becomes discontinuous precisely at their location. Hence
this requires the use of tools which have been developped for advection equations with discontinuous
coefficients: pushforward by a generalized flow [29, 4], or duality solutions [6]. This paper will make
use of the latter notion, which is recalled in the next Section. The first application to the aggregation
equation was done in the particular case of chemotaxis in [19]. It has been extended later to more
general aggregation equations in both the linear and nonlinear cases in [20]. The main drawback of
this method is that it is presently limited to one space dimension. In the linear multidimensional
case (as in [9]), the pushforward method has been successfully applied in [10]. We emphasize that in
all cases the definition of the velocity and of its product with the measure ρ has to be very carefully
treated, as it is a key ingredient to prove the uniqueness of solutions.

Numerical simulations of solutions to (1.1) before the blow up time has been investigated in [8]
with a finite volume method but no convergence result has been obtained, and in [12] thanks to a
particle method. However, the dynamics of the solutions after the blow up time is not recovered in
these works. Then, in [21], a finite volume scheme of Lax-Friedrichs type has been proposed and
analyzed. This scheme has been designed in order to recover the dynamics of the solution after blow
up time. In this paper, we study another finite volume scheme, based on an upwind approach. As
in [21], the convergence of the scheme is proved and numerical simulations showing different blow
up profiles are proposed.

The outline of the paper is the following. The next Section is devoted to the definition of duality
solution to equation (1.1). We first recall useful results on duality solutions for transport equation.
Then the definition of duality solution for the problem at hand is defined in subsection 2.2. A
particular attention is given to the definition of the flux and velocity in both sets of assumptions.
Section 3 is devoted to the proof of existence and uniqueness of weak measure solutions in the linear
case (a = id and W satisfying (1.2)). The nonlinear case, that is assumptions (1.3)-(1.4), is studied in
Section 4. Section 3 and 4 summarize the main results of the articles [19, 20]. Finally the numerical
resolution of the problem is proposed in Section 5. The convergence of an upwind-type finite volume
scheme is obtained in Theorem 5.4. Numerical illustrations showing different behaviours of solutions
after blow up for different choices of the interaction potential are provided in subsection 5.4

2 Duality solutions

We will make use of the notations C0(R) for the set of continuous functions that vanish at in-
finity, Mb(R) for the space of finite measures on R. For ρ ∈ Mb(R), its total mass is denoted
|ρ|(R). This space will be always endowed with the weak topology σ(Mb, C0) and we denote
SM := C([0, T ];Mb(R) − σ(Mb, C0)). Since we focus on scalar conservation laws, we can assume
without loss of generality that the total mass of the system is scaled to 1. Indeed, if the total mass
is M 6= 1, then we rescale the density by introducing ρ/M , it suffices to change the definition of the
function a by introducing ã(x) = a(Mx) which will always satisfies (1.3). Thus we will work in some
space of probability measures, namely the Wasserstein space of order q ≥ 1, which is the space of
probability measures with finite order q moment:

Pq(R) =

{
µ nonnegative Borel measure, µ(R) = 1,

∫
|x|qµ(dx) <∞

}
.

2.1 Duality solutions for linear transport equation

We consider the conservative transport equation

∂tρ+ ∂x
(
b(t, x)ρ

)
= 0, (t, x) ∈ (0, T )× R, (2.5)
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where b is a given bounded Borel function. Since no regularity is assumed for b, solutions to (2.5)
eventually are measures in space. A convenient tool to handle this is the notion of duality solutions,
which are defined as weak solutions, the test functions being Lipschitz solutions to the backward
linear transport equation

∂tp+ b(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (2.6)

In fact, a formal computation shows that d
dt

(∫
R p(t, x)ρ(t, dx)

)
= 0, which defines the duality solu-

tions for suitable p.
It is quite classical that a sufficient condition to ensure existence for (2.6) is that the velocity

field be compressive, in the following sense:

Definition 2.1 We say that the function b satisfies the one-sided Lipschitz (OSL) condition if

∂xb(t, .) ≤ β(t) for β ∈ L1(0, T ), in the distributional sense. (2.7)

However, to have uniqueness, we need to restrict ourselves to reversible solutions of (2.6): let L
denote the set of Lipschitz continuous solutions to (2.6), and define the set E of exceptional solutions
by

E =
{
p ∈ L such that pT ≡ 0

}
.

The possible loss of uniqueness corresponds to the case where E is not reduced to {ρ = 0}.

Definition 2.2 We say that p ∈ L is a reversible solution to (2.6) if p is locally constant on the
set

Ve =
{

(t, x) ∈ [0, T ]× R; ∃ pe ∈ E , pe(t, x) 6= 0
}
.

We refer to [6] for complete statements of the characterization and properties of reversible solutions.
Then, we can state the definition of duality solutions.

Definition 2.3 We say that ρ ∈ SM := C([0, T ];Mb(R) − σ(Mb, C0)) is a duality solution to
(2.5) if for any 0 < τ ≤ T , and any reversible solution p to (2.6) with compact support in x, the

function t 7→
∫
R
p(t, x)ρ(t, dx) is constant on [0, τ ].

We summarize now some useful properties of duality solutions.

Theorem 2.4 (Bouchut, James [6])

1. Given ρ◦ ∈Mb(R), under the assumptions (2.7), there exists a unique ρ ∈ SM, duality solution
to (2.5), such that ρ(0, .) = ρ◦.
Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0. And we have the
mass conservation

|ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.

2. Backward flow and push-forward: the duality solution satisfies

∀ t ∈ [0, T ],∀φ ∈ C0(R),

∫
R
φ(x)ρ(t, dx) =

∫
R
φ(X(t, 0, x))ρ0(dx), (2.8)

where the backward flow X is defined as the unique reversible solution to

∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.

4



3. For any duality solution ρ, we define the generalized flux corresponding to ρ by b∆ρ = −∂tu,
where u =

∫ x
ρ dx.

There exists a bounded Borel function b̂, called universal representative of b, such that b̂ = b
almost everywhere, b∆ρ = b̂ρ and for any duality solution ρ,

∂tρ+ ∂x(̂bρ) = 0 in the distributional sense.

4. Stability: Let (bn) be a bounded sequence in L∞(]0, T [×R), such that bn ⇀ b in L∞(]0, T [×R)−
w?. Assume ∂xbn ≤ βn(t), where (βn) is bounded in L1(]0, T [), ∂xb ≤ β ∈ L1(]0, T [). Consider
a sequence (ρn) ∈ SM of duality solutions to

∂tρn + ∂x(bnρn) = 0 in ]0, T [×R,

such that ρn(0, .) is bounded in Mb(R), and ρn(0, .) ⇀ ρ◦ ∈Mb(R).

Then ρn ⇀ ρ in SM, where ρ ∈ SM is the duality solution to

∂tρ+ ∂x(bρ) = 0 in ]0, T [×R, ρ(0, .) = ρ◦.

Moreover, b̂nρn ⇀ b̂ρ weakly in Mb(]0, T [×R).

The set of duality solutions is clearly a vector space, but it has to be noted that a duality
solution is not a priori defined as a solution in the sense of distributions. However, assuming that
the coefficient b is piecewise continuous, we have the following equivalence result:

Theorem 2.5 (Bouchut, James [6]) Let us assume that in addition to the OSL condition (2.7), b
is piecewise continuous on ]0, T [×R where the set of discontinuity is locally finite. Then there exists
a function b̂ which coincides with b on the set of continuity of b.

With this b̂, ρ ∈ SM is a duality solution to (2.5) if and only if ∂tρ+ ∂x(̂bρ) = 0 in D′(R). Then
the generalized flux b∆ρ = b̂ρ. In particular, b̂ is a universal representative of b.

This result comes from the uniqueness of solutions to the Cauchy problem for both kinds of
solutions, see [6, Theorem 4.3.7].

2.2 Aggregation equation as a transport equation

Equipped with this notion of solutions, we can now define duality solutions for the aggregation
equation. The idea was introduced in [7] in the context of pressureless gases. It was next applied to
chemotaxis in [19] and generalized in [20].

Definition 2.6 We say that ρ ∈ SM is a duality solution to (1.1) if there exists âρ ∈ L∞((0, T )×R)
and β ∈ L1

loc(0, T ) satisfying ∂xâρ ≤ β in D′((0, T )× R), such that for all 0 < t1 < t2 < T ,

∂tρ+ ∂x(âρρ) = 0 (2.9)

in the sense of duality on (t1, t2), and âρ = a(W ′ ∗ ρ) a.e. We emphasize that it means that the final
datum for (2.6) should be at t2 instead of T .

This allows at first to give a meaning to the notion of distributional solutions, but it turns out
that uniqueness is a crucial issue. For that, a key point is a specific definition of the product âρρ,
which can be seen as the flux of the system. Indeed, when concentrations occur in conservation
equations, measure-valued solutions can have Dirac deltas, which makes the velocity a BV function.
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A key point for the definition of the flux is to be able to handle products of BV functions with
measure-valued functions. In the framework of the aggregation equation, a definition of the flux can
be obtained using the dependancy of the velocity on the solution. Let us make this point precise in
both situations considered in this paper.

In the linear case that is a = id and W satisfying assumptions (1.2), the flux is defined by

J = âρρ, âρ(t, x) := ∂0W ∗ ρ(t, x) =

∫
x 6=y

W ′(x− y)ρ(t, dy). (2.10)

This definition is motivated by the following stability result:

Lemma 2.7 [10, Lemma 3.1] Let us assume that W satisfies (1.2). Let (Wn)n∈N∗ be a sequence in
C1(R) satisfying (1.2) with the same constant λ not depending on n and such that

supx∈R\(− 1
n
, 1
n
)

∣∣W ′n(x)−W ′(x)
∣∣ ≤ 1

n
, for all n ∈ N∗.

If the sequence ρn ⇀ ρ weakly as measures, then for every continuous compactly supported φ, we
have

lim
n→+∞

∫∫
R×R

φ(x)W ′n(x− y)ρn(dx)ρn(dy) =

∫∫
R×R\D

φ(x)W ′(x− y)ρ(dx)ρ(dy),

where D is the diagonal of R× R: D = {(x, x), x ∈ R}.

In the nonlinear case given by assumptions (1.3) and (1.4), we use the assumption on W
to obtain a definition of the flux. Indeed we can formally take the convolution of (1.4) by ρ, then
multiply by a(W ′ ∗ρ). Denoting by A the antiderivative of a such that A(0) = 0 and using the chain
rule we obtain formally

− ∂x(A(W ′ ∗ ρ)) = −a(W ′ ∗ ρ)W ′′ ∗ ρ = a(W ′ ∗ ρ)(ρ− w ∗ ρ). (2.11)

Thus a natural formulation for the flux J is given by

J := −∂x
(
A(W ′ ∗ ρ)

)
+ a(W ′ ∗ ρ)w ∗ ρ. (2.12)

The product a(W ′ ∗ ρ)w ∗ ρ is well defined since w ∗ ρ is Lipschitz. The function A(W ′ ∗ ρ) is a
BV (R) function. Then J is defined in the sense of measures. The analogue of the stability result
of Lemma 2.7 is verified since if ρn ⇀ ρ, we have that W ′ ∗ ρn ⇀ W ∗ ρ a.e., which induces that
in the sense of distributions Jn converges to J . Moreover, from the chain rule for BV functions (or
Vol’pert calculus), there exists a function âρ such that âρ = a(W ′ ∗ ρ) a.e., and J = âρρ. Then it
can be verified (see Section 3.3 in [20]) that in the case a = id, âρ is given by (2.10).

This idea of definition of the flux comes from [19], where the particular case W (x) = 1
2e
−|x| − 1

2
appearing in chemotaxis has been treated. An analogous situation arising in plasma physics is
considered in [18]. In a similar context, other definitions of the product can be found, see [26] in
the one-dimensional setting, and [28] for a generalization in two space dimensions, where defect
measures are used. In this latter work, more singular potentials are considered, but the uniqueness
of the weak measure solution is not recovered.

3 Existence and uniqueness in the linear case

In this section we state and prove the existence and uniqueness theorem for duality solutions to
the aggregation equation (1.1) in the linear case, that is a = id and a general pointy potential W
satisfying (1.2).
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Theorem 3.1 [20, Theorem 3.7] Let W as in (1.2) and a = id. Assume that ρini ∈ P1(R). Then
for any T > 0, there exists a unique ρ ∈ SM such that ρ(0) = ρini, ρ(t) ∈ P1(R) for any t ∈ (0, T ),
and ρ is a duality solution to equation (1.1) with universal representative âρ in (2.9) defined in
(2.10). Moreover we have ρ = X#ρ

ini where X is the backward flow corresponding to âρ.

The proof of this result is splitted into several steps corresponding to the following subsections.

Remark 3.2 This result has been extended to any dimension d ≥ 1 in [10] and it has been proved
that such solutions are equivalent to gradient flow solutions obtained in [9].

3.1 One-sided Lipschitz estimate

Lemma 3.3 Let ρ(t) ∈ Mb(R) be nonnegative for all t ≥ 0. Then under assumptions (1.2) the
function (t, x) 7→ âρ(t, x) defined in (2.10) satisfies the one-sided Lipschitz estimate

âρ(t, x)− âρ(t, y) ≤ λ(x− y)|ρ|(R), for all x > y, t ≥ 0

Proof. Using assumption (1.2), x 7→W ′(x)− λx is a nonincreasing function on R \ {0}. Therefore
limx→0±W

′(x) = W ′(0±) exists and from the oddness of W ′, we deduce that W ′(0−) = −W ′(0+).
Moreover, for all x > y in R \ {0} we have W ′(x)− λx ≤ W ′(y)− λy. Thus we have the one-sided
Lipschitz estimate (OSL) for W ′

∀x > y ∈ R \ {0}, W ′(x)−W ′(y) ≤ λ(x− y). (3.13)

Letting y → 0± we deduce that for all x > 0, W ′(x) − λx ≤ W ′(0+) and W ′(x) − λx ≤ W ′(0−).
Thus we also have the one-sided estimate

W ′(x) ≤ λx, for all x > 0. (3.14)

By definition of âρ (2.10), we have

âρ(x)− âρ(y) =

∫
z 6=x,z 6=y

(W ′(x− z)−W ′(y − z))ρ(dz) +W ′(x− y)

∫
z∈{x}∪{y}

ρ(dz),

where we use the oddness of W ′ (1.2) in the last term. Let us assume that x > y, from (3.13), we
deduce that W ′(x − z) −W ′(y − z) ≤ λ(x − y) and with (3.14), we deduce W ′(x − y) ≤ λ(x − y).
Thus, using the nonnegativity of ρ, we deduce the one-sided Lipschitz (OSL) estimate for âρ.

3.2 Dynamics of aggregates

We first assume that the initial density is given by a finite sum of Dirac deltas: ρinin =
∑n

i=1miδx0
i

where x01 < x02 < · · · < x0n and the mi-s are nonnegative. Moreover, we assume that
∑n

i=1mi = 1 and
that the first moment

∑n
i=1mi|x0i | is uniformly bounded with respect to n, so that ρinin ∈ P1(R). We

look for a solution in the form ρn(t, x) =
∑n

i=1miδxi(t). Injecting this expression into the definition
of the macroscopic velocity in (2.10), we get

âρn(x) =


∑
j 6=i

mjW
′(xi − xj) if x = xi, i = 1, . . . , n

n∑
j=1

mjW
′(x− xj) otherwise.

(3.15)
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We emphasize that this macroscopic velocity is defined everywhere, which allows to give a sense to
its product with the measure ρn. Then, ρn is a solution in the sense of distributions of (2.9) provided
the sequence (xi)i=1,...,n satisfies the ODE system

x′i(t) =
∑
j 6=i

mjW
′(xi − xj), xi(0) = x0i , i = 1, . . . , n`, (3.16)

where n` ≤ n is the number of distinct particles, i.e. n` = #{i ∈ {1, . . . , N}, xi 6= xj ,∀ j}. Then we
define the dynamics of aggregates by:

• When the xi are all distinct, they are solutions of system (3.16) (with zero right hand side if
n` = 1).

• When two particles collide, they stick to form a bigger particle whose mass is the sum of both
particles and the dynamics continues with one particle less.

Clearly this choice of the dynamics implies mass conservation. It also preserves the one-sided Lip-
schitz estimate for the velocity. Finally, setting ρn(t, x) =

∑n`
i=1miδxi(t)(x), the sticky particle

dynamics defines a distributional solution to (2.9). Hence, we are in position to apply Theorem 2.5,
and deduce that ρn(t, x) is a duality solution for given initial data ρinin .

For a general initial datum ρini in P1(R), we approximate it by a sequence of measures ρinin , for
which we can construct a duality solution as above. Then we use the stability of duality solutions
(see Theorem 2.4) to pass to the limit in the approximation. This allows to prove the existence
result in Theorem 3.1.

3.3 Contraction property

Uniqueness in Theorem 3.1 is obtained thanks to a contraction argument in the Wasserstein distance.
In the present one dimensional framework, the definition of the Wasserstein distance can be simplified
using the generalized inverse. More precisely, let ρ be a nonnegative measure, we denote by F its
cumulative distribution function. Then we can define the generalized inverse of F (or monotone
rearrangement of ρ) by F−1(z) := inf{x ∈ R/F (x) > z}, it is a right-continuous and nondecreasing
function as well, defined on [0, 1]. We have for every nonnegative Borel map ξ,∫

R
ξ(x)ρ(dx) =

∫ 1

0
ξ(F−1(z)) dz.

In particular, ρ ∈ P1(R) if and only if F−1 ∈ L1(0, 1). Then, if ρ1 and ρ2 belong to P1(R), with
monotone rearrangement F1 and F2, respectively, we have the explicit expression of the Wasserstein
distance (see [30])

dW1(ρ1, ρ2) =

∫ 1

0
|F1(z)− F2(z)| dz. (3.17)

Let ρ be a duality solution that satisfies (2.9) in the distributional sense. Denoting F its cumu-
lative distribution function and F−1 its generalized inverse, we have by integration of (2.9)

∂tF + âρ∂xF = 0,

so that the generalized inverse is a solution to

∂tF
−1(t, z) = âρ(t, F

−1(z)). (3.18)
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Moreover thanks to a change of variables in (2.10),

âρ(t, F
−1(z)) =

∫
y 6=z

W ′
(
F−1(z)− F−1(y)

)
dy.

Now using (3.18) and since W ′ is one-sided Lipschitz continuous (3.13), we obtain the following
contraction property, which implies uniqueness.

Proposition 3.4 Assume ρ1(t, ·), ρ2(t, ·) ∈ P1(R) satisfy (2.9) in the sense of distributions, with
âρi given by (2.10), and initial data ρini1 and ρini2 . Then we have, for all t > 0

dW1(ρ1(t, ·), ρ2(t, ·)) ≤ e2λtdW1(ρ
ini
1 , ρini2 ).

4 Existence and uniqueness in the nonlinear case

In this Section, we focus on the nonlinear case characterized by assumptions (1.3) and (1.4). The
main result is the following theorem, which includes the existence result of [19], where the particular
case W (x) = 1

2e
−|x|− 1

2 arising in chemotaxis has been considered, and the existence result presented
in [18], when W (x) = −|x|/2, which appears in many applications in physics or biology.

Theorem 4.1 [20, Theorem 3.10] Let be given ρini ∈ P1(R). Let us assume that a and W are such
as in (1.4). For all T > 0 there exists a unique duality solution ρ of (1.1) in the sense of Definition
2.6 that satisfies in the distributional sense

∂tρ+ ∂xJ = 0, (4.19)

where J is defined by (2.12). Moreover, ρ(t) ∈ P1(R) for t ∈ (0, T ).

The proof follows the same steps as the preceding one, except that uniqueness here relies on an
entropy estimate. In this respect, we emphasize now some links with entropy solutions of scalar
conservation laws.

Remark 4.2 If w = 0 in (1.4), then ρ is the unique duality solution of Theorem 4.1 if and only if
u = W ′ ∗ ρ is an entropy solution to ∂tu+ ∂xA(u) = 0. (see [20, Theorem 5.7])

4.1 One sided-Lipschitz estimate

Lemma 4.3 Assume 0 ≤ ρ ∈ Mb(R) and that (1.4) is satisfied. Then the function x 7→ a(W ′ ∗ ρ)
satisfies the OSL condition (2.7).

Proof. Using the assumption on W in (1.4), we deduce that

∂xxW ∗ ρ = −ρ+ w ∗ ρ.

Therefore,
∂x(a(∂xW ∗ ρ)) = a′(∂xW ∗ ρ)(−ρ+ w ∗ ρ) ≤ a′(∂xW ∗ ρ)w ∗ ρ,

where we use the nonnegativity of ρ in the last inequality. Then from assumption (1.3) on the
function a we get

∂x(a(∂xW ∗ ρ)) ≤ α‖ρ‖L1‖w‖L∞ .

9



4.2 Dynamics of aggregates

Following the idea in subsection 3.2, we first approximate the initial data ρini by a finite sum of
Dirac deltas: ρinin =

∑n
i=1miδx0

i
where x01 < x02 < · · · < x0n and the mi are nonnegative. We assume

that
∑n

i=1mi = 1 and
∑n

i=1mi|x0i | is uniformly bounded with respect to n, i.e. ρinin ∈ P1(R). We
look for a sequence (ρn)n solving in the distributional sense ∂tρn + ∂xJn = 0 where the flux Jn is
given by (2.12). Let ρn(t, x) =

∑n
i=1miδxi(t). From assumption (1.4) on W , we deduce that

W ′(x) = −H(x) + w̃(x), where w̃(x) =

∫ x

0
w(y) dy +

1

2
.

Then, we have

W ′ ∗ ρn(x+i ) = −
i∑

j=1

mj +
n∑
j=1

mjw̃(xi − xj); W ′ ∗ ρn(x−i ) = mi +W ′ ∗ ρn(x+i ),

where we use the standard notation f(x+i ) = limx→
>
xi f(x) and f(x−i ) = limx→

<
xi f(x). From these

identities, we deduce that in the distributional sense

∂x
(
A(W ′ ∗ ρn)

)
= a(W ′ ∗ ρn)w ∗ ρn +

n∑
i=1

[A(W ′ ∗ ρn)]xiδxi ,

where [f ]xi = f(x+i ) − f(x−i ) is the jump of the function f at xi. Then we find that ρn satisfies
(4.19) in the sense of distributions if we have

mix
′
i(t) = −[A(W ′ ∗ ρn)]xi(t), for i = 1, . . . , n`. (4.20)

This system of ODEs is complemented by the initial data xi(0) = x0i .
Then the dynamics of aggregates is given as in subsection 3.2 by (4.20) as long as particles are

all distinct, and by a sticky dynamics at collisions. By construction, ρn(t, x) =
∑n`

i=1miδxi(t)(x) is a
duality solution as in Theorem 4.1 for given initial data ρinin .

For a general initial datum ρini in P1(R), we approximate it by a sequence of measures ρinin , for
which we can construct a duality solution as above. Then we use the stability of duality solutions
(see Theorem 2.4) to pass to the limit in the approximation.

4.3 Uniqueness

The strategy used in subsection 3.3 cannot be used here, since it strongly relies on the linearity of
a. Then we use an analogy with entropy solutions for scalar conservation laws. Indeed, the quantity
W ′∗ρ solves a scalar conservation law with source term, for which we can prove the following entropy
estimate:

Proposition 4.4 [19, Lemma 4.5] Let us assume that assumptions (1.4) hold. For T > 0, let
ρ ∈ C([0, T ],P1(R)) satisfy (2.12)-(4.19) in the sense of distributions. Then u := W ′ ∗ ρ is a weak
solution of

∂tu+ ∂xA(u) = a(u)w ∗ ρ+ ∂x(w ∗A(u))− w ∗ (a(u)w ∗ ρ). (4.21)

Moreover, if we assume that the entropy condition

∂xu ≤ w ∗ ρ (4.22)

10



holds, then for any twice continuously differentiable convex function η, we have

∂tη(u) + ∂xq(u)− η′(u)a(u)w ∗ ρ+ η′(u)
(
∂x(w ∗A(u))− w ∗ (a(u)w ∗ ρ)) ≤ 0, (4.23)

where q, the entropy flux, is given by q(x) =

∫ x

0
η′(y)a(y) dy.

This entropy estimate allows to deal with uniqueness. Consider two solutions ρ1 and ρ2 with
initial data ρini1 and ρini2 , as in Theorem 4.1. Since ρ1 and ρ2 are nonnegative, we deduce from (1.4)
that both u1 := W ′ ∗ ρ1 and u2 = W ′ ∗ ρ2 satisfy (4.22). Starting from the entropy inequality (4.23)
with the family of Kružkov entropies ηκ(u) = |u − κ| and using the doubling of variable technique
developed by Kružkov, we show

d

dt

∫
R

∣∣u1 − u2∣∣ ≤ ‖w‖Lip
∫
R
∣∣A(u1)−A(u2)

∣∣ dx
+
(
1 + ‖w‖∞

) ∫
R

∣∣a(u1)w ∗ ρ1 − a(u2)w ∗ ρ2
∣∣ dx.

From (1.3) and the bound on ρ(t) in P1(R) for all t, we deduce that ui, i = 1, 2 are bounded in L∞t,x.
Then we get

d

dt

∫
R

∣∣u1 − u2∣∣ ≤ C(∫
R

∣∣u1 − u2∣∣ dx+

∫
R

∣∣w ∗ ρ1 − w ∗ ρ2∣∣ dx), (4.24)

where we use once again assumption on a in (1.3). Taking the convolution with w of equation (4.19)
we deduce

∂tw ∗ ρi − ∂x
(
w ∗A(ui)

)
+ w ∗

(
a(ui)w ∗ ρi

)
= 0, i = 1, 2.

We deduce from (1.3) and the Lipschitz bound on w that

d

dt

∫
R

∣∣w ∗ ρ1 − w ∗ ρ2∣∣ ≤ C(∫
R

∣∣u1 − u2∣∣ dx+

∫
R

∣∣w ∗ ρ1 − w ∗ ρ2∣∣ dx). (4.25)

Summing (4.24) and (4.25), we deduce applying a Gronwall lemma that for all T > 0 there exists a
nonnegative constant CT such that for all t ∈ [0, T ],∫

R

(∣∣W ′ ∗ ρ1 −W ′ ∗ ρ2∣∣(t) +
∣∣w ∗ ρ1 − w ∗ ρ2∣∣(t)) dx

≤ CT
∫
R

(∣∣W ′ ∗ ρini1 −W ′ ∗ ρini2

∣∣+
∣∣w ∗ ρini1 − w ∗ ρini2

∣∣) dx.
The uniqueness follows easily.

5 Numerical simulations

An important advantage of the approach presented in this paper, is that it allows to prove conver-
gence of well designed finite volume schemes. Numerical simulations of duality solutions for linear
scalar conservation laws with discontinuous coefficients have been proposed and analyzed in [16].
In the present nonlinear context, a careful discretization of the velocity has to be implemented in
order to recover the dynamics of aggregates after blow up time. In [21] a finite volume scheme
of Lax-Friedrichs type is proposed and analyzed. Up to our knowledge, this is the only example
of numerical scheme allowing to recover the dynamics of measure solutions after blow up. In this
paper, we perform the same analysis on an upwind-type scheme, which is less diffusive than the
Lax-Friedrichs scheme of [21]. Numerical simulations are also proposed.
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5.1 Upwind finite volume scheme

Let us consider a mesh with constant space step ∆x, and denote xi = i∆x for i ∈ Z. We fix a
constant time step ∆t, and set tn = n∆t for n ∈ N. For a given nonnegative measure ρini ∈ P1(R),
we define for i ∈ Z,

ρ0i =
1

∆x

∫
Ci

ρini(dx) ≥ 0. (5.26)

Since ρini is a probability measure, the total mass of the system is
∑

i ∆xρ0i = 1. Assuming that an
approximating sequence (ρni )i∈Z is known at time tn, we compute the approximation at time tn+1

by:

ρn+1
i = ρni −

∆t

∆x

(
(ani )+ρ

n
i + (ani+1)−ρ

n
i+1 − (ani−1)+ρ

n
i−1 − (ani )−ρ

n
i

)
(5.27)

The notation (a)+ = max{0, a} stands for the positive part of the real a and respectively (a)− =
min{0, a} for the negative part. Then we define the flux by

Jni+1/2 = (ani )+ρ
n
i + (ani+1)−ρ

n
i+1 (5.28)

A key point is the definition of the discrete velocity which should be done in accordance with
(2.10) in the linear case and with (2.12) in the nonlinear case.

In the linear case, the discretization of the velocity is given by

ani = â(tn, xi) =
∑
j 6=i

W ′(xi − xj)ρnj ∆x. (5.29)

In the nonlinear case, we define

ani =


a(∂xSi+1/2), if ∂xS

n
i+1/2 = ∂xS

n
i−1/2,

A(∂xS
n
i+1/2)−A(∂xS

n
i−1/2)

∂xSni+1/2 − ∂xS
n
i−1/2

, otherwise.
(5.30)

In this definition we have set Sni an approximation of W ∗ ρ(tn, xi). Using (1.4), Sni is a solution to

−
∂xS

n
i+1/2 − ∂xS

n
i−1/2

∆x
+ νni = ρni , ∂xS

n
i+1/2 =

Sni+1 − Sni
∆x

. (5.31)

The quantity (νni )i corresponds to an approximation of (w ∗ ρ(tn, xi))i. We will use the following
discretization

νni =
∑
k∈Z

ρnkwki∆x, with
1

2
(wki + wki+1) =

1

∆x

∫ xi+1

xi

w(x− xk) dx. (5.32)

Then using (5.30) and (5.31) we recover the discretization of the product

ani ρ
n
i = ani

(
−
∂xS

n
i+1 − ∂xSni

∆x
+ νni

)
= −

A(∂xS
n
i+1/2)−A(∂xS

n
i−1/2)

∆x
+ ani ν

n
i . (5.33)

Remark 5.1 If we choose for the nonlinear function a the identity function a(x) = x, then we can
verify that (5.30) reduces to (5.29). Indeed, in this case, we have A(x) = x2/2, such that (5.30)
reduces to ani = 1

2(∂xS
n
i+1/2 + ∂xS

n
i−1/2). Moreover, from (5.31), we deduce that

∂xS
n
i+1/2 + ∂xS

n
i−1/2 = −

∑
j 6=i

sgn(xi − xj)(ρnj − νnj )∆x. (5.34)
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From our choice of discretization in (5.32), we have

∑
j 6=i

sgn(xi − xj)νnj =
∑
k∈Z

ρnk

∑
j<i

wkj −
∑
j>i

wkj

∆x.

And by definition of wkj in (5.32), we obtain∑
j<i

wkj −
∑
j>i

wkj =
1

∆x

(∫ xi

−∞
w(x− xk)dx−

∫ +∞

xi

w(x− xk)dx
)
.

Denoting by w̃(x) = 1
2(
∫ x
−∞w(y)dy−

∫ +∞
x w(y)dy), which is an antiderivative of w, we deduce from

(5.34) that
1

2
(∂xS

n
i+1/2 + ∂xS

n
i−1/2) =

∑
j 6=i

(
1

2
sgn(xi − xj) + w̃(xi − xj)

)
ρnj ∆x.

From (1.4), we deduce that W ′(x) = −1
2 sgn(x) + w̃(x) so that

ani =
1

2
(∂xS

n
i+1/2 + ∂xS

n
i−1/2) =

∑
j 6=i

W ′(xi − xj)ρnj ∆x,

which is equation (5.29).

5.2 Properties of the scheme

The following Lemma states a Courant-Friedrichs-Lewy (CFL)-like condition for the scheme.

Lemma 5.2 Let ρini ∈ P1(R). We define ρ0i by (5.26). Let us assume that the following condition
is satisfied:

a∞
∆t

∆x
≤ 1, (5.35)

where

a∞ :=


‖W‖Lip, in the linear case,

max
x∈[−(1+w0),(1+w0)]

|a(x)|, in the nonlinear case.

Then the sequence computed thanks to the scheme defined in (5.27) satisfies ρni ≥ 0 and |ani | ≤ a∞,
for all i ∈ Z and n ∈ N, .

Proof. The total initial mass of the system is
∑

i ρ
0
i∆x = 1. Since the scheme (5.27) is conservative,

we have for all n ∈ N,
∑

i ρ
n
i ∆x = 1.

We can rewrite equation (5.27) as

ρn+1
i = ρni

(
1− ∆t

∆x
|ani |

)
− ρni+1

∆t

∆x
(ani+1)− + ρni−1

∆t

∆x
(ani−1)+. (5.36)

Then assuming that condition (5.35) holds, we prove the Lemma by induction on n. For n = 0,
we have ρ0i ≥ 0 from (5.26) and from (5.29) in the linear case, we deduce that |a0i | ≤ a∞. In the
nonlinear case, we have from (5.31)

|∂xS0
i+1/2| = ∆x|

∑
k≤i

(ν0k − ρ0k)| ≤ 1 + w0,

13



Indeed from (5.32),
∑

i |ν0i | ≤ w0, where w0 is defined in (1.4). Then using definition (5.30), we
obtain by the mean value theorem that |a0i | ≤ a∞. Thus the result is satisfied for n = 0.

By induction, we assume that the estimates hold for some n ∈ N. Then, in the scheme (5.36),
all the coefficients in front of ρni , ρni−1 and ρni+1 are nonnegative. We deduce that the scheme is

nonnegative therefore ρn+1
i ≥ 0 for all i ∈ Z and n ∈ N. Next, in the linear case, from (5.29)

and (1.3) we deduce that |an+1
i | ≤ a∞; in the nonlinear case, we have from (5.31) and the mass

conservation
|∂xSn+1

i+1/2| = ∆x|
∑
k≤i

(νn+1
k − ρn+1

k )| ≤ 1 + w0.

As above, from the definition (5.30) and the mean value theorem, we deduce that |an+1
i | ≤ a∞.

In the following Lemma, we gather some properties of the scheme.

Lemma 5.3 Let ρ0i defined by (5.26) for some ρini ∈ P1(R). Let us assume that (5.35) is satisfied.
Then the sequence (ρni ) constructed thanks to the numerical scheme (5.27) satisfies:

(i) Conservation of the mass: for all n ∈ N∗, we have∑
i∈Z

ρni ∆x =
∑
i∈Z

ρ0i∆x = 1 ,

(ii) Bound on the first moment: there exists a constant C > 0 such that for all n ∈ N∗, we have

Mn
1 :=

∑
i∈Z
|xi|ρni ∆x ≤M0

1 + a∞tn. (5.37)

where tn = n∆t.
(iii) Support: Let us assume that a∞∆t = γ∆x for γ ∈ (0, 1). If ρini has a finite support then

the numerical approximation at finite time has a finite support too. More precisely, assuming that
ρini is compactly supported in B(0, R), then for any T > 0, we have ρni = 0 for any n ≤ T/∆t and
any i ∈ Z such that xi /∈ B(0, R+ a∞T

γ ).

Proof.
(i) It is a direct consequence of Lemma 5.2 and the fact that the scheme is conservative.
(ii) For the first moment, we have from (5.27) after using a discrete integration by parts:∑

i∈Z
|xi|ρn+1

i =
∑
i∈Z
|xi|ρni

−∆t

∆x

∑
i∈Z

(
(ani )+ ρ

n
i

(
|xi| − |xi+1|

)
+ (ani )− ρ

n
i

(
|xi−1| − |xi|

))
.

From the definition xi = i∆x, we deduce∑
i∈Z
|xi|ρn+1

i ∆x ≤
∑
i∈Z
|xi|ρni ∆x+ ∆t

∑
i∈Z
|ani | ρni ∆x.

Since the velocity is bounded by a∞ from Lemma 5.2, and using the mass conservation we get
Mn+1

1 ≤Mn
1 + a∞∆t. The conclusion follows directly by induction on n.

(iii) By definition of the numerical scheme (5.27), we clearly have that the support increases
of only 1 point of discretisation at each time step. Therefore after n iterations, the support has
increased of n∆t = n∆ta∞/γ ≤ Ta∞/γ.
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5.3 Convergence result

We define the initial reconstruction

ρnh(x) =
∑
i∈Z

ρni ∆xδxi . (5.38)

Then we construct ρh(t, x) =
∑NT

n=0 ρ
n
h(x)1[tn,tn+1), where NT = T/∆t. The following result proves

the convergence of this approximation towards the unique duality solution of the aggregation equa-
tion. A similar result for the Lax-Friedrichs scheme has been proved in [21, Theorem 3.4].

Theorem 5.4 Let us assume that ρini ∈ P1(R) is given, compactly supported and nonnegative and
define ρ0i by (5.26).

• In the linear case, under assumptions (1.2) and a = id, if (5.35) is satisfied, then the dis-
cretization ρh converges in Mb([0, T ] × R) towards the unique duality solution ρ of Theorem
3.1 as ∆t and ∆x go to 0.

• In the nonlinear case, under assumptions (1.3) and (1.4), if (5.35) is satisfied, then the dis-
cretization ρh converges in Mb([0, T ] × R) towards the unique duality solution ρ of Theorem
4.1 as ∆t and ∆x go to 0.

Proof. The proof follows closely the ideas of [21, Theorem 3.4], which are adapted to the up-
wind scheme. First we define Mh(t, x) =

∫ x
−∞ ρh(t, dy). This is a piecewise constant function: on

[tn, tn+1)× [xi, xi+1) we have Mh(t) = Mn
i :=

∑
k≤i ρ

n
k∆x. After a summation of (5.27), we deduce

Mn+1
i = Mn

i

(
1−

(
(ani )+ − (ani+1)−

)∆t

∆x

)
+ (ani )+

∆t

∆x
Mn
i−1 − (ani+1)−

∆t

∆x
Mn
i+1.

Introducing the incremental coefficients as in Harten and Le Roux [23, 17]

bni+1/2 = −(ani+1)−
∆t

∆x
; cni−1/2 = (ani )+

∆t

∆x
,

we can rewrite the latter equation as

Mn+1
i = Mn

i + cni−1/2(M
n
i−1 −Mn

i ) + bni+1/2(M
n
i+1 −Mn

i ).

Provided the CFL condition of Lemma 5.2 is satisfied, we have 0 ≤ bi+1/2, 0 ≤ ci+1/2 and bi+1/2 +
ci+1/2 ≤ 1, so that following [23, 17] the scheme is TVD provided the CFL condition holds.

It is now standard to prove prove a total variation in time which will imply a BV ([0, T ] × R)
bound. Then we apply the Helly compactness Theorem to extract a subsequence of Mh converging in
L1
loc([0, T ]×R) towards some function M̃ . Next we use a diagonal extraction procedure to extend the

local convergence to the whole real line. We refer the reader for instance to [15] for more details on

these well-known techniques. We deduce the convergence of ρh towards ρ := ∂xM̃ inMb([0, T ]×R).
By definition of ρnh in (5.38), we have for any test function φ,∫

R
φ(x)ρn+1

h (dx) =
∑
i∈Z

ρn+1
i φ(xi)∆x.

Then from the definition of the scheme (5.27) and using a discrete integration by parts, we get∫
R
φ(x)ρn+1

h (dx) =

=
∑
i∈Z

ρni ∆x

[
φ(xi)−

∆t

∆x

(
(ani )+

(
φ(xi)− φ(xi+1)

)
+ (ani )−

(
φ(xi−1)− φ(xi)

))]
.
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Using a Taylor expansion, there exist yi ∈ (xi, xi+1) and zi ∈ (xi−1, xi) such that∫
R
φ(x)ρn+1

h (dx) =
∑
i∈Z

ρni ∆x

[
φ(xi) + ani φ

′(xi)∆t+
1

2
∆t∆x

(
φ′′(yi) + φ′′(zi)

)]
.

Let us denote ah an affine interpolation of the sequence (ani ) such that ah(tn, xi) = ani . We have∫
R
φ(t, x)

(ρn+1
h − ρnh)(t, dx)

∆t
=

∫
R
φ′(t, x)ah(t, x)ρh(t, dx)

+
1

2

∑
i∈Z

ρni ∆x2
(
φ′′(yi) + φ′′(zi)

)
.

Passing to the limit in the latter identity, using Lemma 2.7 in the linear case or (5.33) in the nonlinear
case, we deduce that the limit ρ satisfies in the sense of distributions equation (2.9). By unique-
ness of such a solution, we deduce that ρ is the unique duality solution in Theorem 3.1 in the linear
case, or respectively the unique duality solution in Theorem 4.1, and the whole sequence converges.

5.4 Numerical results

To illustrate the behaviour of solutions, we propose numerical simulations obtained with scheme
(5.27) for three examples of interacting potential. In these examples we choose the computational
domain [−2.5, 2.5] discretized with 1000 intervals. The time step is chosen in order to satisfy the
CFL condition (5.35). We consider two initial data. In Figures 1, 2 and 3 Left, the initial data is
given by a sum of two bumps:

ρini(x) = exp(−10(x− 0.7)2) + exp(−10(x+ 0.7)2). (5.39)

In Figures 1, 2 and 3 Right, the initial data is given by a sum of three bumps:

ρini(x) = exp(−10(x− 1.25)2) + 0.8 exp(−20x2) + exp(−10(x+ 1)2). (5.40)

Example 1: Figure 1 displays the time dynamics of the density ρ if we take W (x) = 1
2e
−|x|− 1

2
and a(x) = 2

πatan(50x). Figure 1-left gives the dynamics for the initial data in (5.39). We observe
the blow up into two numerical Dirac deltas in a very short time. Then the two Dirac deltas aggregate
into one single Dirac mass which is stationary. A similar phenomenon is observed on Figure 1-right
where the dynamics for the initial data (5.40) is plotted.

Example 2: In Figure 2 we display the time dynamics of the density ρ for W (x) = − |x|250 and
a(x) = 2

πatan(50x). Contrary to the first example, we observe that the blow up occurs in the center
and all bumps concentrate in this point to form a Dirac delta.

Example 3: Finally, Figure 3 displays the time dynamics of the density ρ when W (x) = − |x|250
and in the linear case a(x) = x. In this last example, the bumps attract themselves and blow up
in the same time. Then in Figure 3-left, with initial data (5.39), the blow up occurs when the two
initial bumps are close to each other. In Figure 3-right, with initial data (5.40), the bump in the
center blows up before the external ones.
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Figure 1: Dynamics of the density ρ in the case W = 1
2(e−|x| − 1) and for a nonlinear function

a(x) = 2
πatan(50x).
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Figure 2: Dynamics of the density ρ in the case W = − |x|250 and for a nonlinear function a(x) =
2
πatan(50x).
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Figure 3: Dynamics of the density ρ in the case W = − |x|250 and when a is linear.
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