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Abstract. The new 3.6 version of the Louvain-la-Neuve sea

ice model (LIM) is presented, as integrated in the most re-

cent stable release of Nucleus for European Modelling of

the Ocean (NEMO) (3.6). The release will be used for the

next Climate Model Inter-comparison Project (CMIP6). De-

velopments focussed around three axes: improvements of ro-

bustness, versatility and sophistication of the code, which

involved numerous changes. Robustness was improved by

enforcing exact conservation through the inspection of the

different processes driving the air–ice–ocean exchanges of

heat, mass and salt. Versatility was enhanced by implement-

ing lateral boundary conditions for sea ice and more flexible

ice thickness categories. The latter includes a more practi-

cal computation of category boundaries, parameterizations to

use LIM3.6 with a single ice category and a flux redistribu-

tor for coupling with atmospheric models that cannot handle

multiple sub-grid fluxes. Sophistication was upgraded by in-

cluding the effect of ice and snow weight on the sea surface.

We illustrate some of the new capabilities of the code in two

standard simulations. One is an ORCA2-LIM3 global simu-

lation at a nominal 2◦ resolution, forced by reference atmo-

spheric climatologies. The other one is a regional simulation

at 2 km resolution around the Svalbard Archipelago in the

Arctic Ocean, with open boundaries and tides. We show that

the LIM3.6 forms a solid and flexible base for future scien-

tific studies and model developments.

1 Introduction

Sea ice covers 3–6 % of the Earth’s surface and is character-

ized by ample seasonal variations, making it one of the most

influential geophysical features in the Earth system (Comiso,

2010). Mostly because of its high albedo and thermal insu-

lation power, sea ice affects the weather and more generally

the climate (e.g., Budkyko, 1969; Vihma, 2014). The sea-

sonal cycle of ice growth and melt strongly impacts the ver-

tical upper ocean density structure and is a key driver of the

ocean circulation at a global scale through dense water for-

mation (Aagaard and Carmack, 1989; Goosse and Fichefet,

1999). Sea ice also influences marine primary productivity

and carbon export to depth (e.g. Thomas and Dieckmann,

2010; Vancoppenolle et al., 2013), and constitutes a habitat

for Arctic and Antarctic fauna, including specific microbial,

birds and mammal species (Croxall et al., 2002; Atkinson et

al., 2004).

Given the difficulty to observe polar regions, numerical

modelling is essential to understand sea ice processes and

their influence on the other components of the Earth system.

Indeed, a sea ice component is presently included in virtu-

ally all ocean and Earth modelling systems (e.g. Flato et al.,

2013; Danabasoglu et al., 2014). The contemporary use of

sea ice models encompasses a wide range of applications,

from large-scale climate to small-scale process studies and

operational forecasts. The physical processes at stake need

to be well resolved at the appropriate spatial and temporal

scales. Hence, sea ice models must be both physically reli-
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able and versatile in a wide range of scales, at a reasonable

computational cost (e.g. Hunke et al., 2010).

In order to match these constraints, a number of changes

have been made into the Louvain-la-Neuve sea ice model

(LIM3; Vancoppenolle et al., 2009a), leading to the 3.6 ver-

sion of the code. Along with the interface for Community

Ice CodE (CICE) (Hunke et al., 2013), LIM3.6 is now the

reference sea ice model in the Nucleus for European Mod-

elling of the Ocean (NEMO) in its 3.6 version just released

in June 2015. NEMO-LIM3.6 is expected to have a long

life time, as it will form the base of the ocean and sea ice

representation in several forthcoming Earth system models

for the Coupled Model Inter-comparison Project 6 (CMIP6)

(Meehl et al., 2014): the Institut Pierre-et-Simon Laplace

(IPSL) Earth system model (Dufresne et al., 2013), EC-Earth

(Hazeleger et al., 2010) and Centro Euro-Mediterraneo sui

Cambiamenti Climatici Climate Model (CMCC-CM) (Scoc-

cimarro et al., 2011). Therefore, we found it timely and ap-

propriate to present the new characteristics and possibilities

made possible by LIM3.6 in this paper.

The modifications made to LIM mainly improve the ro-

bustness, versatility and sophistication of the code, aiming at

satisfying the needs of a large community of users. A major

goal was to reach an exact conservation of mass, heat and

salt, which is essential for climate simulations but was not

satisfied in LIM3 until now. For that purpose, the time step-

ping scheme was reshaped and several minor conservation

leaks were found and corrected. New capabilities have also

been developed: open-boundary conditions for sea ice (which

enables regional studies in ice-covered areas), more flexible

thickness category boundaries, mono-category parameteriza-

tions, more realistic ice–ocean interactions, and more flexible

ice–atmosphere exchanges.

The representation of sea ice physics in LIM is described

in Sect. 2. Section 3 is dedicated to the new developments

of the sea ice model. Some of these developments are il-

lustrated in two simulations using the latest stable release

of NEMO-LIM: a large-scale global 2◦-resolution configu-

ration (Sect. 4); and a regional 2 km resolution configuration

around the Svalbard Archipelago (Sect. 5), a region well-

suited to study various sea ice regimes as well as transient

events such as polynyas. Conclusions and perspectives are

presented in Sect. 6.

2 Model description

LIM was originally a B-grid sea ice model developed by

Fichefet and Morales-Maqueda (1997), including ice dynam-

ics based on the viscous-plastic (VP) rheology (Hibler III,

1979), the three-layer thermodynamic formulation of Semt-

ner Jr. (1976), the second-order moment-conserving advec-

tion scheme of Prather (1986) and various sea ice physi-

cal parameterizations. Some years later LIM became LIM2

when it was rewritten in Fortran 90 and coupled to Ocean

Parallelise (OPA), a C-grid, finite difference, hydrostatic,

primitive equation ocean general circulation model (Madec,

2008). LIM2 was later on integrated into the NEMO system,

for the global reference configuration ORCA2-LIM (Tim-

mermann et al., 2005).

Recently, LIM was improved towards a better account

of sub-grid-scale physics, giving birth to LIM3 (Vancop-

penolle et al., 2009a, b). LIM3, as other multi-category mod-

els (e.g. CICE; Hunke et al., 2013), is based on the Arc-

tic Ice Dynamics Joint Experiment (AIDJEX) framework

(Coon et al., 1974). LIM3 mostly differs from other multi-

category models in terms of parameterizations and imple-

mentation details. The new features of LIM3 are mainly mul-

tiple ice categories to represent the sub-grid-scale ice thick-

ness distribution (Thorndike et al., 1975), multi-layer halo-

thermodynamics including brine dynamics and their impact

on thermal properties and ice–ocean salt exchanges (Van-

coppenolle et al., 2009b) and a C-grid formulation (Bouil-

lon et al., 2009) for ice dynamics using the modified elastic-

viscous-plastic (EVP) rheology (Bouillon et al., 2013), in-

stead of the more computationally expensive VP rheology

(Hibler III, 1979).

2.1 Conservation of area and ice thickness categories

To account for unresolved sub-grid-scale variations in ice

thickness (h), the state of sea ice is given by a thickness dis-

tribution function g(x,y,h, t) (Thorndike et al., 1975), de-

fined as the limit

g = lim
dh→0

dA

dh
, (1)

where dA is the areal fraction of a small control surface with

thickness between h and h+ dh.

Invoking continuity, the conservation of area can be writ-

ten as

∂g

∂t
=−∇ · (gu)+ψ −

∂

∂h
(fg) . (2)

The terms on the right-hand side are (i) divergence of the flux

of g, with u being the horizontal ice current, (ii) mechanical

redistribution (ψ) (i.e. ridging/rafting) and (iii) thermody-

namical processes, with f = dh/dt the net ice growth/melt

rate. In practice, the thickness distribution is discretized over

(typically 5) thickness categories (Bitz et al., 2001; Lip-

scomb, 2001), each characterized by a specific areal fraction

(referred to as concentration). The ice thickness in each cat-

egory is free to evolve between fixed boundaries.

The state of the ice is defined by a series of state variables,

X(x,y,h, t,z), namely ice concentration, ice volume per unit

area, ice internal energy, ice salt content, snow volume per

unit area and snow internal energy. Ice internal energy is the

only state variable that also depends on the vertical depth

in the ice (z). Ice salt content does not depend on z since

implicit vertical salinity profiles are assumed. Following the
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discretization of thickness space, state variables are charac-

terized by specific values in each category. In addition, in

order to resolve the vertical profiles of internal energy, each

category is further vertically divided into one layer of snow

and several ice layers of equal thicknesses.

In practice, sea ice state variables follow an equation of the

form

∂X

∂t
=−∇ · (Xu)+9X +2X, (3)

where∇ · (Xu) is the divergence of the flux of X, 9X is the

ridging/rafting and 2X is the halo-thermodynamics.

2.2 Dynamics

Ice dynamics (momentum equation, advection and diffusion

of state variables) is formulated on a C-grid, which is a speci-

ficity of LIM3.

2.2.1 Momentum equation

The ice velocity is considered the same for all categories and

is determined from the two-dimensional momentum equation

m
∂u

∂t
= A(τa+ τw)−mf k×u−mg∇η+∇ · σ, (4)

where m is the ice mass per unit area, A is concentration,

τa and τw are the air–ice and ocean–ice stresses, −mf k×u

is the Coriolis force, −mg∇η is the pressure force due to

horizontal sea surface tilt and ∇ · σ refers to internal forces

arising in response to deformation. Momentum advection is

at least 1 order of magnitude smaller than acceleration and

is neglected (Leppäranta, 2005). The external stress terms

are multiplied by concentration to satisfy free drift at low

concentration (Connolley et al., 2004). The stress tensor σ

is computed using the C-grid EVP formulation of Bouillon

et al. (2009, 2013). EVP (Hunke and Dukowicz, 1997) reg-

ularises the original VP approach (Hibler III, 1979). VP as-

sumes a viscous ice flow (stress proportional to deformation)

at very small deformations, and a plastic ice flow (stress in-

dependent of deformation) above a plastic failure threshold.

This threshold lies on a so-called yield curve that depends on

the ice strength determined by default from Hibler III (1979):

P = P ∗He−C(1−A), (5)

where P ∗ and C are empirical positive parameters, and H

is the ice volume per grid cell area. Other strength formu-

lations are available in the code (e.g. Rothrock, 1975; Lip-

scomb et al., 2007); see Vancoppenolle et al. (2012) for de-

tails. By introducing artificial damped elastic waves and a

time-dependence to the stress tensor, the EVP method en-

ables an explicit resolution of the momentum equation with

a reasonable number of sub-time steps (∼ 100) and easy im-

plementation on parallel architectures. However, EVP has to

be used carefully since even the modified EVP of Bouillon et

al. (2013) hardly converges to the VP solution unless a very

large number (> 500) of iterations is used (Kimmritz et al.,

2015).

2.2.2 Horizontal transport and diffusion

The sea ice state variables are transported horizontally

using the second-order moment-conserving scheme of

Prather (1986). This scheme is weakly diffusive and pre-

serves positivity of the transported ice fields. To smooth the

ice fields and dampen instabilities, a horizontal diffusion of

the form D∇2X is implemented in Eq. (3), where D is a dif-

fusion coefficient that is proportional to mean grid cell size

(the reference value is 350 m2 s−1 at 2◦ resolution). Horizon-

tal diffusion is solved using a Crank–Nicholson scheme, with

a prescribed diffusivity within the ice pack that drops to zero

at the ice edge. Horizontal diffusion should be understood as

a numerical artefact introduced to avoid non-linearities aris-

ing from the coupling between ice dynamics and transport;

hence, D should be as small as possible.

2.2.3 Ridging and rafting 9X

The dissipation of energy associated with plastic failure un-

der convergence and shear is accomplished by rafting (over-

riding of two ice plates) and ridging (breaking of an ice plate

and subsequent piling of the broken ice blocks into pres-

sure ridges). Thin ice preferentially rafts whereas thick ice

preferentially ridges (Tuhkuri and Lensu, 2002). In LIM3.6,

the amount of ice that rafts/ridges depends on the strain

rate tensor invariants (shear and divergence) as in Flato and

Hibler (1995), while the ice categories involved are deter-

mined by a participation function favouring thin ice (Lip-

scomb et al., 2007). The thickness of ice being deformed

(h′) determines whether ice rafts (h′ < 0.75 m) or ridges

(h′ > 0.75 m), following Haapala (2000). The deformed ice

thickness is 2h′ after rafting, and is distributed between 2h′

and 2
√
H ∗h′ after ridging, where H ∗ = 100 m (Hibler III,

1980). Newly ridged ice is highly porous, effectively trap-

ping seawater. To represent this process, mass, salt and heat

are extracted from the ocean into a prescribed volume frac-

tion (30 %) of newly ridged ice (Leppäranta et al., 1995).

Hence, in contrast with other models, the net thermodynamic

ice production during convergence is not zero in LIM, since

mass is added to sea ice during ridging. Consequently, sim-

ulated new ridges have high temperature and salinity as ob-

served (Høyland, 2002). A fraction of snow (50 %) falls into

the ocean during deformation.

2.3 Halo-thermodynamics 2X

Thermodynamics refers to the processes locally affecting the

ice mass and energy, and involving energy transfers through

the air–ice–ocean interfaces. Halo-dynamics refers to the

processes impacting sea ice salinity. In the code, both pro-

cesses are assumed purely vertical and their computations

www.geosci-model-dev.net/8/2991/2015/ Geosci. Model Dev., 8, 2991–3005, 2015
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are repeated for each ice category. Therefore, the reference

to ice categories is implicit in this section.

2.3.1 Energy

The change in the vertical temperature profile, T (z, t), of the

snow–ice system derives from the heat diffusion equation

ρ
∂E(S,T )

∂t
=
∂

∂z

[
k(S,T )

∂T

∂z

]
+R, (6)

where z is the vertical (layer) coordinate, ρ the snow/ice den-

sity (assumed constant), E the snow/ice internal energy per

unit mass (Schmidt et al., 2004), S the salinity, k the ther-

mal conductivity (Pringle et al., 2007) and R the internal

solar heating rate. The effect of brine inclusions is repre-

sented through the S and T dependency of E and k (e.g.

Untersteiner, 1964; Bitz and Lipscomb, 1999). The surface

energy balance (flux condition) and a bottom ice temper-

ature at the freezing point provide boundary conditions at

the top and bottom interfaces, respectively. Equation (6) is

non-linear and is solved iteratively. Change in ice salinity is

assumed to conserve energy; hence, any salt loss implies a

small temperature increase.

The solar energy is apportioned as follows. The net solar

flux penetrating through the snow–ice system is (1−α)Fsol,

where α is the surface albedo and Fsol is the incoming so-

lar radiation flux. Only a prescribed fraction i0 of the net

solar flux penetrates below the surface and attenuates expo-

nentially, whereas the rest is absorbed by the surface where

it increases the surface temperature. The radiation term in

Eq. (6) derives from the absorption of the penetrating solar

radiation flux R =−∂/∂z
[
io (1−α)Fsw exp(−zκ)

]
, where

κ = 1 m−1 is the attenuation coefficient in sea ice, in the

range of contemporary observations (Light et al., 2008). At

this stage no shortwave radiation penetration is allowed when

snow is present (i0 = 0). The solar radiation flux penetrating

down to the ice base is sent to the ocean. The surface albedo

is a function of the ice surface temperature, ice thickness,

snow depth and cloudiness (Shine and Henderson-Sellers,

1985).

2.3.2 Mass

The ice mass increases by (i) new ice formation in open wa-

ter, (ii) congelation at the ice base, (iii) snow–ice formation

at the ice surface and (iv) entrapment and freezing of seawa-

ter into newly formed ridges. It decreases by melting at both

(v) the surface and (vi) the base. The snow mass increases by

snowfall and reduces by surface melting, sublimation, snow–

ice formation and snow loss during ridging/rafting.

Freezing and melting (i, ii, v, vi) depend on the appropri-

ate interfacial net energy flux (open water–atmosphere, ice–

atmosphere or ice–ocean) 1Q (W m−2) such that the ocean-

to-ice mass flux Fm (kg m−2 s−1) is written as

Fm
=
1Q

1E
. (7)

1E (J kg−1) is the energy per unit mass required for the

phase transition. For new ice formation in open water, the

new ice thickness must be prescribed (usually 10 cm) and the

fractional area is derived from Eq. (7). For surface melting,

1Q is different from zero only if the surface temperature is

at the freezing point.

Snow-ice formation requires negative freeboard, which

occurs if the snow load is large enough for the snow–ice

interface to lie below sea level (Leppäranta, 1983). Seawa-

ter is assumed to flood the snow below sea level and freeze

there, conserving heat and salt during the process (Fichefet

and Morales Maqueda, 1997; Vancoppenolle et al., 2009b).

The associated ocean-to-ice mass flux is

Fm
= (ρi− ρs)

∂h

∂t
. (8)

Every ice–ocean mass exchange involves corresponding en-

ergy and salt exchanges (Schmidt et al., 2004). For in-

stance, seawater freezing involves a change in energy 1E =

Ei(S,T )−Ew(Tw), where Ei is the internal energy of the

frozen ice at its new temperature and salinity and Ew is the

internal energy of the source seawater at its original temper-

ature. To ensure heat conservation in the ice–ocean system,

the heat flux Qm
= Ew(Tw)F

m is extracted from the ocean.

Conversely, when ice melts the internal energy of melt water

is sent to the ocean. Salt exchanges are detailed hereafter.

2.3.3 Salt

The salinity of the new ice formed in open water is deter-

mined from ice thickness, using the empirical thickness–

salinity relationship of Kovacs (1996). One originality of

LIM3 is that the vertically averaged ice salinity S (in ‰)

evolves in time, following Vancoppenolle et al. (2009a, b):

∂S

∂t
=

∑
j

(
νjSw− S

h

)
∂hj

∂t
+

∑
j

Ij

(
Sj − S

Tj

)
. (9)

The first term on the right-hand side is the salt uptake

summed over the three ice growth processes (ii, iii and iv),

each characterized by a growth rate ∂hj/∂t and a coefficient

νj that determines the fraction of trapped oceanic salinity

Sw. For basal freezing, νj is a function of growth rate (Cox

and Weeks, 1988). For snow–ice formation, it is a function

of snow and ice densities. For ridging, it depends on ridge

porosity. The second term on the right-hand side is the salt

loss summed over the two parameterized brine drainage pro-

cesses (gravity drainage and flushing; see Notz and Worster,

2009). Ij is 1 if the drainage process is active and 0 if it is

not. Gravity drainage occurs if ice is growing at the base;

flushing occurs if the snow/ice is melting at the surface. Sj

Geosci. Model Dev., 8, 2991–3005, 2015 www.geosci-model-dev.net/8/2991/2015/
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(5 ‰ for gravity drainage; 2 ‰ for flushing) is the restoring

salinity for each drainage process and Tj is the corresponding

timescale (20 days for gravity drainage, 10 days for flushing).

The shape of the vertical salinity profile depends on S,

so that ice with S > 4.5 ‰ has a constant vertical profile.

By contrast, ice fresher than this threshold has a linear pro-

file with a lower salinity near the surface. This difference is

important to properly represent the impact of brine on ther-

mal properties (Vancoppenolle et al., 2005). Ice formation

retrieves salt from the ocean, but the conjunction with wa-

ter mass loss makes the ocean surface saltier. Conversely, ice

melting releases salt but makes the ocean fresher. Because

the ice density is assumed constant, brine drainage cannot be

associated with an ice–ocean water mass exchange (the ice

density would have to change to be conservative). The brine

drainage flux is therefore represented as a salt flux, which

directly increases ocean salinity.

2.3.4 Transport in thickness space

Ice growth or melt in a given category involves a transfer of

ice to neighbour categories, which is formally analogous to

a transport in thickness space with a velocity equal to the

net growth rate dh/dt . This transport in thickness space is

solved using the semi-Lagrangian linear remapping scheme

of Lispcomb (2001). This scheme is weakly diffusive, con-

verges with a few categories and its computational cost is

minimal, which is an important property since transport op-

erates over each ice category. Transport in thickness space is

applied to all other state variables as well.

3 New features in LIM3.6

3.1 Control of the mass, heat and salt budgets

Mass, heat and salt must be perfectly conserved over suffi-

ciently long timescales in an ice–ocean modelling system, es-

pecially for climate studies. Moreover, a clear identification

of the different physical processes and their contributions to

the air–ice–ocean exchanges is needed. These requirements

were not satisfied in LIM3.0 mostly because of the temporal

scheme and numerous small conservation leaks, which have

necessitated a large rewriting of the code.

The changes in the sea ice state variables due to dynamics

and thermodynamics were previously calculated in parallel,

starting from the same initial state (Fig. 1a). Both tenden-

cies were then combined to calculate the new state variables.

This method, numerically stable and matching NEMO’s phi-

losophy, required, however, a final correction step to impose

that ice losses (by melting and/or divergence) did not exceed

the ice initially available. This correction step could be as

important as the physical processes in some cases, and could

not be attributed to a specific process. The modified temporal

scheme is fractional (as for most sea ice models), removing

the need for a correction step. The dynamic and thermody-

(a) Time scheme LIM3.0

Previous
ice 

Figure 1. Illustration of the changes in the time scheme. (a) The

original time scheme used in LIM3.0 treats ice dynamics and ther-

modynamics in parallel, requiring a correction step to ensure that

the ice mass is strictly positive. (b) The new scheme of version 3.6

uses an operator splitting approach, so that dynamics is calculated

before thermodynamics, and therefore no correction is needed.

namic processes are split in time and are applied sequentially

(Fig. 1b), which allows for consistent diagnostics of the pro-

cesses contributing to the air–ice–ocean exchanges without

altering the general model behaviour (not shown). These pro-

cess diagnostics are illustrated for global and regional simu-

lations in Sects. 4 and 5.

Based on these modifications, the conservation of mass,

salt and heat was then carefully inspected, leading to sev-

eral small corrections. In particular, the space-centred im-

plicit backward-Euler scheme used to solve the heat diffu-

sion equation (Eq. 6, Bitz and Lipscomb 1999) does not

strictly conserve heat. The scheme is the same as in CICE,

for which the problem was already reported but not yet re-

solved (Hunke et al., 2013). Because Eq. (6) is non-linear

(E and k depend non-linearly on T ), the numerical proce-

dure has to be iterative. The iteration stops once the temper-

ature change is less than 10−5 ◦C or after 50 iterations. The

scheme does not strictly converge, leading to an error on the

heat conduction flux of ∼ 0.005 W m−2, averaged over the

ice pack for a global 2◦-resolution simulation, with maxima

reaching in some rare cases O (10 W m−2). These errors are

similar to those reported in CICE user’s guide (0.01 W m−2,

Hunke et al., 2013). Therefore, to ensure strict conservation,

either the heat conduction fluxes or the ice temperature must

be adjusted at the end of iteration. We chose to keep the ice

temperature unchanged and to recalculate the net downward

heat flux reaching the ocean, which could be easily imple-

mented in other models using the same scheme.

3.2 Lateral boundary conditions

NEMO can be used in regional configurations. The BDY

tool, handles the specification of boundary conditions in

NEMO, with possible inflows/outflows through open bound-

aries (Chanut, 2005). The ocean temperature, salinity and

baroclinic velocity are treated with a flow relaxation scheme

www.geosci-model-dev.net/8/2991/2015/ Geosci. Model Dev., 8, 2991–3005, 2015
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(Engedahl, 1995), while the Flather (1976) radiation condi-

tion is well-suited for tidal forcing and therefore is used for

both the barotropic ocean velocity and sea surface height.

However, sea ice was missing from BDY, which restricted the

use of regional configurations to ice-free areas. New develop-

ments to BDY were introduced to accommodate sea ice. The

treatment of open boundaries in the sea ice model is not very

much documented in the literature; hence, we found it diffi-

cult to compare this new approach to what is done in other

models.

The sea ice state variables imposed at the boundary de-

pend on the direction of ice velocity in a similar way to an

upstream advection scheme. They are relaxed toward inte-

rior domain values where ice exits the domain, and toward

external boundary data where ice enters the domain. External

boundary data can either come from observations, reanalyses

or reference simulations. As ice velocities in these external

files are not always well determined, they need to be defined

at the boundary. The tangent ice velocity is imposed to 0.

The normal ice velocity depends on the presence of ice in

the adjacent cell: if ice-free, ice velocity is relaxed to ocean

velocity; otherwise, velocity is relaxed to the ice velocity of

the adjacent cell.

Most boundary data sets do not include multiple ice cat-

egories. Hence, a strategy to fill in thickness categories in

a smooth and consistent way with the external data set is

defined, following the algorithm used to initialise the sea

ice state variables (Vancoppenolle et al., 2012). The basic

assumption relies on a distribution of ice concentration as

a function of ice categories following a Gaussian law in a

volume-conserving way, preserving positivity. The largest

concentration is associated with the category where the mean

thickness (over the grid cell) lies. Illustration of the capabil-

ity of LIM3 in a regional domain is presented in Sect. 5.

3.3 Category boundaries

The original discretization of the thickness category bound-

aries in LIM3 follows the hyperbolic tangent formulation

from CICE (Hunke et al., 2013). The formulation proved to

be suitable to simulate the Arctic ice pack with only five ice

categories, but cannot be easily adjusted to different ice con-

ditions. For instance, thin ice can only be finely discretized

by augmenting the number of ice categories, and de facto

increasing computational cost. Multiple simulations, in par-

ticular for regional configurations, call for more flexibility

without additional cpu consumption. Therefore, a new dis-

cretization was implemented that can adjust the expected

mean ice thickness (h) over the domain. Category boundaries

lie between 0 and 3h and are determined using a fitting func-

tion proportional to (1+h)−α , where α = 0.05. For h= 2 m,

the new formulation is very similar to the original one. For

h= 1 m, boundaries tighten within 3 m, providing more res-

olution for thin ice (Fig. 2).
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Figure 2. Thickness category boundaries (m) as a function of cate-

gories (5 or 10). The tanh formulation from CICE, which is used in

the former version 3.0 of LIM, is represented in grey and black for

5 and 10 categories, respectively. The formulation used in the new

version 3.6 of LIM is proportional to (1+h)−α , where α = 0.05,

and does not depend on the number of categories. It is displayed

above for three different mean ice thicknesses h (1, 2 and 3 m),

h= 2 m being the closest to the tanh formulation.

3.4 Virtual thickness distribution

Some users may want to run LIM3.6 at the smallest possible

computational cost. The most efficient way to achieve this

is to use a single ice thickness category (mono-category).

However, this deteriorates the results because of the poor

representation of the growth and melt of thin ice, which typi-

cally reduces the amplitude of the seasonal cycle of ice extent

(Holland et al., 2006; Massonnet et al., 2011). To lessen this

problem, two parameterizations from LIM2 (Fichefet and

Morales Maqueda, 1997) were implemented in LIM3.6. The

first parameterization enhances the sea ice and snow thermal

conductivities, in order to increase basal ice growth, as thin

ice would do if it was properly resolved. The second param-

eterization aims at representing the impact of melting thin

ice on ice concentration. With these two parameterizations,

a mono-category simulation mostly reproduces the global

mean volume and extent of a multi-category simulation, but

regional differences subsist. In addition, although the mono-

category approach in LIM3 is conceptually comparable to

LIM2, simulations using the two sea ice models would show

different results because of the different representations of

halo-thermodynamics. This will be described in more details

in a forthcoming contribution.

3.5 Embedded sea ice

Sea ice has been considered so far as levitating above the

ocean in LIM3, and all the studies (including this one) have

been based on this approximation. Even though exchanges

between the levitating ice and the ocean modify the sea sur-

face height and thermohaline structure of the ocean surface,

the sea surface depression resulting from the weight of the

ice and snow cover was not taken into account. The effect
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of embedding ice into the ocean can now be activated at will

(not illustrated in this study). It improves the physical real-

ism and influences ocean dynamics (mostly at the ice edge)

via strengthened gradients of sea surface height, but does not

directly affect ice dynamics (Campin et al., 2008).

3.6 A flux redistributor for the ice–atmosphere

interface in coupled mode

NEMO-LIM3.6 can also be coupled to atmospheric mod-

els. Some atmospheric models only provide ice–atmosphere

heat or mass fluxes (< F >) for the entire grid cell, and

not for each thickness category, as LIM needs. Yet the ice-

atmosphere flux strongly depends on the ice surface tem-

perature, which substantially differs among categories. To

better estimate the ice–atmosphere flux in the lth category

(Fl), a “flux redistributor” has been implemented using the

following linearisation: Fl =< F >+
∂F
∂T su (T

su
l −< T

su >),

where ∂F
∂T su is the flux derivative given by the atmospheric

model. T su
l , is the ice surface temperature in the lth category

and < T su > is the average over the categories, weighted

by their areal fractions. The flux redistributor proves much

closer to an exact computation of ice–atmosphere fluxes than

a category-averaged flux.

3.7 Inputs and outputs

LIM3.6 has been interfaced with XIOS (XML input output

server; http://forge.ipsl.jussieu.fr/ioserver/), a new and inno-

vative library developed at Institut Pierre-et-Simon Laplace

(IPSL) and dedicated to climate modelling data output. XIOS

combines flexibility and performance. It considerably simpli-

fies output definition and management by outsourcing out-

put description in an external XML file. In addition, the in-

terface offers numerous possibilities for variables manipu-

lations such as complex temporal operations and computa-

tions involving several variables. XIOS also achieves excel-

lent performance on massively parallel supercomputers by

using several server processes exclusively dedicated to out-

put files. File system writing is performed concurrently with

computation.

4 Global ice–ocean simulation: ORCA2-LIM3

4.1 Experimental set-up and observation data sets

The simulation presented here is the standard simulation that

can be performed with the most recent 3.6 version of NEMO

right after downloading the code, in one of the main sup-

ported NEMO configurations (ORCA2-LIM3), and forced

by the reference CORE normal year forcing directly provided

with the code. This is not the best simulation that can be pro-

duced, but rather the one that a user starting with the model

would perform.

In ORCA2-LIM3, NEMO comprises the ocean general

circulation model OPA version 3.6 (Madec, 2008) and LIM

(Vancoppenolle et al., 2009a) in its 3.6 version presented

above, running on the same 2◦-resolution grid (ORCA2).

More details can be found in Mignot et al. (2013). The atmo-

spheric state is imposed using the CORE normal year forc-

ing set proposed by Large and Yeager (2009), developed to

inter-compare ice–ocean models (e.g. Griffies et al., 2009).

It is based on a combination of NCEP/NCAR reanalyses

(for wind, temperature and humidity) and various satellite

products (for radiation), has a 2◦ resolution and near-zero

global mean heat and freshwater fluxes. The so-called nor-

mal year data set superimposes the 1995 synoptic variability

on the mean 1984–2000 seasonal cycle. The simulation lasts

100 years, much longer than needed for sea ice to reach equi-

librium. Most diagnostics presented hereafter are seasonal

averages over the last 10 years of the simulation. The com-

putational cost of such a simulation is about 12 h on 64 pro-

cessors of an IBM Power6, with LIM3.6 consuming less than

25 % of this time.

The observed ice extent is derived from ice concentra-

tion retrievals of the EUMETSAT Ocean and Sea Ice Satel-

lite Application Facility (OSI-SAF; Eastwood et al., 2010)

and is presented here as 1984–2000 monthly means. To put

the simulated ice volume in context, we do not use satellite

estimates, for which uncertainties are very large (e.g. Zyg-

muntowska et al., 2014), but instead the 1979–2011 reanaly-

sis PIOMAS in the Arctic (Schweiger et al., 2011), and the

NEMO-LIM2-EnKF reconstruction in the Antarctic (Mas-

sonnet et al., 2013).

4.2 Ice concentration and thickness

Neither the model nor the atmospheric forcing are precisely

tuned to get the most realistic sea ice simulation, because this

depends on forcing, resolution and user wishes. Instead, we

choose the model default parameters with the standard refer-

ence forcing and show that the simulated ice concentrations

and thicknesses are in reasonable agreement with observa-

tions.

Figure 3 shows the ice concentrations at the model max-

imum and minimum extent in ORCA2-LIM3 and OSI-SAF

(March and September for the Arctic; February and Septem-

ber for the Antarctic). The simulated ice distribution is rela-

tively close to the observations, with some common defects.

In the boreal winter, the ice extends too much southward

covering a large part of the Greenland Sea, while it almost

disappears near Antarctica. These biases have unclear ori-

gins and we do not intend to resolve them but some leads

can be proposed. In the Northern Hemisphere, we notice a

low ocean heat supply by the North Atlantic Current and an

overestimated ice volume export through Fram Strait, which

could explain some of the bias. But other factors as the forc-

ing or model physics, in particular dynamics, cannot be ruled

out. In the Southern Hemisphere, we notice a wrong position
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Figure 3. Mean sea ice concentrations from the simulation ORCA2-

LIM3 and the observations OSI-SAF for March and September in

the Arctic (left panels) and February and September in the Antarc-

tic (right panels). The white line indicates the 15 % ice concentra-

tion contour.

of the Antarctic Circumpolar Current and an overestimated

ocean convective activity, which melts ice by mixing rela-

tively warm and salty water at depth with cold and fresh sur-

face waters, and which could explain the ice loss. Such prob-

lems are common in global ocean models (Kim and Stössel,

2001), and vertical physics in the ocean should certainly be

tuned to improve the realism of the simulated ice character-

istics.

The seasonal cycle of the sea ice extent (i.e. the area en-

closed within the 15 % ice concentration contour, white lines

in Fig. 3) is presented in Fig. 4 for both hemispheres. The

model reproduces the amplitude of the observed seasonal

variations of ice extent but is biased low all year long, and

especially in austral summer.

The simulated ice thickness distributions are displayed in

Fig. 5 for both hemispheres, at the time of maximum extent

(March and September). The ice thickness exceeds 3 m in the
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Figure 4. Mean seasonal cycle of sea ice extent (i.e. area inside the

15 % concentration contour) in the Northern (in blue) and South-

ern (in cyan) hemispheres from the ORCA2-LIM3 simulation (solid

lines) and as derived from OSI-SAF observations (dashed lines).

Units are in 106 km2.
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Figure 5. Mean simulated sea ice thicknesses (m) at the time of

maximum ice volume: for March in the Northern Hemisphere and

for September in the Southern Hemisphere.

central Arctic, reaching 5 m along the Canadian and Green-

land coasts. This is in rough agreement with the submarine

thickness retrievals (3.4 m in the central Arctic in February–

March 1988; Kwok and Rothrock, 2009). The spatial distri-

bution follows expectations, except a spurious band of thick

ice along the East Siberian shelf. The simulated Arctic ice

volume ranges from 17 000 km3 in September to 35 000 km3

in March–April, i.e. somewhat higher than Pan-arctic Ice-

Ocean Modeling and Assimilation System (PIOMAS) re-

analyses. In the Southern Hemisphere, the ice is generally

thinner than in the Arctic, with a modal value of nearly 1 m.

The model underestimates the thickness of thick ice in the

Weddell and Amundsen seas (Worby et al., 2008; Kurtz and

Markus, 2012). The band of thick ice along the east side of

the Antarctic Peninsula is missing, which is attributed to mis-

represented NCEP winds in the region (Timmermann et al.,

2005; Vancoppenolle et al., 2009b). The simulated ice vol-

ume (0 to 14 000 km3) is somewhat larger than the reanal-

ysis values (2000–10 000 km3; F. Massonnet personal com-

munication, 2015) and satellite estimates (3000–11 000 km3,

Kurtz and Markus, 2012).
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Figure 6. Simulated mean seasonal cycles of the different ice mass balance processes in the ORCA2-LIM3 simulation: Arctic (left panel)

and Antarctic (right panel). Ice grows from the base (magenta), in open water (red), by snow–ice formation (orange) or by freezing of sea

water trapped in the ridges (green). Ice melts at the base (blue) and surface (cyan). Ice advection is nil here since diagnostics are hemispheric.

The black line is the net ice production (i.e. the sum of all the processes). Units are in cm month−1. Positive and negative values represent

creation and destruction of sea ice, respectively.

This simulation could obviously be improved through

careful calibration, which depends on resolution and forc-

ing. Calibration can be achieved by adjusting the atmo-

spheric forcing and vertical ocean physics, and by tuning

the most influential ice parameters. For instance, the Arctic

ice thickness can be increased substantially by increasing the

albedo, decreasing the minimum lead fraction or decreasing

ice strength.

4.3 Mass and salt balances

The new developments allow for an examination of the ice

mass, heat and salt budgets seasonally and over the dif-

ferent processes. Seven processes affect the ice mass (see

Sect. 2.3.2). Five belong to vertical thermodynamics: new ice

growth in open water, basal growth and melt, surface melt

and snow–ice formation. Two are dynamical processes: ad-

vection and entrapment and freezing of seawater in newly

built ridges. Changes in the heat and salt contents involve the

same processes, plus the changes in internal temperature (for

heat budget) and internal salinity due to brine drainage (for

salt budget).

We focus on the mass budget for illustration and present

its different contributors integrated over the Northern and

Southern hemispheres in Fig. 6. In both hemispheres, the

dominant balance is between basal ice growth and melt. Sur-

face melting is also important but only in the Arctic dur-

ing boreal summer. Contributions of secondary importance

are new ice formation in open water during the cold season

(both hemispheres) and snow–ice formation during Antarc-

tic spring. Note that the contribution from advection is ob-

viously nil when integrated over a hemisphere. The max-

imum growth rate is about the same in both hemispheres

(slightly larger than 20 cm month−1). Basal melt is remark-

ably weaker in the Arctic than in the Antarctic (maximum

at 40 and 70 cm month−1, respectively). This is because in

the Arctic, the ice is constrained by continents to stay at

high latitudes, where the ocean stratification is strong and

the ocean heat flux is weak. Overall, about 26 000 km3 of ice

are formed and melted each year in the Arctic, which corre-

sponds to about 2 m of ice. About 320 Gt of salt are extracted

from the ocean during freezing and released during ice de-

salinisation and melting. These mean values are similar in

the Antarctic: 22 000 km3 of annual ice production (∼ 1.8 m)

and 320 Gt of salt.

This integrated view masks strong geographic disparities.

In Fig. 7 we show the geographical distribution of some of

the processes in March in the Arctic. The interior of the ice

pack still grows from the bottom, while the base of the ice

edge melts, resulting in snow–ice formation where snow is

thick enough. As expected, the strongest thickness changes

due to advection are near the ice edge. Ice formation in open

water is globally weak but becomes one of the main pro-

cesses in some regions of climate importance (see next sec-

tion).

5 Regional configurations

5.1 Experimental set-up

To illustrate the capability of NEMO-LIM3 in regional

ice-covered domains, we designed an experiment in a re-

gional configuration (500× 500 km) around the Svalbard

Archipelago. This region was chosen because of the diverse

conditions encountered and strong tides (a tidal gauge at Ny-

Ålesund, on the west coast of Svalbard, records tidal ampli-

tudes up to 2 m). North of the archipelago, lies the perennial

ice pack of the Arctic Ocean transitioning southwards to a

seasonal ice zone. The domain also includes the large Stor-

fjorden polynya, frequently open during winter. Polynyas are

small (10–105 km2) and sporadic by nature, but their role in

climate is important (e.g. Morales Maqueda et al., 2004). In

winter, the ocean heat loss in polynyas is considerable, pro-
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Figure 7. Horizontal distribution of the five relevant processes con-

tributing to the sea ice mass balance in March in the Northern Hemi-

sphere, from the ORCA2-LIM3 simulation. Units are in cm day−1.

Positive and negative values represent creation and destruction of

sea ice, respectively.

ducing large amounts of sea ice, as well as dense water sink-

ing towards the deep ocean basins. At the onset of melting

season, polynyas enhance ice melting as the open waters cap-

ture more heat than ice-covered areas.

Horizontal resolution is very high (2 km) in order to prop-

erly represent fine-scale processes taking place in polynyas.

The basin is vertically discretized by 75 non-uniform ocean

levels, with a resolution of 1 m at the surface. The domain

is open at the four boundaries and conditions there are set

up using the BDY tool, modified as described in Sect. 3.2.

Bathymetry is interpolated from etopo1 (Amante and Eakins,

2009), which actually retrieves data from IBCAOv2 north of

64◦ N (Jakobsson et al., 2008). Tides are important drivers

for high-frequency processes. Therefore, they are included

here as well as the non-linear free surface (z∗ coordinates

system). A third-order upstream biased advection scheme is

used for ocean tracers and momentum (instead of the flux

corrected transport used in ORCA2-LIM3). Such a scheme is

indeed more precise and has implicit diffusion. It also min-

imizes diffusion; hence, the oceanic structures can develop

without being impeded by homogeneous diffusion. The k-

ε closure scheme using generic length-scale turbulent mix-

ing is chosen (Umlauf and Burchard, 2003; Reffray et al.,

2015). The simulation is forced at the surface by a 6-hourly,

3/4◦× 3/4◦ ERAI data set, and at the boundaries by 5-day

outputs from a DRAKKAR 1/4◦ global reference simulation

ORCA025-MJM (an update to ORCA025-G70; Barnier et

al., 2006; Molines et al., 2007; DRAKKAR group, 2007).

We also prescribe tidal sea surface height and barotropic ve-

locity at the boundaries from FES2012 (Carrère et al., 2012).
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Figure 8. (Left)satellite MODIS image of the Svalbard Archipelago

(22 May 2002). Note that clouds and sea ice are both white.

(Right) 1-day averaged simulated sea ice concentrations at the same

date from the high-resolution regional simulation. In both pictures,

ice is pushed away from the shore by northeasterly winds, allowing

formation of a polynya along the east coast of Storfjorden.

The simulation is conducted over 1999–2009 in order to cap-

ture inter-annual variability.

The model behaviour at the boundary is satisfactory. No

noise or wave reflection pollutes the basin despite strong in

and out flows and the presence of tides (not shown). The sim-

ulation is also able to represent transient polynya occurrence.

As an example, Fig. 8 shows the simulated ice concentrations

on 22 May 2002 around Svalbard (right panel) as well as the

corresponding observations (left panel). At this date, north-

eastern winds were sufficiently strong to open the Storfjorden

polynya by pushing sea ice towards the western side of the

fjord. The simulated opening of polynyas – in terms of tim-

ing, location and size – is reasonable in Storfjorden and else-

where, though polynyas are somewhat smaller than observed

and their location is not precisely captured. This is likely due

to the low spatio-temporal variability of the ERAI surface

forcing, as highlighted by previous studies (Skogseth et al.,

2007). Downscaling the forcing with a regional atmospheric

model is probably required to further improve the simulation.

The Storfjorden polynya is not exactly found where it should

be, north of Storfjorden (Fig. 8), which could be due to the

atmospheric forcing or to the absence of a representation of

landfast ice in the model and must be further investigated.

5.2 Mass and salt balances in Storfjorden

Figure 9 shows the 10-year variability of the different mass

balance processes over the 13 000 km2 of the Storfjorden re-

gion (see Fig. 8). The sea ice mass balance is dominated by

basal growth (16 km3 year−1) and new ice growth in open

water (12 km3 year−1), compensated by export out of the do-

main (not shown) and basal melt (11 km3 year−1). Surface

melt can be significant (up to one third of total melt) but only

at the beginning of summer. As expected, ice growth in open

water is a crucial process here, while it is weak once aver-

aged over the Arctic basin (see previous section). The net ice

production is +17 km3 year−1 on average, with strong inter-
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Figure 9. A 10-year inter-annual variability of the processes in-

volved in ice evolution integrated over the Storfjorden area from

the regional simulation. Processes are the same as in Fig. 6, plus an

advection term corresponding to ice coming in and out of the area,

which is not shown for more clarity. Units are in cm day−1. Positive

and negative values represent creation and destruction of sea ice, re-

spectively. Note that for more readability, variations are smoothed

with a Hanning filter at a period of 2 months.

annual variability (from 23 km3 in 2001–2002 to 10 km3 in

2006–2007). This corresponds to a salt flux from the ocean

to the ice of about 150 Mt year−1. Over a year, the net pro-

duction almost balances ice export (not shown), so there is

no long-term accumulation of ice in the basin. However, at

timescales shorter than a year, ice can pile up in the Storfjor-

den.

By combining AMSR-E sea ice concentrations and at-

mospheric forcing from ERA-interim, Jardon et al. (2014)

estimated a mean ice production of 47 km3 in winter be-

tween 2002 and 2011. With a similar approach, Skogseth

et al. (2004) found a mean ice production of 40 km3 dur-

ing 1998–2002. In our simulation, this production amounts to

33 km3 for the period 1999–2009. This value is reasonable,

though it is smaller than observational retrievals and reanal-

yses. This could be related to the small size of the simulated

polynya and/or to the lack of high-resolution, high-frequency

winds in the ERAI forcing and should be further investigated.

6 Conclusions

The Louvain-la-Neuve sea ice model (LIM) has evolved con-

siderably during the past decade. Two versions have been de-

veloped and have coexisted up until now. LIM2 is based on

a Hibler III (1979) mono-category approach, and was inte-

grated in the NEMO system about 1 decade ago (Timmer-

mann et al., 2005). It was the reference model to date and

was used in a variety of simulations including CMIP5. LIM3

is a more sophisticated model developed 5 years ago (Van-

coppenolle et al., 2009a), including a better representation

of sub-grid-scale ice thickness distribution and salinity pro-

cesses. Several modifications to LIM3 have been done re-

cently to make it more robust, versatile and sophisticated,

leading to LIM3.6, described in this paper. LIM3.6 is the ref-

erence model for the forthcoming CMIP6 simulations, while

LIM2 is no longer the reference and will be discontinued in

the next NEMO release.

LIM3 has been improved for a use in various configura-

tions, from climate to regional studies, with a large range of

resolutions and complexities. Three main developments were

required. First, the code has been made strictly conservative.

For that purpose, the general time stepping has changed from

parallel to a splitting approach. In other words, thermody-

namics processes are now performed after dynamics, which

enables the discrimination of the different processes con-

tributing to the mass, heat and salt exchanges across the in-

terfaces between air, ice and ocean. Conservation in the code

has been carefully examined by comparing these exchanges

with thermodynamical and dynamical ice evolution, which

has led to several small corrections to reach a strictly con-

servative code. In particular, the iterative procedure to solve

the heat diffusion equation (Eq. 6) did not exactly converge,

leading to small heat leaks. The leaks are now corrected by

recalculating heat fluxes. Second, version 3.6 of LIM is the

first to handle open-boundary conditions for regional simu-

lations in ice-covered areas. The sea ice state variables at the

boundary depends on the direction of the normal ice veloc-

ity to allow realistic inflows and outflows with the rest of the

ocean. Boundary conditions are flexible enough so that ice

boundary data sets can either integrate a sub-grid-scale ice

thickness distribution or not. In addition, the formulation of

the discretization of ice categories boundaries has changed

to adapt a simulation to different ice thickness conditions,

as encountered in regional configurations. Third, LIM3.6 so-

phistication and versatility have further increased. A mono-

category capability has been implemented with the parame-

terization of thin ice melting, especially for users needing an

ice model at minimal computational cost. A flux redistrib-

utor at the top of the ice categories has been coded for the

coupling with atmospheric models that cannot handle mul-

tiple fluxes over a grid cell. Finally, the effect of the ice and

snow weight on the sea surface height has been implemented.

To illustrate some of the new capabilities of LIM3, we

present 100 years of the 2◦-resolution forced simulation

ORCA2-LIM3, and 10 years of a regional simulation at 2 km

resolution around the Svalbard Archipelago, which hosts the

recurrent Storfjorden polynya. We mainly focus on the ice

mass budget and show how they differ, depending on the re-

gion studied. At the global scale, the dominant processes are

basal ice growth and basal ice melt for both hemispheres,

but other processes matter locally. In the Storfjorden, new

ice growth in open water is nearly as large as basal growth.

The entire ice production is exported out of Storfjorden an-

nually. Production presents large inter-annual variability over

the 10 years of the experiment (1999–2009), with maximum

values exceeding twice the minimum.
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There are also ongoing and upcoming developments for

LIM.

1. The compatibility between the Adaptive Grid Refine-

ment In Fortran (AGRIF; Debreu et al., 2008) and LIM3

to run global simulations is yet to be achieved and work

is in progress to use LIM2–AGRIF interface (Talandier

et al., 2014) and apply it to LIM3.

2. The melt pond parameterization of Flocco and

Feltham (2007), as implemented by Lecomte et

al. (2015), exists in a branch of the code and is expected

soon in the reference version.

In the future, LIM will continue to be developed, including,

among others, sea ice biogeochemistry (Vancoppenolle and

Tedesco, 2015; Moreau et al., 2015), an elasto-brittle rheol-

ogy (Girard et al., 2011), improved snow physics (Lecomte

et al., 2013, 2015) and a sub-grid-scale representation of ice–

ocean exchanges (Barthélemy et al., 2015).

Code availability

The version 3.6 of LIM3 is incorporated in the

reference version of NEMO (currently v3.6 sta-

ble) and can be downloaded from the NEMO web

site (http://www.nemo-ocean.eu/) at this address:

https://forge.ipsl.jussieu.fr/nemo/browser/branches/2015/

nemo_v3_6_STABLE/NEMOGCM/NEMO/LIM_SRC_3.
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