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Generalized analytic functions, Moutard-type
transforms and holomorphic maps ∗

P.G. Grinevich † R.G. Novikov‡

Abstract

We continue the studies of Moutard-type transform for generalized
analytic functions started in [1]. In particular, we suggest an inter-
pretation of generalized analytic functions as spinor fields and show
that in the framework of this approach Moutard-type transforms for
the aforementioned functions commute with holomorphic changes of
variables.
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We study the basic pair of conjugate equations of the generalized analytic
function theory:

∂z̄ψ = uψ̄ in D, (1)

∂z̄ψ
+ = −ūψ̄+ in D, (2)

whereD is an open domain in C, u = u(z) is a given function inD, ∂z̄ = ∂/∂z̄;
see [4]. Here and below, the notation f = f(z) does not mean that f is
holomorphic.
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A new progress in the theory of generalized analytic functions was ob-
tained very recently in [1] by showing that Moutard-type transforms can be
applied to the pair of equations (1), (2). Note that ideas of Moutard-type
transforms were developed and successfully used in the differential geometry,
in the soliton theory in dimension 2+1, and in the spectral theory in dimen-
sion 2, see [1] for further references. In particular, our work [1] was essentially
stimulated by recent articles by I.A. Taimanov [2], [3] on the Moutard-type
transforms for the Dirac operators in the framework of the soliton theory in
the dimension 2+1. On the other hand, we were strongly motivated by some
open problems of two-dimensional inverse scattering at fixed energy, where
equation (1) arises as the ∂̄-equation in spectral parameter.

A simple Moutard-type transform M = Mu,f,f+ for the pair of conjugate
equations (1), (2) is given by the formulas (see [1]):

ũ = Mu = u+
ff+

ωf,f+
, (3)

ψ̃ = Mψ = ψ −
ω
ψ,f+

ωf,f+
f, ψ̃+ = Mψ+ = ψ+ −

ωf,ψ+

ωf,f+
f+, (4)

where f and f+ are some fixed solutions of equations (1) and (2), respectively,
ψ and ψ+ are arbitrary solutions of (1) and (2), respectively, and ωψ,ψ+ =
ωψ,ψ+(z) denotes imaginary-valued function defined by:

∂zωψ,ψ+ = ψψ+, ∂z̄ωψ,ψ+ = −ψψ+ in D, (5)

where this definition is self-consistent, at least, for simply connected D,
whereas a pure imaginary integration constant may depend on concrete sit-
uation. The point is that the functions ψ̃, ψ̃+ defined in (4) satisfy the
conjugate pair of Moutard-transformed equations:

∂z̄ψ̃ = ũ ψ̃ in D, (6)

∂z̄ψ̃
+ = −ũ ψ̃+ in D. (7)

In addition, we have also the following new important result:

Proposition 1 For a simple Moutard transform (3),(4) the following for-
mula holds:

ωψ̃,ψ̃+ =
ωψ,ψ+ωf,f+ − ωψ,f+ωf,ψ+

ωf,f+
+ cψ̃,ψ̃+ , (8)

where cψ̃,ψ̃+ is an imaginary constant.
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In order to apply the Moutard-type transforms to studies of generalized-
analytic functions with contour poles, we need to study, in particular, com-
positions of the former transforms and holomorphic maps.

Consider a holomorphic bijection W :

W : D → D∗, z → ζ(z), (9)

W−1 : D∗ → D, ζ → z(ζ),

where D is the domain in (1), (2).
If we treat ψ(z), ψ+(z) as scalar fields in equations (1), (2), then the

conjugate property of these equations is not invariant with respect to holo-
morphic bijections . In the next theorem we give the proper transformation
formulas for the conjugate pair of equations (1), (2) with respect to holomor-
phic bijections:

Theorem 1 Let W be a holomorphic bijection as in (9). Let

u∗(ζ) = u(z(ζ))

√
∂z

∂ζ

∂z̄

∂ζ̄
= u(z(ζ))

∣∣∣∣∂z∂ζ
∣∣∣∣ , (10)

ψ∗(ζ) = ψ(z(ζ))

√
∂z

∂ζ
, ψ+

∗ (ζ) = ψ+(z(ζ))

√
∂z

∂ζ
, (11)

where u(z), ψ(z), ψ+(z) are the same that in equations (1), (2). Then:

∂ζ̄ψ∗ = u∗ψ̄∗ in D∗, (12)

∂ζ̄ψ
+
∗ = −ū∗ψ̄+

∗ in D∗. (13)

In addition,
ωψ∗,ψ

+
∗
(ζ) = ωψ,ψ+(z(ζ)), (14)

where ω is defined according to (5).

Remark 1 Formulas (10), (11) have the following natural interpretation:
ψ(z), ψ+(z) can be treated as spinors, i.e. differential forms of the type(
1
2
, 0
)
, and u can be treated as differential form of the type

(
1
2
, 1
2

)
. The

corresponding forms can be written as:

u = u(z)
√
dzdz̄, ψ = ψ(z)

√
dz, ψ+ = ψ+(z)

√
dz. (15)

It is very natural because the generalized analytic function equation (1) can
be viewed as a special reduction of the two-dimensional Dirac system, see, for
example [1].
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Theorem 1 implies that W in (9) generates a map of the conjugate pair of
equations (1), (2) into the conjugate pair of equations (12), (13). We also
denote the latter map by W . Using this interpretation of W we obtain the
following result:

Theorem 2 The following formula holds:

Mu∗,f∗,f
+
∗
◦W = W ◦Mu,f,f+ , (16)

where Mu,f,f+ and Mu∗,f∗,f
+
∗
are defined according to formulas (3), (4), and

u∗, f∗, f
+
∗ , ωψ∗,ψ

+
∗
are defined according to (10), (11), (14).

Proposition 1 and Theorems 1 and 2 can be proved by direct calculations.
In the framework of the Moutard transform approach, using Theorem 2

we reduce local studies of generalized analytic functions with contour pole
at a real-analytic curve to the case of contour pole at a straight line. These
studies will be continued in a subsequent paper.
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