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. In particular, we suggest an interpretation of generalized analytic functions as spinor fields and show that in the framework of this approach Moutard-type transforms for the aforementioned functions commute with holomorphic changes of variables.

∂ z ψ = u ψ in D, (1) 
∂ z ψ + = -ū ψ+ in D, ( 2 
)
where D is an open domain in C, u = u(z) is a given function in D, ∂ z = ∂/∂ z; see [START_REF] Vekua | Generalized Analytic Functions[END_REF]. Here and below, the notation f = f (z) does not mean that f is holomorphic. * The main part of the work was fulfilled during the visit of the first author to the IHES, France in November 2015. The first author was partially supported by the Russian Foundation for Basic Research, grant 13-01-12469 ofi-m2 and by the program "Fundamental problems of nonlinear dynamics", RAS.
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A simple Moutard-type transform M = M u,f,f + for the pair of conjugate equations ( 1), ( 2) is given by the formulas (see [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF]):

ũ = Mu = u + f f + ω f,f + , (3) ψ 
= Mψ = ψ - ω ψ,f + ω f,f + f, ψ+ = Mψ + = ψ + - ω f,ψ + ω f,f + f + , (4) 
where f and f + are some fixed solutions of equations ( 1) and ( 2), respectively, ψ and ψ + are arbitrary solutions of ( 1) and ( 2), respectively, and ω ψ,ψ + = ω ψ,ψ + (z) denotes imaginary-valued function defined by:

∂ z ω ψ,ψ + = ψψ + , ∂ z ω ψ,ψ + = -ψψ + in D, ( 5 
)
where this definition is self-consistent, at least, for simply connected D, whereas a pure imaginary integration constant may depend on concrete situation. The point is that the functions ψ, ψ+ defined in (4) satisfy the conjugate pair of Moutard-transformed equations:

∂ z ψ = ũ ψ in D, ( 6 
)
∂ z ψ+ = -ũ ψ+ in D. ( 7 
)
In addition, we have also the following new important result:

Proposition 1 For a simple Moutard transform (3),( 4) the following formula holds:

ω ψ, ψ+ = ω ψ,ψ + ω f,f + -ω ψ,f + ω f,ψ + ω f,f + + c ψ, ψ+ , ( 8 
)
where c ψ, ψ+ is an imaginary constant.

In order to apply the Moutard-type transforms to studies of generalizedanalytic functions with contour poles, we need to study, in particular, compositions of the former transforms and holomorphic maps. Consider a holomorphic bijection W :

W : D → D * , z → ζ(z), (9) 
W -1 : D * → D, ζ → z(ζ),
where D is the domain in ( 1), ( 2).

If we treat ψ(z), ψ + (z) as scalar fields in equations ( 1), ( 2), then the conjugate property of these equations is not invariant with respect to holomorphic bijections . In the next theorem we give the proper transformation formulas for the conjugate pair of equations ( 1), ( 2) with respect to holomorphic bijections:

Theorem 1 Let W be a holomorphic bijection as in ( 9). Let

u * (ζ) = u(z(ζ)) √ ∂z ∂ζ ∂ z ∂ ζ = u(z(ζ)) ∂z ∂ζ , (10) 
ψ * (ζ) = ψ(z(ζ)) √ ∂z ∂ζ , ψ + * (ζ) = ψ + (z(ζ)) √ ∂z ∂ζ , ( 11 
)
where u(z), ψ(z), ψ + (z) are the same that in equations ( 1), [START_REF] Taimanov | Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces[END_REF]. Then:

∂ζψ * = u * ψ * in D * , ( 12 
) ∂ζψ + * = -ū * ψ+ * in D * . ( 13 
)
In addition,

ω ψ * ,ψ + * (ζ) = ω ψ,ψ + (z(ζ)), ( 14 
)
where ω is defined according to (5).

Remark 1 Formulas (10), ( 11) have the following natural interpretation: ψ(z), ψ + (z) can be treated as spinors, i.e. differential forms of the type

( 1 2 , 0
) , and u can be treated as differential form of the type

( 1 2 , 1 2 
)

. The corresponding forms can be written as:

u = u(z) √ dzdz, ψ = ψ(z) √ dz, ψ + = ψ + (z) √ dz. ( 15 
)
It is very natural because the generalized analytic function equation ( 1) can be viewed as a special reduction of the two-dimensional Dirac system, see, for example [START_REF] Grinevich | Moutard transform for generalized analytic functions[END_REF].

Theorem 1 implies that W in (9) generates a map of the conjugate pair of equations ( 1), (2) into the conjugate pair of equations ( 12), (13). We also denote the latter map by W . Using this interpretation of W we obtain the following result:

Theorem 2

The following formula holds:

M u * ,f * ,f + * • W = W • M u,f,f + , ( 16 
)
where M u,f,f + and M u * ,f * ,f + * are defined according to formulas ( 3), ( 4), and u * , f * , f + * , ω ψ * ,ψ + * are defined according to (10), ( 11), ( 14). Proposition 1 and Theorems 1 and 2 can be proved by direct calculations.

In the framework of the Moutard transform approach, using Theorem 2 we reduce local studies of generalized analytic functions with contour pole at a real-analytic curve to the case of contour pole at a straight line. These studies will be continued in a subsequent paper.