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Abstract

This paper presents an easy numerical implementation of the Burton and Miller (BM)
formulation, where the hypersingular Helmholtz integral is regularized by identities from
the associated Laplace equation, and thus needing only the evaluation of weakly singular
integrals. The Helmholtz equation and its normal derivative are combined directly, with
combinations at edge or corner collocation nodes not used when the surface is not smooth.
The hypersingular operators arising in this process are regularized and then evaluated by
an indirect procedure based on discretized versions of the Calderón identities linking the
integral operators for associated Laplace problems. The method is valid for acoustic radiation
and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other
approaches using direct evaluation of hypersingular integrals, collocation points still coincide
with mesh nodes, as is usual when using conforming elements. Using higher-order shape
functions (with the BEM model size kept fixed) reduces the overall numerical integration
effort while increasing the solution accuracy. To reduce the condition number of the resulting
BM formulation at low frequencies, a regularized version α = ik/(k2 +λ) of the classical BM
coupling factor α = i/k is proposed. Comparisons with the CHIEF method of Schenck are
made for four example configurations, two of them featuring non-smooth surfaces.
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I. Introduction

The boundary element method (BEM) based on the Helmholtz integral equation (HIE) has
long been applied for the analysis of acoustic radiation or scattering problems (direct problems)
and source characterization (inverse problems). Its mathematical properties are extensively
discussed1;2. When considering exterior Neumann problems, the solution of this formulation
is non-unique for frequencies corresponding to eigenvalues of the associated interior Dirichlet
problems3. This non-uniqueness is purely a drawback of the mathematical formulation of the
problem and has no physical significance. To overcome this non-uniqueness problem within a
direct BEM approach, two major formulations can be used: the Combined Helmholtz Integral
Equation Formulation (CHIEF) proposed by Schenck3 and the Coupled Helmholtz Integral
(CHI) presented by Burton and Miller4.

CHIEF relies on an overdetermined system of equations generated using both surface and
interior collocation points. As the latter points must not lie on a nodal surface of an interior
standing wave, the selection of their number and location remains a problem. Wu improved the
CHIEF method using a small interior region rather than a single point5.

The CHI method uses a linear combination of the HIE and its normal derivative. It is
proved8 that such a linear combination provides unique solutions at all frequencies, provided
the imaginary part of the coupling factor is non-zero. Moreover, numerical experiments6 show
that the eigenvalues of the relevant integral operator are moved away from the real axis by the
CHI, and optimal selection of the coupling parameter is studied in7. The normal derivative of
the HIE features a hypersingular integral operator, which makes this approach more difficult to
implement than the usual HIE. Burton and Miller4 considered two methods for handling the
hypersingular kernel. The first uses a double surface integral to reduce the order of the hyper-
singularity, which increases the numerical quadrature work. The second consists in expressing
the hypersingular kernel using tangential derivatives on the surface. This approach is applied
using planar elements9;10 or quadratic quadrilateral isoparametric elements11. Another tangen-
tial formulation is used by Wu in an isoparametric element environment12. Cunefare modified
the Burton and Miller formulation by taking interior additional collocation points, avoiding any
singularity13.

An alternative way of dealing with the hypersingular operator arising in the CHI exploits
known auxiliary solutions to the Laplace equation, leading to identities involving the static
Green’s function that allow to regularize the hypersingular integrals. Collocation BEM codes
for Neumann acoustic problems are traditionally based on C0 boundary elements (where nodal
unknowns are defined at geometrical nodes), a setting adopted in this work as it fits our current
implementation. However, later investigations on discontinuous, i.e. non-conforming, inter-
polations14 show considerable merit for this alternative treatment. The use of C0 boundary
elements in hypersingular operators presents a problem because the unit normal is usually not
well-defined at nodes, due to the jump in the derivatives of the interpolating functions at el-
ement boundaries. Analytical formulations require collocation points interior to the elements
for the unit normal to be well-defined there (whereas the HIE is normally collocated at element
nodes). The two systems cannot, therefore, be combined directly as in the original Burton and
Miller formulation. To perform this combination, interior pressure and velocity data must be
interpolated from corresponding quantities at the element nodes. The choice of these interior
points is crucial for the accuracy of the solution15. When an interior point is close to an ele-
ment edge, the evaluation of the nearly singular integrals arising in adjacent elements requires
a special treatment16;17;18. On the other hand, results deteriorate as interior points are chosen
closer to element centers. Francis makes this choice of using the element centers as the only
collocation points for the normal derivative integral formulation19. To avoid this problem, most
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implementations use piecewise-constant basis functions to allow using element centers as interior
collocation points20;21. Marburg and Amini consider 9-node conforming elements and perform
a partial combination whereby the HIE and its normal derivative are combined only when the
collocation point is the element center node, a formulation that is however only valid for this
type of element22.

Few authors have considered formulations involving hypersingular operators that are ap-
plicable with usual C0 conforming elements. Chien et al. propose a special treatment of the
hypersingular kernel from known Laplace solutions23. Liu and Rizzo compare several kinds
of elements (conforming, non-conforming and Overhauser C1 continuous elements) and con-
clude that conforming elements give good results even though they do not satisfy the Lyapunov
condition at the nodes24. An excellent survey of these methods is presented by Rego Silva25.
In another paper26, Rego Silva and Wrobel present a new family of continuous/discontinuous
three-dimensional boundary elements. Yan et al. introduce a new concept of discretized opera-
tor matrix to compute the operator matrix corresponding to the second derivative of the static
Green’s function27. This approach is only valid for smooth surfaces and numerical examples are
performed on spheroid or prolate spheroid geometries.

The motivation for this paper is to propose a robust and efficient computational scheme
for the CHI method valid for smooth as well as piecewise-smooth surfaces, based on an indirect
procedure exploiting discretized versions of the Calderón identities linking the integral operators
for associated Laplace problems. Our proposed approach is presented for C0-conforming ele-
ments, since they can be used here even though the BEM-discretized surface does not satisfy the
Lyapunov condition24 at the nodes; it is however equally applicable to non-conforming (i.e. dis-
continuous) boundary element approximations. Only weakly singular integrals and correspond-
ing standard quadrature rules are needed for the numerical implementation. We compare the
Burton and Miller method and the Schenck method on several configurations: sphere (smooth,
convex), peanut (smooth, non-convex), cube (non-smooth, convex) and cat’s eye (non-smooth,
non-convex). Additionally, a regularized version α = ik/(k2 + λ) of the classical BM coupling
factor α = i/k is proposed.

II. The Burton and Miller formulation

For an unbounded acoustic medium (with wave velocity c) occupying the exterior of a closed
surface Γ ⊂ R3, we consider the acoustic Neumann exterior problem whereby the normal deriva-
tive of the acoustic pressure p is given: ∂np = g on Γ with g known. The HIE formulation for
this problem reads

κ+(P )p(P ) =

∫∫
Γ

[
∂Gk(P,Q)

∂nQ

p(Q)− ∂p(Q)

∂nQ

Gk(P,Q)

]
dQ, (1)

where P is the field point, Q the source point on Γ, and nQ the outward-directed normal to Γ
at Q. The coefficient κ+(P ) is given by κ+(P ) = 1− κ−(P ), with

κ−(P ) = −
∫∫

Γ

∂G0(P,Q)

∂nQ

dQ. (2)

In particular, κ+(P ) = 1 for P outside of Γ, κ+(P ) = 0 for P inside Γ, and κ+(P ) = κ−(P ) = 1/2
at any smooth point P of Γ. Gk is the radiating free-space Green’s function for the Helmholtz
equation, given by

Gk(P,Q) =
eik|P−Q|

4π|P −Q|
, (3)
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where k = ω/c. The time-harmonic factor e−iωt is, as usual, implicit in (3) and all other field
quantities. Finally, for later reference, G0 is the free-space Green’s function for the Laplace
equation:

G0(P,Q) =
1

4π|P −Q|
. (4)

Equation (1) is first used for P ∈ Γ as an integral equation for the unknown surface pressure
p, and then provides an integral representation for the pressure at any evaluation point P outside
Γ. However, it is well-known that (1) as an integral equation for p is singular at certain discrete
values kD of k, namely the characteristic (or resonance) wave numbers for which the interior
Dirichlet problem is not uniquely solvable. As a result, (1) does not have a unique solution
for these frequencies. To restore solution uniqueness, Burton and Miller4 introduced a second
equation by differentiating (1) in the normal direction at P :

κ+(P )
∂p(P )

∂nP

=
∂

∂nP

∫∫
Γ

[
∂Gk(P,Q)

∂nQ

p(Q)−Gk(P,Q)
∂p(Q)

∂nQ

]
dQ. (5)

As an integral equation for the unknown surface pressure p, Eq. (5) is singular for those
discrete values kN of k for which the interior Neumann problem is not uniquely solvable. Im-
portantly, one always has kD 6= kN . Burton and Miller show that the following combination of
integral equations (1) and (5) yields a unique solution p for all frequencies

κ+(P )

[
p(P ) + α

∂p(P )

∂nP

]
=

∫∫
Γ

[
∂Gk(P,Q)

∂nQ

p(Q)− ∂p(Q)

∂nQ

Gk(P,Q)

]
dQ

+ α
∂

∂nP

∫∫
Γ

[
∂Gk(P,Q)

∂nQ

p(Q)−Gk(P,Q)
∂p(Q)

∂nQ

]
dQ, (6)

where the coupling parameter α is such that Im(α) 6= 0 when k is real.
However, equation (6) introduces an integral operator whose kernel function ∂nP ∂nQGk(P,Q)

has a |P − Q|−3 singularity. In the next section, we present a method which can be used to
reformulate (5), and hence (6), for any type of boundary element.

III. Reformulation of the normal derivative equation

A. Partially regularized equation

We start from the following partially regularized reformulation of (5):

κ+(P )
∂p(P )

∂nP

=

∫∫
Γ

∂2
[
Gk(P,Q)−G0(P,Q)

]
∂nP ∂nQ

p(Q) dQ+
∂

∂nP

∫∫
Γ

∂G0(P,Q)

∂nQ

p(Q) dQ

−
∫∫

Γ

∂
[
Gk(P,Q)−G0(P,Q)

]
∂nP

∂p(Q)

∂nQ

dQ−
∫∫

Γ

∂G0(P,Q)

∂nP

∂p(Q)

∂nQ

dQ. (7)

In this equation, the kernels ∂nP ∂nQ

[
Gk(P,Q) − G0(P,Q)

]
and ∂nP

[
Gk(P,Q) − G0(P,Q)

]
are

weakly singular and nonsingular, respectively, for P,Q ∈ Γ. Equation (7) defines a partially
regularized formulation, because the hypersingularity singularity is transferred to derivative of
the static Green’s function G0. When multiple values of ω are considered, e.g. for computing
transient responses by Fourier synthesis, the static singular terms need only be computed once
as they are frequency-independent. To do so, we use matrix operations, like Yan et al.27, rather
than an analytical formulation of the corresponding integrals.
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B. Discretization

Upon introducing a conforming isoparametric boundary element discretization28;29 involving N
nodes, Eq. (7) takes the form:

K+∂nP p = [Nk −N0]p+N0p− [Mk −M0]∂nP p−M0∂nP p, (8)

where the matrices [Nk −N0], [Mk −M0], N0, M0 and K+ are defined by

[Nk −N0]ij =
∑
e∈Ej

∫∫
Γref

∂2
[
Gk(Pi, Qe(ξ))−G0(Pi, Qe(ξ))

]
∂nP ∂nξ

Nj(ξ)Je(ξ) dξ

[Mk −M0]ij =
∑
e∈Ej

∫∫
Γref

∂
[
Gk(Pi, Qe(ξ))−G0(Pi, Qe(ξ))

]
∂nP

Nj(ξ)Je(ξ) dξ

[N0]ij =
∑
e∈Ej

∫∫
Γref

∂2G0(Pi, Qe(ξ))

∂nP ∂nξ

Nj(ξ)Je(ξ) dξ (1 ≤ i, j ≤ N) (9)

[M0]ij =
∑
e∈Ej

∫∫
Γref

∂G0(Pi, Qe(ξ))

∂nP

Nj(ξ)Je(ξ) dξ

K+
ij = κ+(Pi)δij .

In these equations, Γref is the reference element used in the isoparametric formulation, ξ ∈ R2

is the parametric coordinate on Γref, the mapping ξ ∈ Γref → Qe(ξ) ∈ Γh defines the geometry
of the e-th element of the approximate surface Γh, Je is the Jacobian of that mapping, and Nj

is the shape function associated with node Pj , used for interpolating both the geometry and the
acoustic quantities. Any C0-conforming element may be used; in practice, linear or quadratic
shape functions are most often chosen. Moreover, Ej is the list of all elements that make up the
support of the shape function Nj on Γh. The evaluation of the normal nP at a node P depending
on which element P is considered to belong to, a reasonable approach consists in defining nP
by averaging normals relative to all adjacent elements at P .

C. Evaluation of N0 and M0

We now propose an indirect approach for evaluating matrices N0 and M0. For this purpose,
we note that any p, ∂np solving the interior Laplace problem verify the (discretized) integral
equations

K−p = −D0p+ S0∂np (10a)

K−∂np = −N0p+M0∂np (10b)

where S0 and D0 are the matrices associated with the single- and double-layer integral operators
for the Laplace equation:

[S0]ij =
∑
e∈Ej

∫∫
Γref

G0(Pi, Qe(ξ))Nj(ξ)J(ξ)dξ

[D0]ij =
∑
e∈Ej

∫∫
Γref

∂G0(Pi, Qe(ξ))

∂nξ

Nj(ξ)J(ξ)dξ

Solving (10a) for ∂np and inserting the result ∂np = S−1
0

[
D0 +K−

]
p into (10b), we obtain

N0p =
[
M0 −K−

]
S−1

0

[
D0 +K−

]
p (11)
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This equation holds for any p, so the operator N0 is given by

N0 =
[
M0 −K−

]
S−1

0

[
D0 +K−

]
(12)

By similar reasoning on the Laplace exterior problem, we find

N0 =
[
M0 +K+

]
S−1

0

[
D0 −K+

]
(13)

Equations (12) and (13) imply equality of their right-hand sides. Upon rearrangement and using
that K+ +K− = I, the resulting equation yields the following expression for M0:

M0 = S−1
0 D0S0 −K+S−1

0 K+S0 +K−S−1
0 K−S0. (14)

It is important to note that M0 and N0 are evaluated in terms of quantities which involve only
weakly singular integrals, namely K+, K−, D0 and S0. These terms only have to be computed
once, using a standard BEM code with k = 0. The matrix M0 is computed first, then N0 is
evaluated by using (14) in either (12) or (13). Performing either derivation and recalling again
that K+ +K− = I yields

N0 = S−1
0 (D0 +K−)(D0 −K+) = S−1

0 (D0 −K+)(D0 +K−) (15)

In particular, when Γ is a smooth surface (in which case K− = K+ = I/2), we find

N0 = S−1
0

[
D2

0 −
1

4
I
]
, (16)

which is the formulation given by Yan et al27. Then equations (14) and (12) (or (13)) can be
seen as a generalization of their formulation.

Using the foregoing approach, the discretized form of the Burton-Miller integral equation (6)
for the acoustic Neumann exterior problem is then[

Dk −K+ + α
(

[Nk −N0] +N0

)]
p =

[
Sk + α

(
K+ + [Mk −M0] +M0

)]
g. (17)

Setting up the system (17) requires only nonsingular and weakly singular integrations. The
frequency-independent terms M0 and N0 only have to be computed once, before being added to
the (weakly singular) terms [Mk −M0] and [Nk −N0] for each frequency of interest.

Equations (14) and (15) are in fact discretized versions of the Calderón identities linking
the integral operators associated with Laplace problems (see e.g. Nedelec1, Theorem 3.1.3).
The Calderón identities are useful in many aspects of boundary integral formulations, such as
preconditioning30.

IV. Partial combination for piecewise-smooth objects

When the surface Γ is only piecewise-smooth (due to edges and corners), we can only effect a
partial combination of the integral equations (1) and (5) because the normal derivative of the
pressure is not clearly defined at edge or corner collocation points. This partial combination has
been tested successfully by several authors19;22;31, who report that forming such combinations at
one-third of the original number of collocation points is sufficient to make the resulting system
of equations well-conditioned.

The indirect formulation of Sec. III..C. can still be applied when Γ is piecewise-smooth.
Assume that the boundary element approximation of Γ still involves N nodes, which are also
pressure nodes. Then, since the normal is not uniquely defined at edge or corner nodes, those
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nodes support correspondingly multiple values of ∂np, so that the mesh involves M > N nodal
values of ∂np. There are Q < N nodes not located on corners or edges, at which nodal values of
∂np are uniquely defined. The integral equation (1) for the exterior problem in discrete form is
then

K+p = Dkp− Sk∂np, (18)

where Sk is a rectangular N ×M matrix while K+ and Dk are square N ×N matrices.
Then, the discretized version of equation (5) restricted to the Q collocation nodes P where

∂np is uniquely defined is

K+
v ∂np =

(
[Nk −N0] +N0

)
p−

(
[Mk −M0] +M0

)
∂np, (19)

where K+
v is the rectangular Q×M matrix formed by expanding K+ as a M×M square matrix

and retaining only the Q lines corresponding to the nodes at which the normal is uniquely
defined. [Nk −N0], N0 are Q×N matrices and [Mk −M0], M0 are Q×M matrices.

Adapting the procedure of Section III..C. to the relevant Laplace integral formulations
yields

M0 = S†0D0S0 −K+
v S
†
0K

+S0 +K−v S
†
0K
−S0 (20)

(where S†0 = ST
0 (S0S

T
0 )−1 is the pseudo-inverse of the rectangular N ×M real-valued matrix S0)

and
N0 = (M0 +K+

v )S†0(D0 −K+), (21)

or (equivalently)

N0 = (M0 −K−v )S†0(D0 +K−). (22)

Now, we can combine the N equations (18) and the Q equations (19) in Burton-Miller fashion.
This corresponds to setting α = 0 for the N −Q edge or corner collocation nodes.

The proposed indirect approach, while mainly presented for use with C0-conforming bound-
ary elements, is also applicable to discretizations using non-conforming elements. In that context,
the partial combination technique of Sec. 4 is not needed if the same approximation spaces are
used for p and ∂np.

V. Numerical implementation

Tests aiming at fine-tuning the implementation of the formulation proposed in Sections III., IV.
have been performed. For brevity, they are not presented in detail, and only the conclusions are
reported. The tests were done for triangular elements, but quadrangular elements could also
easily be implemented.

Implementing the numerical integrations was easy. For the nonsingular integrals, Lyness’s
quadrature rule for triangles is used32, while the Gauss-Radau quadrature rule (which concen-
trates quadrature points near the singularity in an appropriate way) is used for the weakly
singular integrals33. The convergence of the integral evaluations with respect to the number of
quadrature points is fast. In our tests, 19 points (Lyness’s quadrature rule) are sufficient for
regular integration, while 25 points (5×5) for each subdivision of a singular element were found
adequate for weakly singular integrations. These amounts can be reduced when the collocation
point is far from the integration element34, but we do not carry out this optimization here. A
few element subdivision patterns have also been tested, but this proved not to be critical, so
we finally subdivide each singular element into two triangles even if the singular point is at a
vertex.

Finally, the normal nP in Eqs. 9 is the average of the element normals at P for all elements
sharing P .
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VI. Numerical simulations

In this section, the method is used to solve wave problems with Neumann boundary conditions
on the surface of the structure, which is quite common in practice. The gradient pressure or
velocity can be measured directly with accelerometers or vibrometric lasers or calculated with
an FEM code. For our simulations, we place a monopole of unit strength at a source point X
in the interior region surrounded by Γ, which generates the acoustic field Gk(X, ·) in the entire
space. The corresponding normal derivative ∂nGk(X, ·) then defines the Neumann data for the
exterior problems solved thereafter (i.e. g = ∂nGk(X, ·)). The computed pressure field p on
Γh can then be compared to its analytical counterpart Gk(X, ·) on Γ by means of the following
error function:

E :=

(∑N
i=1 |pi −Gk(X,Qi)|2∑N

i=1 |Gk(X,Qi)|2

)1/2

(23)

where Qi are the N nodes on Γ and pi are the computed nodal pressures.

A. Case configurations

We consider four different geometrical configurations, thereafter referred to as Case 1 to 4. All
meshes are made of quadratic six-node (T6) triangles and created with GMSH35 (http://geuz.org/gmsh/).

In Case 1, Γ is a unit sphere, which is both smooth and convex. The mesh is composed of
2622 nodes and 1310 elements. The monopole is located at X = (0 0 0.2).

In Case 2, Γ is a peanut-shaped surface, defined by the parametric representation

x =

√
cos 2θ +

√
1.5− sin2 2θ sin θ cos γ,

y =

√
cos 2θ +

√
1.5− sin2 2θ sin θ sin γ, (0 ≤ θ ≤ π, 0 ≤ γ ≤ 2π) (24)

z =

√
cos 2θ +

√
1.5− sin2 2θ cos θ

This surface is smooth but not convex (Fig.1b). The mesh is composed of 2294 nodes and 1146
elements. The monopole is located at X = (0.2 0 0.01).

In Case 3, Γ is a unit cube, which is piecewise smooth and convex (Fig.1c). The mesh is
composed of 2402 nodes and 1200 elements. The monopole is located at X = (0.2 0.1 0.3).

Finally, in Case 4, Γ is a cat’s eye (unit sphere with one octant removed), which is piecewise
smooth and non-convex (Fig.1d). This is a severe, often used, test case. The mesh is composed
of 2338 nodes and 1168 elements. The monopole is located at X = (−0.5 0 0).

B. Condition number

Figure 2 plots the condition number of the governing matrix arising from BEM discretization
of the HIE, CHIEF and BM formulations against the frequency for Cases 1 and 4. For the
HIE formulation, the condition number clearly shows peaks at frequencies such that k = mπ
(m = 1, 2 . . .). Secondary peaks can also be seen; these appear due to the use of quadratic shape
functions, a phenomenon previously observed by Marburg and Amini22. The CHIEF method,
here used with 27 points for all frequencies (see Sec. C. for details on their arrangement), yields a
condition number curve that is smooth only at low frequencies, evidencing the need for increasing
the number of interior points with the frequency.

The condition number curve for the BM formulation with the classical value α = i/k of
the coupling factor is smooth at all frequencies. However, condition numbers are higher than
those from the HIE formulation at low frequencies. Noting that the HIE gives good results at
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(a) Case 1: unit sphere (smooth, convex) (b) Case 2: peanut (smooth, non-convex)

(c) Case 3: unit cube (non-smooth, convex) (d) Case 4: cat’s eye (non-smooth, non-convex)

Figure 1: Test configurations
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Figure 2: Condition number of the different formulations for Case 1 (sphere, left) and Case 4
(cat’s eye, right).
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frequencies lower than the first fictitious eigenfrequency, for which α = i/k is high, we consider
the following modified coupling factor for the BM formulation, whose low-frequency behavior is
regularized by means of the parameter λ > 0 (with λ = 0 restoring α = i/k):

α =
ik

k2 + λ
. (25)

For Cases 1,2 involving smooth surfaces, we set λ = π and λ = 4.55 respectively and correspond-
ing to the first fictitious eigenfrequencies of the HIE formulation. For non-smooth surfaces, λ
can be set to larger values. For example, we use λ = 15 for Case 3 (cube) and λ = 30 for Case
4 (cat’s eye). The value chosen for λ is not critical, provided that the condition number of the
resulting matrix does not exceed that arising from the choice α = i/k; the results shown in
Figure 2 (right) fulfil this requirement.

C. Comparison of the Schenck and Burton-Miller methods

For Cases 1, 2 and 3, the CHIEF points are the 27 points of a 3 × 3 × 3 regular cubic grid
centered at the origin, the grid spacing being 0.25m (which guarantees that all CHIEF points
are interior). For Case 4 (cat’s eye), the above set of points is translated by (-0.35 0.35 0)m,
ensuring that all points are interior.

Figure 3 present the results for all four configurations. The present Burton-Miller formula-
tion gives the best results at all frequencies for Case 1, and results similar to those of CHIEF at
all frequencies for Case 2. For Cases 3 and 4, corresponding to surfaces with edges and corners,
the CHIEF results are better than those produced by the present BM method at low frequencies,
but become unsatisfactory at high frequencies for Case 3, possibly due to the (arbitrarily chosen)
CHIEF points becoming inadequate in that case. The results given by the BM formulation are
acceptably accurate in all cases, and their accuracy has, unlike those produced by CHIEF, a
smooth, non-fluctuating dependence on the frequency.

D. Comparison of linear and quadratic shape functions

To see how the solution accuracy is improved by using quadratic shape functions (T6), we
compare the relative errors obtained with corresponding results based on T3 shape functions
with the same number of nodes (i.e. replacing each 6-noded quadratic triangular element by
four 3-noded linear triangular element). Note that, for the same number of nodal unknowns,
using T3 elements entails four times as many evaluations of element integrals. Figure 4 shows
the improvement in solution accuracy (for both the CHIEF and Burton-Miller formulations)
achieved by using T6 elements. This observation is consistent with the inferior performance of
linear conforming elements reported in14.

VII. Conclusion

Yan et al. introduced the concept of discretized operator matrix to compute the hypersingular
integral involved in the composite Helmholtz integral equation proposed by Burton and Miller.
They used double surface integrals, leading to a formulation that is valid only for smooth ge-
ometries. In our paper, the Laplace equations for the interior and exterior problems are used
to compute the hypersingular operator N0, but also the singular operator M0. The method is
valid for any kind of geometry and for higher-order element implementations and can be seen
as a generalization of the Yan et al. formulation. The first advantage is the numerical imple-
mentation, which is very simple because it only requires a polar coordinate change and classical
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(a) Case 1 (sphere, λ = π)
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(b) Case 2 (peanut, λ = 4.55)
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(c) Case 3 (cube, λ1 = 15, λ2 = 30)
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(d) Case 4 (cat’s eye, λ1 = 15, λ2 = 30)

Figure 3: Relative solution errors of the different formulations.

quadrature rules. The second advantage of the method is that the collocation points coincide
with the nodal points of the mesh. The HIE and its normal derivative are combined directly at
collocation nodes, unlike other methods which need interior element collocation points. When
the surface is not smooth, a partial combination is used and is sufficient to give accurate results.

The CHIEF method and the Burton and Miller method are compared for four different
configurations, including two involving non-smooth surfaces. CHIEF is found to give better
results at low frequencies, where good interior points can easily be found. At higher frequencies,
the Burton and Miller method is more reliable because finding good sets of interior points for
the CHIEF method becomes difficult. The condition number produced by our BM approach is
moderate at all considered frequencies, and consistently lower than that of CHIEF in the upper
range of the considered frequencies.

Replacing the usual BM coupling factor α = i/k with a version α = ik/(k2 + λ) that is
regularized at low frequencies improves the condition number at low frequencies without much
influence on solution accuracy. The regularization parameter λ can typically be set to the
square of the value of the wave number corresponding to the first fictitious eigenfrequency of the
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Figure 4: Comparison between T3 and T6 triangularizations for the sphere (left) and peanut
(right) configurations (λ = 15).

HIE. The main additional computational cost of our BM approach lies in having to invert the
Laplace single-layer operator (using the singular value decomposition when its pseudo-inverse is
needed). However, this is only needed once for a given geometrical configuration, as this part of
the computation is independent on the frequency.

REFERENCES

1. J. C. Nedelec, “Acoustic and electromagnetic equations: integral representations for harmonic prob-
lems”, Springer (2001), 318 pages.

2. O. Steinbach, “Boundary integral equations for Helmholtz boundary value and transmission prob-
lems”, in Direct and Inverse Problems in Wave Propagation and Applications (I. Graham, U. Langer,
J. Melenk, M. Sini, editors), Radon Series on Computational and Applied Mathematics, vol. 14, pp.
253–292, Walter de Gruyter GmbH, Berlin/Boston (2013).

3. A. Schenck, “Improved integral formulation for acoustic radiation problems”, J. Acoust. Soc. Am.
44 (1), 41-58 (1968).

4. A. J. Burton and G. F. Miller, “The Application of the Integral Equation Method to the Numerical
Solution of Some Exterior Boundary Value Problems”, Proc. R. Soc. London Ser. A 323, 201-210
(1971).

5. T. W. Wu and A. F. Seybert, “A weighted residual formulation for the CHIEF method in acoustics”,
J. Acoust. Soc. Am. 90 (3), 1608-1614 (1991).

6. C.-J. Zheng, H.-B. Chen, H.-F. Gao and L. Du, ”Is the Burton-Miller Formulation really free of
fictitious eigenfrequencies ?”, Eng. Anal. Bound Elem., 59, 43-51 (2015).

7. S. Marburg, ”The Burton and Miller Method: Unlocking Another Mystery of Its Coupling Param-
eter”, J. Comp. Acoust., 23, 1550016-1 (2015).

8. T.C. Lin, “A proof for the Burton and Miller integral equation approach for the Helmholtz equation”,
J. Math. Anal. Appl., 103, 565–574 (1984).

9. W. L. Meyer, W. A. Bell and B. T. Zinn, “Boundary integral solutions of three dimensional acoustic
radiation problems”, J. Sound Vib. 59, 245-262 (1978).

10. T. Terai, “On calculation of sound fileds around three dimensional objects by integral equation
methods”, J. Sound Vib. 69, 71-100 (1980).

11. I. C. Mathews, “Numerical techniques for three dimensional steady-state fluid-structure interac-
tion”, J. Acoust. Soc. Am. 79, 1317-1325 (1986).

12. T. W. Wu, A. F. Seybert and G. C. Wan, “On the numerical implementation of Cauchy principal



Langrenne, Garcia and Bonnet, JASA, p. 14

value integral to insure a unique solution for acoustic radiation and scattering”, J. Acoust. Soc. Am.
90 (1), 554-560 (1991).

13. K. A. Cunefare, G. Koopmann and K. Brod, “A boundary element method for acoustic radiation
valid for all wavenumbers”, J. Acoust. Soc. Am. 85 (1), 39-48 (1988).

14. S. Marburg and S. Schneider, ”Influence of element types on numeric error for acoustic boundary
elements”, J. Comp. Acoust., 113, 363-386 (2003).

15. K. Chen, J. Cheng and P. J. Harris, “A new study of the Burton and Miller method for the solution
of a 3D Helmholtz problem”, IMA J. Appl. Math., 74, 163-177 (2009).

16. Y. Liu and F. J. Rizzo, “Scattering of elastic waves from thin shapes in three dimensions using the
composite boundary integral equation formulation”, J. Acoust. Soc. Am. 102(2), 926-932 (1997).

17. H. Ma and N. Kamiya, “Distance tranformation for the numerical evaluation of near singular
boundary integrals with various kernels in boundary element method”, Eng. Anal. Bound. Elem., 26,
329-339 (2002).

18. X. Qin, J. Zhang, G. Xie, F. Zhou and G. Li, “A general algorithm for the numerical evaluation of
nearly singular integrals on 3D boundary element”, J. Comp. Appl. Math., 235, 4174-4186 (2011).

19. D. T. I. Francis, “A gradient formulation of the Helmholtz integral equation for acoustic radiation
and scattering”, J. Acoust. Soc. Am. 93(4), 1700-1709 (1993).

20. A. V. Osetrov and M. Ochmann, “A fast and stable numerical solution for acoustic boundary
element method equations combined with the Burton and Miller method for models consisting of
constant elements”, J. Comp. Acoust., 13(1), 1-20 (2005).

21. D.J. Chappell and P.J. Harris, “A Burton-Miller inverse boundary element method for near-field
acoustic holography”, J. Acoust. Soc. Am. 126(1), 149-157 (2009).

22. S. Marburg and Sia Amini, “Cat’s eye radiation with boundary elements: comparative study on
treatment of irregular frequencies”, J. Comp. Acoust. 13(1), 21-45 (2005).

23. C.C. Chien, H. Rajiyah and S. N. Atluri, “An effective method for solving the hypersingular integral
equations in 3-D acoustics”, J. Acoust. Soc. Am. 88(2), 918-937 (1990).

24. Y. Liu and F. J. Rizzo, “A weakly singular form of the hypersingular boundary integral equation
applied to 3-D acoustic wave problems”, Comp. Meth. Appl. Mech. Eng. 96, 271-287 (1992).

25. J. J. Rego Silva, “Acoustic and elastic wave scattering using boundary elements“, Topics in Engi-
neering (vol. 18), Computational Mechanics Publications, Southampton Boston (1993), 134 pages.

26. J.J. Rego Silva and L.C. Wrobel, ”A new family of continious/discontinious family of three-
dimensional boundary elements whith application to acoustic wave propagation”, Int. J. Num. Meth.
Eng., vol. 36, 1661-1679 (1993).

27. Z. Y. Yan, K. C. Hung and H. Zheng, “Solving the hypersingular boundary integral equation in
three-dimensional acoustics using a regularization relationship”, J. Acoust. Soc. Am. 113 (5), 2674-
2683 (2003).

28. A. Seybert, B. Soenarko, F. J. Rizzo and D. J. Shippy, “An advance computational method for
radiation and scattering of acoustic waves in three dimensions”, J. Acoust. Soc. Am. 77 (2), 362-368
(1985).

29. M. Bonnet, “Boundary integral equation methods for solids and fluids”, John Wiley and Sons,
Chichester, 412 pages (1999).

30. O. Steinbach, W. L. Wendland, “The construction of some efficient preconditioners in the boundary
element method”, Advances Comput. Math. 9, 191-216 (1998).

31. P. J. Harris and S. Amini, “On the Burton and Miller boundary integral formulation of the exterior
acoustic problem”, ASME J. Vib. Acoust. 114, 540-546 (1992).

32. J. N. Lyness and D. Jespersen, “Moderate degree symmetric quadrature rules for the triangle”, J.
Inst. Math. Appl., 15, 19-32 (1975).

33. J. C. Lachat and J. O. Watson, “Effective numerical treatment of boundary integral equations: a
formulation for three-dimensions elastostatics”, Int. J. Num. Meth. Eng. 11, 1753-1768 (1976).

34. M. Rezayat, D. J. Shippy and F. J. Rizzo, “On time-harmonic elastic wave analysis by the boundary
element method for moderate to high frequencies”, Comp. Meth. Appl. Mech. Eng. 55, 349–367 (1986).

35. C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with
built-in pre- and post-processing facilities”, Int. J. Num. Meth. Eng. 79, 1309-1331 (2009).


