
HAL Id: hal-01233923
https://hal.science/hal-01233923v2

Submitted on 22 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Random Forests for Big Data
Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, Nathalie Vialaneix

To cite this version:
Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, Nathalie Vialaneix. Random Forests for
Big Data. Big Data Research, 2017, 9, pp.28-46. �10.1016/j.bdr.2017.07.003�. �hal-01233923v2�

https://hal.science/hal-01233923v2
https://hal.archives-ouvertes.fr

Random Forests for Big Data

Robin Genuer

INRIA, SISTM team & ISPED, INSERM U-897, Univ. Bordeaux

Jean-Michel Poggi

LMO, Univ. Paris-Sud Orsay & Univ. Paris Descartes

Christine Tuleau-Malot

Université Côte d’Azur, CNRS, LJAD

Nathalie Villa-Vialaneix

MIAT, Université de Toulouse, INRA

Abstract

Big Data is one of the major challenges of statistical science and has numerous

consequences from algorithmic and theoretical viewpoints. Big Data always in-

volve massive data but they also often include online data and data heterogene-

ity. Recently some statistical methods have been adapted to process Big Data,

like linear regression models, clustering methods and bootstrapping schemes.

Based on decision trees combined with aggregation and bootstrap ideas, random

forests were introduced by Breiman in 2001. They are a powerful nonparamet-

ric statistical method allowing to consider in a single and versatile framework

regression problems, as well as two-class and multi-class classification problems.

Focusing on classification problems, this paper proposes a selective review of

available proposals that deal with scaling random forests to Big Data problems.

These proposals rely on parallel environments or on online adaptations of ran-

dom forests. We also describe how related quantities – such as out-of-bag error

and variable importance – are addressed in these methods. Then, we formulate

Email addresses: robin.genuer@isped.u-bordeaux2.fr (Robin Genuer),
jean-michel.poggi@math.u-psud.fr (Jean-Michel Poggi), malot@unice.fr (Christine
Tuleau-Malot), nathalie.villa-vialaneix@inra.fr (Nathalie Villa-Vialaneix)

Preprint submitted to Big Data Research March 22, 2017

various remarks for random forests in the Big Data context. Finally, we experi-

ment five variants on two massive datasets (15 and 120 millions of observations),

a simulated one as well as real world data. One variant relies on subsampling

while three others are related to parallel implementations of random forests and

involve either various adaptations of bootstrap to Big Data or to “divide-and-

conquer” approaches. The fifth variant relates on online learning of random

forests. These numerical experiments lead to highlight the relative performance

of the different variants, as well as some of their limitations.

Keywords: Random Forest, Big Data, Parallel Computing, Bag of Little

Bootstraps, On-line Learning, R

1. Introduction

1.1. Statistics in the Big Data world

Big Data is one of the major challenges of statistical science and a lot of

recent references start to think about the numerous consequences of this new

context from the algorithmic viewpoint and for the theoretical implications of

this new framework (see [1, 2, 3]). Big Data always involve massive data but

they also often include data streams and data heterogeneity (see [4] for a gen-

eral introduction), often characterized by the fact that data are frequently not

structured data, properly indexed in a database and that simple queries cannot

be easily performed on such data. These features lead to the famous three V

(Volume, Velocity and Variety) highlighted by the Gartner, Inc., the advisory

company about information technology research 1. In the most extreme situa-

tions, data can even have a too large size to fit in a single computer memory.

Then data are distributed among several computers. For instance, Thusoo et al.

[5] indicate that Facebook c© had more than 21PB of data in 2010. Frequently,

the distribution of such data is managed using specific frameworks dedicated to

1 http://blogs.gartner.com/doug-laney/files/2012/01/

ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

2

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

shared computing environments such as Hadoop2.

For statistical science, the problem posed by this large amount of data is

twofold: first, as many statistical procedures have devoted few attention to com-

putational runtimes, they can take too long to provide results in an acceptable

time. When dealing with complex tasks, such as learning of a prediction model

or complex exploratory analysis, this issue can occur even if the dataset would

be considered of a moderate size for other (simpler tasks). Also, as pointed

out in [6], the notion of Big Data depends itself on the available computing

resources. This is especially true when relying on the free statistical software R

[7], massively used in the statistical community, which capabilities are strictly

limited by RAM. In this case, data can be considered as “large” if their size

exceeds 20% of RAM and as “massive” if it exceeds 50% of RAM, because this

amount of data strongly limits the available memory for learning the statistical

model itself. As pointed out in [3], in the near future, statistics will have to

deal with problems of scale and computational complexity to remain relevant.

In particular, the collaboration between statisticians and computer scientists is

needed to control runtimes that will maintain the statistical procedures usable

on large-scale data while ensuring good statistical properties.

Recently, some statistical methods have been adapted to process Big

Data, including linear regression models, clustering methods and bootstrap-

ping schemes (see [8] and [9] for recent reviews and useful references). The

main proposed strategies are based on i) subsampling [10, 11, 12, 13, 14], ii) di-

vide and conquer approaches [15, 16, 17], which consist in splitting the problem

into several smaller problems and in gathering the different results in a final

step, iii) algorithm weakening [18], which explicitly treats the trade-off between

computational time and statistical accuracy using a hierarchy of methods with

2Hadoop, http://hadoop.apache.org is a software environment programmed in Java,

which contains a file system for distributed architectures (HDFS: Hadoop Distributed File

System) and dedicated programs for data analysis in parallel environments. It has been de-

veloped from GoogleFS, The Google File System.

3

http://hadoop.apache.org

increasing complexity, iv) online updates [19, 20], which update the results with

sequential steps, each having a low computational cost. However, only a few

papers really address the question of the difference between the “small data”

standard framework compared to the Big Data in terms of statistical accuracy.

Noticeable exceptions are the article of Kleiner et al. [12] who prove that their

“Bag of Little Bootstraps” method is statistically equivalent to the standard

bootstrap, the article of Chen and Xie [16] who demonstrate asymptotic equiv-

alence to their “divide-and-conquer” based estimator with the estimator based

on all data in the setting of regression and the article of Yan et al. [11] who

show that the mis-clustering rate of their subsampling approach, compared to

what would have been obtained with a direct approach on the whole dataset,

converges to zero when the subsample size grows (in an unsupervised setting).

1.2. Random forests and Big Data

Based on decision trees and combined with aggregation and bootstrap ideas,

random forests (abbreviated RF in the sequel), were introduced by Breiman

[21]. They are a powerful nonparametric statistical method allowing to consider

regression problems as well as two-class and multi-class classification problems,

in a single and versatile framework. The consistency of RF has recently been

proved by Scornet et al. [22], to cite the most recent result. On a practical

point of view, RF are widely used (see [23, 24] for recent surveys) and exhibit

extremely high performance with only a few parameters to tune. Since RF are

based on the definition of several independent trees, it is thus straightforward

to obtain a parallel and faster implementation of the RF method, in which

many trees are built in parallel on different cores. In addition to the parallel

construction of a lot of models (the trees of a given forest) RF include intensive

resampling and, it is natural to think about using parallel processing and to

consider adapted bootstrapping schemes for massive online context.

Even if the method has already been adapted and implemented to handle

Big Data in various distributed environments (see, for instance, the libraries

4

Mahout 3 or MLib, the latter for the distributed framework “Spark”4, among

others), a lot of questions remain open. In this paper, we do not seek to make an

exhaustive description of the various implementations of RF in scalable environ-

ments but we will highlight some problems posed by the Big Data framework,

describe several standard strategies that can be use for RF and describe their

main features, drawbacks and differences with the original approach. We finally

experiment five variants on two massive datasets (15 and 120 millions of ob-

servations), a simulated one as well as real world data. One variant relies on

subsampling while three others are related to parallel implementations of ran-

dom forests and involve either various adaptations of bootstrap to Big Data or

to “divide-and-conquer” approaches. The fifth variant relates to online learning

of RF.

Since the free statistical software R [7], is de facto the esperanto in the statis-

tical community, and since the most widely used programs for designing random

forests are also available in R, we have adopted it for numerical experiments as

much as possible. More precisely, the R package randomForest, implementing

the original RF algorithm using Breiman and Cutler’s Fortran code, contains

many options together with a detailed documentation. It has then been used in

almost all experiments. The only exception is for online RF for which no im-

plementation in R is available. We then use a python library, as an alternative

tool in order to provide the means to compare this approach to the alternative

Big Data variants.

The paper is organized as follows. After this introduction, we briefly recall

some basic facts about RF in Section 2. Then, Section 3 is focused on strategies

for scaling random forests to Big Data: some proposals about RF in parallel

environments are reviewed, as well as a description of online strategies. The

section includes a comparison of the features of every method and a discussion

about the estimation of the out-of-bag error in these methods. Section 4 is

3https://mahout.apache.org
4https://spark.apache.org/mllib

5

https://mahout.apache.org
https://spark.apache.org/mllib

devoted to numerical experiments on two massive datasets, an extensive study

on a simulated one and an application to a real world one. Finally, Section 5

collects some conclusions and discusses two open perspectives.

2. Random Forests

Denoting by L = {(x1, y1), . . . , (xn, yn)} a learning set of independent ob-

servations of the random vector (X,Y), we distinguish X = (X1, ..., Xp) where

X ∈ Rp is the vector of the predictors (or explanatory variables) from Y ∈ Y the

explained variable, where Y is either a class label for classification problems or

a numerical response for regression ones. A classifier s is a mapping s : Rp → Y
while the regression function appears naturally to be the function s when we

suppose that Y = s(X) + ε with E[ε|X] = 0. RF provide estimators of either

the Bayes classifier, which minimizes the classification error P (Y 6= s(X)) or the

regression function (see [25, 26] for further details on classification and regres-

sion problems). RF are a learning method for classification and regression based

on the CART (Classification and Regression Trees) method defined by Breiman

et al. [27]. The left part of Figure 1 provides an example of classification tree.

Such a tree allows to predict the class label corresponding to a given x-value

by simply starting from the root of the tree (at the top of the left part of the

figure) and by answering the questions until a leaf is reached. The predicted

class is then the value labeling the leaf. Such a tree is a classifier s which allows

to predict a y-value for any given x-value. This classifier is the function which

is piecewise constant on the partition described in the right part of Figure 1.

Note that splits are parallel to the axes defined by the original variables leading

to an additive model.

While CART is a well-known way to design optimal single trees by per-

forming first a growing step and then a pruning one, the principle of RF is to

aggregate many binary decision trees coming from two random perturbation

mechanisms: the use of bootstrap samples (obtained by randomly selecting n

observations with replacement from learning set L) instead of the whole sam-

6

C8 C9

C4 C5

C2 C3

C1

X1 ≤ d3 X1 > d3

X2 ≤ d2 X2 > d2

X1 ≤ d1 X1 > d1

d3 d1

d2

X1

X2

C4

C3

C8 C9

Figure 1: Left: a classification tree allowing to predict the class label corresponding to a given

x-value. Right: the associated partition of the predictor space.

ple L and the construction of a randomized tree predictor instead of CART

on each bootstrap sample. For regression problems, the aggregation step con-

sists in averaging individual tree predictions, while for classification problems, it

consists in performing a majority vote among individual tree predictions. The

construction is summarized in Figure 2.

However, trees in RF have two main differences with respect to CART trees:

first, in the growing step, at each node, a fixed number of input variables are

randomly chosen and the best split is calculated only among them, and secondly,

no pruning is performed.

In the next section, we will explain that most proposals made to adapt RF to

Big Data often consider the original RF proposed by Breiman as an object that

simply has to be mimicked in the Big Data context. But we will see, later in this

article, that alternatives to this vision are possible. Some of these alternatives

rely on other ways to resample the data and others are based on variants in the

construction of the trees.

We will concentrate on the prediction performance of RF, focusing on out-

7

standard RF

t1

t2

tQ

RF = ∪Q
l=1tl

Q bootstrap samples

trees

aggregate trees

Figure 2: RF construction scheme: starting from the dataset (left of the figure), generate

bootstrap samples (by randomly selecting n observations with replacement from learning set

L) and learn corresponding randomized binary decision trees. Finally aggregate them.

8

of-bag (OOB) error, which allows to quantify the variable importance (VI in

the sequel). The quantification of the variable importance is crucial for many

procedures involving RF, e.g., for ranking the variables before a stepwise variable

selection strategy (see [28]). Notations used in this section are given in Table 1

notation used for

n number of observations in dataset

Q number of trees in the RF classifier

t a tree in the RF classifier

OOBt set of observations out-of-bag for the tree t

errTreet misclassification rate for observations in OOBt made by t˜errTree
j

t misclassification rate for observations OOB for t

after a random permutations of values of Xj

ŷi OOB prediction of observation xi

(aggregation of predictions made by trees t such that i ∈ OOBt)

errForest OOB misclassification rate for the RF classifier

VI(Xj) Variable importance of Xj

Table 1: Notations used in Section 2.

For each tree t of the forest, consider the associated OOBt sample (composed

of data not included in the bootstrap sample used to construct t). The OOB

error rate of the forest is defined, in the classification case, by:

errForest =
1

n
Card {i ∈ {1, . . . , n} | yi 6= ŷi} (1)

where ŷi is the most frequent label predicted by trees t for which observation i

is in the associated OOBt sample.

Denote by errTreet the error (misclassification rate for classification) of tree

t on its associated OOBt sample. Now, randomly permute the values of Xj in

OOBt to get a perturbed sample and compute ˜errTreet
j
, the error of tree t on

the perturbed sample. Variable importance of Xj is then equal to:

VI(Xj) =
1

Q

∑
t

(˜errTreet
j − errTreet)

9

where the sum is over all trees t of the RF and Q denotes the number of trees

of the RF.

3. Scaling random forests to Big Data

This section discusses the different strategies that can be used to scale ran-

dom forest to Big Data: the first one is subsampling, denoted by sampRF

in the sequel. Then, four parallel implementations of random forests (parRF,

moonRF, blbRF and dacRF), relying on standard parallelization, adapta-

tion of bootstraping schemes to Big Data or on a divide-and-conquer approach,

are also presented. Finally, a different (and not equivalent) approach based on

the online processing of data is also described, onRF. All these variants are

compared to the original method, seqRF, in which all bootstrap samples and

trees are built sequentially. The names of the different methods and references

to the sections in which they are discussed are summarized in Table 2.

short name full name described in relies on

seqRF sequential RF 2 original method

sampRF sampling RF 3.1 subsampling

parRF parallel RF 3.2 parallelization

moonRF m-out-of-n RF 3.2.1 Big Data bootstrap

blbRF Bag of Little Bootstraps RF 3.2.1 Big Data bootstrap

dacRF divide-and-conquer RF 3.2.2 divide-and-conquer

onRF online RF 3.3 online learning

Table 2: Names and references of the different variants of RF described in this article.

In addition, the section will use the following notations: RF will denote the

random forest method (in a generic sense) or the final random forest classifier

itself, obtained from the various approaches described in this section. The

number of trees in the final classifier RF is denoted by Q, n is the number

of observations of the original dataset and, when a subsample is taken in this

dataset (either with or without replacement), it is denoted by τl (l identifies

the subsample when several subsamples are used) and its size is usually denoted

10

by m. When different processes are run in parallel, the number of processes is

denoted by K. Depending on the method, this can lead to learn smaller RF

with q < Q trees that are denoted by RF
(q)
l , in which l is an index that identifies

the RF. The notation ∪Kl=1RF
(q)
l will be used for the classifier obtained from the

aggregation of K RF with q trees each into a RF with qK trees. Similarly, tl

or tll′ denote a tree, identified by the index l or by two indices, l and l′, when

required, and ∪ql=1tl denotes the random forest obtained from the aggregation of

the q trees t1, . . . , tq. Additional notations used in this section are summarized

in Table 3.

notation used for

τl subsample of the observations in the dataset

m number of observations in subsamples

RF final random forest classifier

Q number of trees in the final random forest classifier

K number of processes run in parallel

q number of trees in intermediate (smaller) random forests

RF
(q)
l RF number l with q trees

∪K
l=1RF

(q)
l aggregation of K RF with q trees in a single classifier

tl or tll′ tree identified by the index l or by indices l and l′

∪q
l=1tl aggregation of q trees in an RF classifier

Table 3: Notations used in Section 3.

3.1. Sub-sampling RF (sampRF)

Meng [14] points the fact that using all data is probably not required to

obtain accurate estimations in learning methods and that sampling approaches

is an important approach to deal with Big Data. The natural idea behind

sampling is to simply subsample m observations out of n without replacement

in the original sample (with m � n) and to use the original algorithm (either

seqRF or the parallel implementation, parRF, described in Section 3.2) to

process this subsample. This method is illustrated in Figure 3.

11

sampRF

RF

sub-sampling
(without replacement)

use seqRF or parRF

Figure 3: Sub-sampling RF (sampRF): m observations out of n are randomly selected without

replacement and the original RF algorithm (seqRF) or its parallel version (parRF) described

in Section 3.2 are used to obtain a final random forest with Q trees.

Subsampling is a natural method for statisticians and it is appealing since it

strongly reduces memory usage and computational efforts. However, it can lead

to serious biases if the subsample is not carefully designed. More precisely, the

need to control the representativeness of the subsampling is crucial. Random

subsampling are usually adequate for such tasks, providing the fact that the

sampling fraction is large enough. However, in the Big Data world, datasets are

frequently not structured and indexed. In this situation, random subsampling

can be a difficult task (see [14] for a discussion on this point and a description

of a parallel strategy to overcome this problem). Section 4 provides various

insights on the efficiency of subsampling, on the effect of the sampling fraction

and on the representativeness of the subsample on the accuracy of the obtained

classifier. The next section investigates approaches which try to make use of

a wider proportion of observations in the dataset using efficient computational

strategies.

3.2. Parallel implementations of random forests

As pointed in the introduction, RF offer a natural framework for handling

Big Data. Since the method relies on bootstraping and independant construc-

12

tion of many trees, it is naturally suited for parallel computation. Instead of

building all Q bootstrap samples and trees sequentially as in seqRF, bootstrap

samples and trees (or sets of a small number of bootstrap samples and trees)

can be built in parallel. In the sequel, we will denote by parRF the approach

in which K processes corresponding to the learning of a forest with q = Q
K trees

each are processed in parallel. seqRF and parRF implementations are illus-

trated in Figure 4 (left and right, respectively). Using the parRF approach, one

can hope for a computational time factor decrease of approximately K between

seqRF and parRF.

seqRF

RF

only one process

parRF

t1

t2

tQ

RF = ∪Q
l=1tl

Q bootstrap samples

trees in parallel

aggregate trees

Figure 4: Sequential (left) and parallel (right) implementations of the standard RF algorithm.

RF is the final random forest with Q trees. parRF builds K small random forests, RF
(q)
l

,

with q = Q
K

trees each, using K processes run in parallel.

However, as pointed in [12], since the expected size of a bootstrap sample

built from {1, . . . , n} is approximately 0.63n, the need to process hundreds of

such samples is hardly feasible in practice when n is very large. Moreover,

in the original algorithm from [21], the trees that composed the forest are fully

developed trees, which means that the trees are grown until every terminal node

(leaf) is perfectly homogeneous regarding the values of Y for the observations

that fall in this node. When n is large, and especially in the regression case, this

leads to very deep trees which are all computationally very expensive and even

13

difficult to use for prediction purpose. However, as far as we know, no study

addresses the question of the impact of controlling and/or tuning the maximum

number of nodes in the forest’s trees.

The next subsection presents alternative solutions to address the issue of

large size bootstrap samples while relying on the natural parallel background of

RF. More precisely, we will discuss alternative bootstrap schemes for RF (m-

out-of-n bootstrap RF, moonRF, and Bag of Little Bootstraps RF, blbRF)

and divide-and-conquer approach, dacRF. A last subsection will describe and

comment on the mismatches of each of these approaches with the standard RF

method, seqRF or parRF.

3.2.1. Alternative bootstrap schemes for RF (moonRF and blbRF)

To avoid selecting only some of the observations in the original big dataset

as it is done in sampRF (Figure 3), some authors have focused on alternative

bootstrap schemes aiming at reducing the number of different observations of

each bootstrap samples. [29] propose the m-out-of-n bootstrap that consists in

building bootstrap samples with only m observations taken without replacement

in {1, . . . , n} (for m� n). This method is illustrated in Figure 5.

14

moonRF

t1

t2

tQ

RF = ∪Q
l=1tl

Q samples (without replacement)

trees in parallel

aggregate trees

Figure 5: m-out-of-n RF (moonRF): Q samples without replacement with m observations

out of n are randomly built in parallel and a tree is learned from each of these samples. The

Q trees are then aggregated to obtain a final random forest with Q trees.

Initially designed to address the computational burden of standard boot-

strapping, the method performance is strongly dependent on a convenient choice

of m and the data-driven scheme proposed in [30] for the selection of m requires

to test several different values of m and eliminates computational gains.

More recently, an alternative to m-out-of-n bootstrap called “Bag of Little

Bootstraps” (BLB) has been described in [12]. This method aims at building

bootstrap samples of size n, each one containing only m� n different observa-

tions. The size of the bootstrap sample is the classical one (n), thus avoiding the

problem of the bias involved by m-out-of-n bootstrap methods. The approach

is illustrated in Figure 6.

15

blbRF

RF
(q)
1

RF
(q)
2

RF
(q)
K

RF = ∪K
l=1RF

(q)
l

K samples (without replacement)

oversampling
(with replacement)

forests with q trees
in parallel aggregate forests

τK

τ2

τ1

Figure 6: Bag of Little Bootstraps RF (blbRF). In this method, a subsampling step, per-

formed K times in parallel, is followed by an oversampling step which aims at building q trees

for each subsample, all obtained from a bootstrap sample of size n of the original data. All

the trees are then gathered into a final forest RF.

It consists in two steps: in a first step, K subsamples, (τl)l=1,...,K , are ob-

tained, with m observations each, that are taken randomly without replacement

from the original observations. In a second step, each of these subsamples is

used to obtain a forest, RF
(q)
l with q = Q

K trees. But instead of taking bootstrap

samples from τl, the method uses over-sampling and, for all i ∈ τl, computes

weights, nli, from a multinomial distribution with parameters n and 1
m1m, where

1m is a vector with m entries equal to 1. These weights satisfy
∑
i∈τl n

l
i = n and

a bootstrap sample of the original dataset is thus obtained by using nli times

each observation i in τl. For each τl, q such bootstrap samples are obtained to

build q trees. These trees are aggregated in a random forest RF
(q)
l . Finally,

all these (intermediate) random forests with q trees are gathered together in

a forest with Q = qK trees. The processing of this method is thus simplified

by a smart weighting scheme and is manageable even for very large n because

all bootstrap samples contain only a small number (at most m) of unique ob-

servations from the original data set. The number m is typically of the order

16

nγ for γ ∈ [0.5, 1], which can be very small compared to the typical number of

observations (about 0.63n) of a standard bootstrap sample. Interestingly, this

approach is well supported by theoretical results because the authors of [12]

prove its equivalence with the standard bootstrap method.

3.2.2. Divide-and-conquer RF (dacRF)

Standard alternative to deal with massive datasets while not using subsam-

pling is to rely on a “divide-and-conquer” strategy. The large problem is divided

into simpler subproblems and the solutions are aggregated together to solve the

original problem. The approach is illustrated in Figure 7: the data are split into

small sub-samples, or chunks, of data, (xi, yi)i∈τl , with ∪lτl = {1, . . . , n} and

τl ∩ τl′ = ∅.

dacRF

RF
(q)
1

RF
(q)
2

RF
(q)
K

RF = ∪K
l=1RF

(q)
l

partition into K samples

forests with q trees in parallel

aggregate forests

τK

τ2

τ1

Figure 7: divide-and-conquer RF (dacRF). In this method, the original dataset is partitionned

into K subsets. A random forest with q trees is built from each of the subsets and all the

forests are finally aggregated in a final forest, RF.

Each of these data chunks is processed in parallel and yields to the learning

17

of an intermediate RF having a reduced number of trees. Finally, all these

forests are simply aggregated together to define the final RF.

As indicated in [17], this approach is the standard MapReduce version of

RF, implemented in the ApacheTM library Mahout. MapReduce is a method

that proceeds in two steps: in a first step, called the Map step, the data set

is split into several smaller chunks of data, (xi, yi)i∈τk , with ∪kτk = {1, . . . , n}
and τk ∩ τk′ = ∅, each one being processed by a separate core. These different

Map jobs are independent and produce a list of couples of the form (key, value),

where “key” is a key indexing the data that are contained in “value”. In RF

case, the output key is always equal to 1 and the output value is the forest

learned on the corresponding chunk. Then, in a second step, called the Reduce

step, each reduce job proceeds all the outputs of the Map jobs that correspond

to a given key value. This step is skipped in RF case since the output of the

different Map jobs are simply aggregated together to produce the final RF. The

MapReduce paradigm takes advantage of the locality of data to speed the com-

putation. Each Map job usually processes the data stored in a close proximity

to its computational unit. As discussed in the next section and illustrated in

Section 4.3, this can yield to biases in the resulting RF.

3.2.3. Mismatches with original RF

In this section, we want to stress the differences between the previously

proposed parallel solutions and the original algorithm. Two methods will be

said “equivalent” when they would provide similar results when used on a given

dataset, up to the randomness in bootstrap sampling. For instance, seqRF and

parRF are equivalent since the only difference between the two methods are

the sequential or parallel learning of the trees. sampRF and dacRF are not

equivalent to seqRF and are both strongly dependent on the representativity

of the dataset. This is the standard issue encountered in survey approaches for

sampRF but it is also a serious limitation to dacRF even if this method uses all

observations. Indeed, if data are thrown in the different chunks with no control

on the representativity of the subsamples, data chunks might well be specific

18

enough to produce very heterogeneous forests: there would be no meaning in

simply averaging all those trees together to make a global prediction. This

is especially an issue when using the standard MapReduce paradigm since, as

noted by Laptev et al. [13], data are rarely ordered randomly in the Big Data

world. On the contrary, items are rather clustered on some particular attributes

are often placed next to each other on disk and the data locality property of

MapReduce thus leads to very biased data chunks.

Moreover, as pointed out by Kleiner et al. [12], another limit of sampRF

and dacRF but also of moonRF comes from the fact that each forest is built

on a bootstrap sample of size m. The success of m-out-of-n bootstrap samples

is highly conditioned on the choice of m: [29] reports results for m of order O(n)

for successful m-out-of-n bootstrap. Bag of Little Bootstraps is an appealing al-

ternative since the bootstrap sample size is the standard one (n). Moreover, [12]

demonstrate a consistency result of the bootstrap estimation in their framework

for m = O(
√
n) and K ∼ n

m (when n tends to +∞).

In addition, some important features of all these approaches are summarized

in Table 4. A desirable property for a high computational efficiency is that the

number of different observations in bootstrap samples is as small as possible.

can be computed bootstrap expected nb of

in parallel sample size 6= obs. in

bootstrap samples

seqRF yes n 0.63n

parRF (parRF)

sampRF yes but m 0.63m

not critical

moonRF yes m m

blbRF yes n m
[
1−

(
m−1
m

)n]
dacRF yes n

K 0.63 n
K

Table 4: Summary of the main features in the variants of the random forest algorithm (ex-

cluding online RF, onRF).

19

3.2.4. Out-of-bag error and variable importance measure

OOB error and VI are important diagnostic tools to help the user understand

the forest accuracy and to perform variable selection. However, these quanti-

ties may be unavailable directly (or in a standard manner) in the RF variants

described in the previous sections. This comes from the fact that sampRF,

moonRF and blbRF use a prior subsampling step of m observations. The

forest (or the subforests) based on this subsample has not a direct access to the

remaining n−m observations that are always out-of-bag and should, in theory,

be considered for OOB computation. In general, OOB error (and thus VI) can-

not be obtained directly while the forest is trained. A similar problem occurs for

dacRF in which all forests based on a given chunk of data are unaware of data

the other chunks. In dacRF, it can even be memory costly to record which data

have been used in each chunk to obtain OOB afterwards. Moreover, even in the

case where this information is available, all RF alternatives presented in the

previous sections, sampRF, moonRF, blbRF and dacRF, require to obtain

the predictions for approximately n− rm OOB observations (with r = 0.63 for

sampRF and dacRF, r = 1 for moonRF and r = 1 −
(
m−1
m

)n
for blbRF)

for all trees, which can be a computationally extensive task.

In this section, we present a first approximation of OOB error that can

naturally be designed for sampRF and dacRF, and a second approximation for

moonRF and blbRF. Additional notations used in this section are summarized

in Table 5.

20

notation used for

K number of subsamples

(equivalent to the number of processes run in parallel here)

q number of trees in intermediate (smaller) random forests

ŷli OOB prediction for observation i ∈ τl by forest obtained from τl

errForestl OOB error of RF
(q)
l restricted to τl

ŷ−l
i prediction for observation i ∈ τl by forests (RF

(q)

l′)l′ 6=l

BDerrForest approximation of OOB in sampRF, blbRF, moonRF and dacRF

Table 5: Notations used in Section 3.2.4.

OOB error approximation for sampRF and dacRF. As previously, (τl)l=1,...,K

denote the subsamples of data, each of size m, used to build independent forests

in parallel (with K = 1 for sampRF). Using each of these samples, a forest

with Q (sampRF) or q = Q
K (dacRF) trees is defined, for which an OOB

prediction, restricted to observations in τl, can be calculated: ŷli is obtained by

a majority vote on the trees of the forest built from a bootstrap sample of τl for

which i is OOB.

An approximation of the OOB error of the forest learned from sample τl can

thus be obtained with errForestl = 1
mCard

{
i ∈ τl|yi 6= ŷli

}
. This yields to the

following approximation of the global OOB error of RF:

BDerrForest =
1

n

K∑
l=1

m× errForestl

for dacRF or simply BDerrForest = errForest1 for sampRF.

OOB error approximation for moonRF and blbRF. For moonRF, since sam-

ples are obtained without replacement, there are no OOB observations associ-

ated to a tree. However we can compute an OOB error as in standard forests,

restricted to the set ∪Ql=1τl of observations that have been sampled in at least

one of the subsamples τl. This leads to obtain an approximation of the OOB

error, BDerrForest, based on the prediction of approximately (Q − 1)m obser-

vations (up to the few observations that belong to several subsamples, which is

21

very small if m � n) that are OOB for each of the Q trees. This corresponds

to an important computational gain as compared to the standard OOB error

that would have required the prediction of approximately n −m observations

for each tree.

For blbRF, a similar OOB error approximation can be computed using

∪Kl=1τl. Indeed, since trees are built on samples of size n obtained with replace-

ment from τl (having a size equal to m), and again provided that m� n, there

are no OOB observations associated to the trees with high probability. Again

assuming that no observation belong to several subsamples τl, the OOB predic-

tion of an observation in τl can be approximated by a majority vote law based

on the predictions made by subforests (RF
(q)
l′)l′ 6=l. If this prediction is denoted

by ŷ−li , then the following approximation of the OOB error can be derived:

BDerrForest =
1

Km

K∑
l=1

Card
{
i ∈ τl | yi 6= ŷi

−l
}
.

Again, for each tree, the number of predictions to make to compute this error

is (K− 1)m, which is small compared to the n−m predictions that would have

been performed to compute the standard OOB error.

Similar approximations can also be defined for VI (not investigated in this

paper for the sake of simplicity).

3.3. Online random forests

The general idea of online RF (onRF), introduced by Saffari et al. [19],

is to adapt RF methodology, in order to handle the case where data arrive

sequentially. An online framework supposes that at a given time step one does

not have access to all the data from the past, but only to the current observation.

onRF are first defined in [19] and detailed only for classification problems.

They combine the idea of online bagging, also called Poisson bootstrap, from

[31, 32, 33], Extremely Randomized Trees (ERT) from [34], and a mechanism

to update the forest each time a new observation arrives.

More precisely, when a new data arrives, the online bagging updates k times

a given tree, where k is sampled from a Poisson distribution to mimic a batch

22

bootstrap sampling. This means that this new data will appear k times in the

tree, which mimics the fact that one data can be drawn k times in the batch

sampling (with replacement). ERT is used instead of original Breiman’s RF,

because it allows for a faster update of the forest: in ERT, S splits (i.e., a

split variable and a split value) are randomly drawn for every node, and the

final split is optimized only among those S candidate splits. Moreover, all

decisions given by a tree are only based on the proportions of each class label

among observations in a node. onRF keep up-to-date (in an online manner)

an heterogeneity measure based on these proportions, used to determine the

class label of a node. So when a node is created, S candidate splits (hence 2S

candidate new nodes) are randomly drawn and when a new data arrives in an

existing node, this measure is updated for all those 2S candidate nodes. This

mechanism is repeated until a stopping condition is realized and the final split

minimizes the heterogeneity measure among the S candidate splits. Then a new

node is created and so on.

From the theoretical viewpoint, the recent article [20] introduces a new vari-

ant of onRF. The two main differences with the original onRF are that, 1) no

online bootstrap is performed. 2) Each point is assigned to one of two possible

streams at random with fixed probability. The data stream is then randomly

partitioned in two streams: the structure stream and the estimation stream.

Data from structure stream only participate on the splits optimization, while

data from estimation stream are only used to allocate a class label to a node.

Thanks to this partition, the authors manage to obtain consistency results of

onRF.

[19] also describes an online estimation of the OOB error: since a given

observation is OOB for all trees for which the Poisson random variable used to

replicate the observation in the tree is equal to 0, the prediction provided for

such a tree t is used to update errTreet. However, since the prediction cannot

be re-evaluated after the tree has been updated with next data, this approach is

only an approximation of the original errTreet. Moreover, as far as we know, this

23

approximation is not implemented in the python library RFTK 5 which provides

an implementation of onRF used in experiments of Section 4.4. Finally, since

permuting the values of a given variable when the observations are processed

online and are not stored after they have been processed is still an open issue

for which [19, 20] give no solution. Hence, VI cannot be simply defined in this

framework.

4. Experiments

The present section is devoted to numerical experiments on a massive sim-

ulated dataset (15 millions of observations) as well as a real world dataset (120

millions of observations), which aim at illustrating and comparing the five vari-

ants of RF for Big Data introduced in Section 3. The experimental framework

and the data simulation model are first presented. Then four variants involving

parallel implementations of RF are compared, and online RF is also consid-

ered. A specific focus on the influence of biases in subsampling and splitting

is performed. Finally, we analyze the performance obtained on a well-known

real-world benchmark for Big Data experiments that contains airline on-time

performance data.

4.1. Experimental framework and simulation model

All experiments have been conducted on the same server (with concurrent

access), with 8 processors AMD Opteron 8384 2.7Ghz, with 4 cores each, a total

RAM equal to 256 Go and running on Debian 8 Jessie. Parallel methods were

all run with 10 cores.

There are strong reasons to carry out experimentations in a unified way

involving codes in R. This will be the case in this section except for onRF in

Section 4.4. Due to their interest, onRF are considered in experimental part

of the paper, even if, due to the lack of available program implemented in R,

an exception has been made using a python code. To allow fair comparisons

5https://github.com/david-matheson/rftk

24

https://github.com/david-matheson/rftk

between the other methods and to make them independent from a particular

software framework or a particular programming language, all methods have

been programmed using the following packages:

• the package readr [35] (version 0.1.1), which allows to read more efficiently

flat and tabular text files from disk;

• the package randomForest [36] (version 4.6-10), which implements RF

algorithm using Breiman and Cutler’s original Fortran code;

• the package parallel [7] (version 3.2.0), which is part of R and supports

parallel computation.

To address all these issues, simulated data are studied in this section. They

correspond to a well controlled model and can thus be used to obtain comprehen-

sive results on the various questions described above. The simulated dataset cor-

responds to 15,000,000 observations generated from the model described in [37]:

this model is an equiprobable two class problem in which the variable to predict,

Y , takes values in {−1, 1} and the predictors are, for 6 of them, true predictors,

whereas the other ones (in our case only one) are random noise. The simulation

model is defined through the law of Y (P (Y = 1) = P (Y = −1) = 0.5) and the

conditional distribution of the (Xj)j=1,...,7 given Y = y:

• with probability equal to 0.7, Xj ∼ N (jy, 1) for j ∈ {1, 2, 3} and Xj ∼
N (0, 1) for j ∈ {4, 5, 6} (submodel 1);

• with probability equal to 0.3, Xj ∼ N (0, 1) for j ∈ {1, 2, 3} and Xj ∼
N ((j − 3)y, 1) for j ∈ {4, 5, 6} (submodel 2);

• X7 ∼ N (0, 1).

All variables are centered and scaled to unit variance after the simulation pro-

cess, which gave a dataset which size (in plain text format) was equal to 1.9 Go.

Compared to the size of available RAM, this dataset was relatively moderate

which allowed us to perform extensive comparisons while being in the realistic

Big Data framework with a large number of observations.

25

This 15,000,000 observations of this dataset were first randomly ordered.

Then, to illustrate the effect of representativeness of data in different sub-

samples in both divide-and-coquer and online approaches, two permuted ver-

sions of this same dataset were considered (see Figure 8 for an illustration):

unbalanced

Y values:
gray: −1

white: 1

x-biases

X values:
gray: submodel1

white: submodel2

Figure 8: Illustration of the datasets unbalanced (left) and x-biases (right)

• unbalanced will refer to a permuted dataset in which Y values arrive

with a particular pattern. More precisely, we permuted the observations

so that the first half of the observations contain a proportion p (with

p ∈ {10; 1}%) of observations coming from the first class (Y = 1), and the

other half contains the same proportion of observations from the second

class (Y = −1);

• x-biases will refer to a permuted dataset in which X values arrive with a

particular pattern. More precisely, in that case, the data are split into P

parts in which the first 70% of the observations are coming from submodel

1 and the last 30% are coming from submodel 2.

26

4.2. Four RF methods for Big Data involving parallel implementations

The aims of the simulations of this subsection were multiple: firstly, dif-

ferent approaches designed to handle Big Data with RF were compared. The

comparison was made on the point of view of the computational effort needed to

train the classifier and also in term of its accuracy. Secondly, the differences be-

tween the OOB error estimated by standard methods corresponding to a given

approach (which generally uses only a part of the data to be computed) was

compared to the OOB error of the classifier estimated on the whole data set.

All along this subsection we use a simulated dataset corresponding to

15,000,000 observations generated from the model described in Section 4.1 and

randomly ordered. With the readr package, loading this dataset took approxi-

mately one minute.

As a baseline for comparison, a standard RF with 100 trees was trained in

a sequential way with the R package randomForest. This package allows to

control the complexity of the trees in the forest by setting a maximum number

of terminal nodes (leaves). By default, fully developed trees are grown, with

unlimited number of leaves, until all leaves are pure (i.e. composed of obser-

vations all belonging to the same class). Considering the very large number of

observations, the number of leaves was limited to 500 in our experiments. The

training of this forest took approximately 7 hours and the resulting OOB error

was equal to 4.564e−3 and has served as a baseline for the other experiments.

As illustrated by the left-hand side of Figure 9, the OOB error of seqRF

(with a total number of trees equal to 500) stabilizes between 100 and 200 trees.

The training of the RF with 500 trees took approximately 18 hours. Hence, we

chose to keep a limited number of trees of 100, which seems a good compromise

between accuracy and computational time. The choice of a maximum number

of leaves of 500 was also motivated by the fact that maximal trees did not bring

much improvement in accuracy, as shown in the right-hand side of Figure 9. On

the contrary, it increases the final RF complexity significantly (maximal trees

contain approximately 60,000 terminal nodes).

We designed experiments to compare this sequential forest (seqRF) to the

27

0.006

0.009

0.012

0.015

0.000

0.002

0.004

0.006

0 100 200 300 400 500 50 500 unbounded

number of trees maximum number of leaves

O
O

B
 e

rr
or

 (
er

rF
or

es
t)

O
O

B
 e

rr
or

 (
er

rF
or

es
t)

Figure 9: OOB error evolution for seqRF versus the number of trees (left), and the maximum

number of leaves (right).

four variants introduced in Section 3, namely: sampRF, moonRF, blbRF

and dacRF (see Table 2 for definitions). In this section, the purpose is only to

compare the methods themselves so all subsamplings were done in such a way

that the subsamples were representative of the whole dataset from the X and

Y distributional viewpoint.

The different results are compared through the computational time needed

by every method (real elapsed time as returned by R) and the prediction per-

formance. This last quantity was assessed in three ways:

i) errForest, which is defined in Equation (1) and refers to the standard

OOB error of a RF. This quantity is hard to obtain with the different

methods described in this chapter when the sample size is large but we

nevertheless computed it to check if the approximations usually used to

estimate this quantity are reliable;

ii) BDerrForest, which is the approximation of errForest defined in Sec-

tion 3.2.4;

iii) errTest, which is a standard test error using a test sample, with 150,000

28

● ● ● ●● ● ● ●● ● ● ●

● ●
● ●

● ● ● ●
●

● ● ●

blbRF dacRF

25 50 75 100 25 50 75 100
0.004

0.005

0.006

0.007

0.008

0.009

K (number of chunks/sub−samples)

pr
ed

ic
tio

n
er

ro
r

●

●

●

●

●

●

● ●

blbRF dacRF

25 50 75 100 25 50 75 100
0

200

400

600

K (number of chunks/sub−samples)

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

error type
●

●

●

BDerrForest

errForest

errTest

Figure 10: Evolution of prediction error (top) and computational time for training (bottom)

versus K. K is the number of chunks for dacRF (right) or the number of sub-samples for

blbRF (left). The number of trees, q, is set to 10.

observations, generated independently from the training sample.

In all simulations, the maximum number of leaves in the trees was set to 500.

In addition, errOOB and errTest were found always indistinguishable, which

confirms that OOB error is a good estimation of the prediction error.

First, the impact of K and q for blbRF and dacRF was studied. As shown

in Figure 10, when q is set to 10, blbRF and dacRF are quite insensitive to the

choice of K. However, BDerrForest is a very pessimistic approximation of the

prediction error for dacRF, whereas it gives good approximations for blbRF.

Computational time for training is obviously linearly increasing for blbRF, as

we built more sub-samples, whereas it is decreasing for dacRF, because the size

of each chunk becomes smaller.

Symmetrically, K was then fixed to 10 to illustrate the effect of the number

of trees in each chunk/sub-samples. Results are provided in Figure 11. Again,

blbRF is quite robust to the choice of q. On the contrary, for dacRF, the

number of trees built in each chunk must be quite high to get an unbiased

BDerrForest, at a cost of a substantially increased computational time. In

29

● ● ● ●● ● ● ●● ● ● ●

●

●

●
●

● ● ● ●● ● ● ●

blbRF dacRF

25 50 75 100 25 50 75 100
0.004

0.005

0.006

0.007

0.008

q (number of trees)

pr
ed

ic
tio

n
er

ro
r

● ● ● ●

●

●

●

●

blbRF dacRF

25 50 75 100 25 50 75 100
0

500

1000

1500

q (number of trees)

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

error type
●

●

●

BDerrForest

errForest

errTest

Figure 11: Evolution of the prediction error (top) and computational time for training (bot-

tom) versus q. q is the number of trees in each chunk for dacRF (right) or the number of

trees in each sub-sample for blbRF (left). K is set to 10.

other simulations for dacRF, q was also set to 100 and K was increased but

this did not give any improvement (not shown). Due to these conclusions, the

values K = 10 and q = 50 were chosen for blbRF and the values K = 10,

q = 100 were chosen for dacRF in the rest of the simulations.

Second, the impact of the sampling fraction, f = m
n was studied for sam-

pRF and moonRF, with a number of trees set to 100. More precisely, for

sampRF, a subsample containing m observations was randomly drawn for the

entire dataset, with f ∈ {0.1, 1, 10}%. Results (see the right-hand side of Fig-

ure 12) show that BDerrForest is quite unbiased as soon as f is larger than 1%.

Furthermore, f = 10% leads to some increase in computational time needed for

training, even if this time is around 10 times smaller than the one needed to

train dacRF with 10 chunks and 100 trees. For moonRF, as the 100 trees

are built on samples with m different observations each, the sampling fraction

was varied in {10−5, 10−4, 10−3}, in order to get a fraction of observations used

by the entire forest (total sampling fraction, represented on the x-axes of the

figure) comparable to the one used in sampRF. The left-hand part of Figure 12

30

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●
● ●

moonRF sampRF

0.1% 1% 10% 0.1% 1% 10%

0.0045

0.0050

0.0055

0.0060

total sampling fraction (log10 − scale)

pr
ed

ic
tio

n
er

ro
r

● ● ●
● ● ●
● ● ●

●
●

●

●
●

●

●
●

●

moonRF sampRF

0.1% 1% 10% 0.1% 1% 10%
0

50

100

150

total sampling fraction (log10 − scale)

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

error type
●

●

●

BDerrForest

errForest

errTest

Figure 12: Evolution of the prediction error (top) and computational time for training (bot-

tom) versus the sampling fraction (log10-scale) used in moonRF (left) and sampRF (right).

The number of trees is set to 100.

shows that BDerrForest gives quite unbiased estimations of the prediction error.

Moreover, the computational time for training remains low. The increase of the

prediction error when f = 0.1% is explained by the fact that subsamples con-

tain only 150 observations in this case. Based on these experiments, the total

sampling fraction was set to 1% for both sampRF and moonRF in the rest

of the simulations.

Several conclusions can be driven from these results. First, the computa-

tional time needed to train all these Big Data versions of RF is almost the

same and quite reduced (about a few minutes) compared to the sequential RF.

The fastest approach is to extract a very small subsample and the slowest is

the dacRF approach with 10 chunks of 100 trees each (because the number of

observations sent to each chunk is not much reduced compared to the original

dataset). The results are not shown for the sake of simplicity but the perfor-

mances are also quite stable: when a method was trained several times with the

same parameters, the performances were almost always very close.

Regarding the errors, it has first to be noted that the prediction error (as

31

assessed with errTest) is much better estimated by errForest than by the proxy of

the OOB error provided by BDerrForest. In particular, BDerrForest tends to be

biased for sampRF and moonRF approaches when the fraction of samples is

very small and it tends to overestimate the prediction error (sometimes strongly)

for dacRF.

Finally, many methods achieve a performance which is quite close to that of

the standard RF algorithm: sampRF and moonRF approaches are quite close

to the standard algorithm seqRF, even for very small subsamples (with at least

0.1% of the original observations, the difference between the two predictors is

not very important). blbRF is also quite close to seqRF and remarkably stable

to a change in its parameters K and q. Finally, dacRF also gives an accurate

predictor but its BDerrForest error estimation is close to the prediction error

only when the number of trees in the forest is large enough: this is obtained

at the price of a higher computational cost (about 10 times larger than for the

other approaches).

4.3. More about subsampling biases and tree depth

In the previous section, simulations were conducted with representative sub-

samples and a maximum number of leaves equal to 500 for every tree in every

forest. The present section pushes the analysis a bit further by specifically inves-

tigating the influence of these two features on the results. All simulations were

performed with the same dataset and the same computing environment than in

the previous section. Finally, the different parameters for the RF methods were

fixed in light of the previous section: blbRF and dacRF were learned respec-

tively with K = 10 and q = 50 and with K = 10, q = 100, whereas moonRF

and sampRF were learned with total sampling fraction equal to 0.1%.

As explained in Section 3.2, dacRF can be influenced by the lack of repre-

sentativity of the data sent to the different chunks. In this section, we evaluate

the influence of such cases in two different directions. We have considered the

non representativity of observations in the different chunks/sub-samples, firstly

according to Y values using the unbalanced dataset and secondly, according to

32

0.01 0.1

blbRF dacRF moonRF sampRF blbRF dacRF moonRF sampRF

0.00

0.01

0.02

0.03

0.04

0.05

RF type

pr
ed

ic
tio

n
er

ro
r

error type

BDerrForest

errForest

errTest

Figure 13: Prediction error behavior for 4 RF methods for unbalanced data. Unbalanced

proportion p is set to 0.01 (left) or to 0.1 (right).

X values using the x-biases dataset (see Section 4.1 for a description of these

two datasets). For dacRF, this simulation corresponds to the case where the

subforests built from the different chunks are very heterogeneous. This issue

has been discussed in Section 3.2.3 and we will show that it indeed has a strong

impact in practice.

Results associated to the unbalanced case are presented in Figure 13. In

this case, data are organized so that, for dacRF, half of the chunks have a

proportion p ∈ {0.01, 0.1} of observations from the first class (Y = 1), and

the other half have the same proportion of observations from the second class

(Y = −1). For blbRF and moonRF, half of the sub-samples were drawn in

order to get a proportion p of observation from the first class and the other

half the same proportion of observations from the second class. Finally, as

there is only one subsample to draw for sampRF, it has been obtained with a

proportion p of observations of the first class. Hence, the results associated to

sampRF are not fully comparable to the other two.

The first fact worth noting in these results is again that errOOB and er-

rTest are always very close, whereas BDerrForest is more and more biased as

33

0.00

0.05

0.10

BDerrForest errForest errTest

error type

pr
ed

ic
tio

n
er

ro
r

Figure 14: Prediction errors for x-biases with dacRF (K = 10 and q = 100).

p decreases. For p = 0.1, BDerrForest bias is rather stable for all methods,

except for sampRF (which is explained by the fact that only one subsample

is chosen and thus 90% of the observations are coming from the second class).

When p = 0.01 (which corresponds to a quite extreme situation), we can see

that dacRF is the most affected method, in terms of BDerrForest (BDerrForest

strongly underestimates the prediction error) but also in terms of errOOB and

errTest because these two quantities increase a lot.

Interestingly, moonRF is quite robust to this situation, whereas blbRF has

a BDerrForest which strongly overestimates the prediction error. The difference

of behavior between these two last methods might from the fact that, in our

setting, 100 sub-samples are drawn for moonRF but only 10 for blbRF.

A similar conclusion is obtained for biases towards X values: simulations

have been performed for dacRF with x-biases obtained by partitionning the

data into 2 parts (as illustrated on the right-hand side of Figure 8), leading to

7/10 of the K = 10 chunks of data to contain only observations from submodel

1 and the other 3/10 chunks contaning only observations from submodel 2.

Results are given in Figure 14. This result shows that the performance of the

34

Sampling Comp. Max. tree Pruned tree mean Gini

fraction time size size

100% 5 hours 60683 3789 0.233

10% 13 min 6999 966 0.183

1% 23 sec 906 187 0.073

0.1% 0.01 sec 35 10 0.000

Table 6: Number of leaves and leaves heterogeneity of trees built on various fractions of

data. Second column indicates computational time needed to built one tree, while number of

leaves of the maximal tree and the optimal pruned tree are given in third and fourth column

respectively. The last column the mean Gini index over all leaves of a tree and over 100 trees.

forest is strongly deteriorated when subforests are based on observations coming

from different distributions X|Y : in this case, the test misclassification rate is

multiplied by a factor of more than 50. Moreover, BDerrForest appears to be a

very bad estimation of the prediction error of the forest.

Finally, the issue of tree depth is investigated more closely. As mentioned

above, the maximum number of leaves was set to 500 in order to get comparable

tree complexities. However homogeneity (in terms of classes) of leaves differs

when a tree is built on the entire dataset or on a fraction of it. To illustrate this,

the mean Gini index (over all leaves of a tree and over 100 trees) was computed

(it is defined by 2p̂(1− p̂), with p̂ the proportion of observations of class 1 in a

leaf). Results are reported in Table 6.

For sampling fractions equal to 0.1% or 1%, tree leaves are pure (i.e., contain

observations from only one class). But for sampling fractions equal to 100%

and 10%, the heterogeneity of the leaves is more important. The effect of trees

depth on RF performance was thus investigated. Recall that in RF all trees

are typically grown to maximal trees (splits are performed until each leaf is

pure) and that in CART an optimal tree is obtained by pruning the maximal

tree. Table 6 contains the number of leaves of the maximal tree and the optimal

CART tree associated to each sampling fraction. Trees with 500 leaves are very

far from maximal trees in most cases and even far from optimal CART tree for

35

0.000

0.001

0.002

0.003

0.004

dacRF sampRF seqRF

RF type

te
st

 e
rr

or
 (

er
rT

es
t)

max. number
of leaves

500

unbounded

Figure 15: Prediction error (mesured by errTest) behavior for 3 RF methods when using

maximal trees or a maximum number of leaves of 500.

sampling fractions equal to 100% and 10%.

Finally, performance of 3 RF methods using maximal trees instead of 500

leaves trees were obtained. The results are illustrated in Figure 15. Compu-

tational times are comparable to those shown in Figures 11 and 12, while the

misclassification rates are slightly better. The remaining heterogeneity, when

developing trees with 500 leaves, does not affect much the performance in that

case. Hence, while pruning all trees would lead to a prohibitive computational

time, a constraint on tree size may well be adapted to the Big Data case. This

point needs a more in-depth analysis and is left for further research.

4.4. Online random forest

This section is dedicated to simulations with online RF. The simulations

were performed with the method described in [20] which is available at https:

//github.com/david-matheson/rftk (onRF). The method is implemented in

python. Thus computational time cannot be directly compared to the compu-

tational described in the two previous sections (because of the programming

language side effect). Similarly, the input hyperparameters of randomForest

36

https://github.com/david-matheson/rftk
https://github.com/david-matheson/rftk

function in the R package randomForest are not exactly the same than the ones

proposed in onRF: for instance, in the R package, the complexity of each tree is

controlled by setting the maximum number of leaves in a tree whereas in onRF,

it is controlled by setting the maximum depth of the trees. Additionally, the

two tools are very differently documented: every function and option in the R

package are described in details in the documentation whereas RFTK is not

provided with a documentation. However, the meaning of the different options

and outputs of the library can be guessed from their names in most cases.

When relevant, we discuss the comparison between the standard approaches

tested in the two previous sections and the online RF tested in the current

version but the reader must be aware that some of the differences might come

directly from the method itself (standard or online), whereas others come from

the implementation and programming languages and that it is impossible to

distinguish between the two in most cases.

The simulations in this section were performed on the datasets described

in Section 4.1. The training dataset (randomly ordered) took approximately 9

minutes to be loaded with the function loadtxt of the python library numpy,

which is about 9 times larger than the time needed by the R package readr

to perform the same task. In the sequel, results about this dataset will be re-

ferred as standard. Moreover, simulations were also performed to study the

effect of sampling (subsamples drawn at random with a sampling fraction in

{0.01, 0.1, 1, 10}%) or of biased order of arrival of the observations (with the

datasets unbalanced, with p = 0.01, and x-biases with 15 parts). For x-

biases the number of parts was chosen differently than in the Section 4.2 (for

dacRF) because only 2 parts would have led to a quite extreme situation for

onRF, in which all data coming from submodel 1 are presented first, before

all data coming from submodel 2 are presented. We have thus chosen a more

moderate situations in which data from the two submodels are presented by

blocks, alternating submodel 1 and submodel 2 blocks. Note that both simu-

lation settings are similar, since dacRF processes the different (biased in X)

blocks in parallel.

37

The forests were trained with a number of trees equal to 50 or 100 (for

approximately 500 trees, the RAM capacity of the server was overloaded) and

with a control of the complexity of the trees by their maximum depth which

was varied in {5, 10, 15, 50}. RFTK does not provide the online approximation

of OOB error so the accuracy was assessed by the computation of the prediction

error on the same test dataset used in the previous two sections.

Figure 16 displays the misclassification rate of onRF on the test dataset

versus the type of bias in the order of arrival of data (no bias, unbalanced or

x-biases) and versus the number of trees in the forest. The results are provided

for forests in which the maximum depth of the trees was limited to 15 (which

almost always correspond to fully developed trees).

Number of trees: 50 Number of trees: 100

standard unbalanced x−biases standard unbalanced x−biases

0.000

0.005

0.010

0.015

0.020

dataset

pr
ed

ic
tio

n
er

ro
r

(t
es

t)

Figure 16: onRF: Prediction error for the test dataset.

The result shows that, contrary to the dacRF case, x-biases almost do not

affect the accuracy of the results, even if the classifier always has a better accu-

racy when data are presented in random order. On the contrary, unbalanced

has a strong negative impact on accuracy of the classifier. Finally, for the best

case scenario (standard), the accuracy of onRF is not much affected by the

number of trees in the forest but the accuracy tends to get even worse when

38

increasing the number of trees in the worst case scenario (unbalanced). In

comparison with the strategies described in Section 4.2, onRF has comparable

test error rates (between (4− 4.3)× 10−3) for forests with 100 trees).

Additionally, Figure 17 displays the evolution of the computational time

versus the type of bias in the order of arrival of data and the number of trees

in the forest. The results are provided for forests in which the maximum depth

of the trees was limited to 15. As expected, computational time increases with

Number of trees: 50 Number of trees: 100

standard unbalanced x−biases standard unbalanced x−biases

0

25000

50000

75000

100000

dataset

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Figure 17: Training time (seconds) of onRF.

the number of trees in the forest (and the increase is larger than the increase

in the number of trees). Surprisingly, the computational time of the worse case

scenario (unbalanced bias) is the smallest. A possible explanation is the fact

that trees are presented successively a large number of observations with the

same value of the target variable (Y): the terminal nodes are thus maybe more

easily pure during the training process in this scenario.

Computational times are hard to compare with the ones obtained in Sec-

tion 4.2. However, computational times are of order 30 minutes at most for

dacRF, and 1-2 minutes for blbRF and moonRF, whereas onRF takes ap-

proximately 10 hours for 50 trees and 30 hours for 100 trees, which is even larger

39

than training the forest sequentially with randomForest (7 hours).

Figure 18 displays the evolution of the misclassification rate and of the com-

putational time versus the sampling fraction when a random subsample of the

dataset is used for the training (the number of trees in the forest is equal to 100

and the maximum depth set to 15). The computational time needed to train

the model is more than linear but the prediction accuracy also decreases in a

more than linear way with the sampling fraction. The loss in accuracy is slightly

worse than what was obtained in Section 4.2 for sampRF, showing than onRF

might need a

●

●

●

●

●

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.01% 0.1% 1% 10% 1

sampling fraction (log10 − scale)

pr
ed

ic
tio

n
er

ro
r

(t
es

t)

●

● ● ●

●

0

25000

50000

75000

100000

0.01% 0.1% 1% 10% 1

sampling fraction (log10 − scale)

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Figure 18: Prediction error (left) and training time (right) versus sampling fraction for onRF.

x-axis is log10-scaled.

Finally, Figure 19 displays the evolution of the test misclassification rate,

of the computational time and of the average number of leaves in the trees

versus the value of the maximum depth for forests with 100 trees. As expected,

the computational time is in direct relation with the complexity of the forest

(number of trees and maximum depth) but tends to remain almost stable for

trees with maximum depth larger than 15. The same behavior is observed for

the misclassification rate in standard and x-biases which reach their minimum

for forests with a maximum depth set to 15. Finally, the number of leaves

40

for unbalanced is much smaller, which also explains why the computational

time needed to train the forest in this case is smaller. For this type of bias,

the misclassification rates increases with the maximum depth for forest with

maximum depths larger than 10: as for the number of trees, the complexity of

the model seem to have a negative impact on this kind of bias.

●

●
●

●

●

●

●

●

●
● ●

●

0.005

0.010

0.015

0.020

0.025

10 20 30 40 50

maximum depth

pr
ed

ic
tio

n
er

ro
r

(t
es

t)

●

●

●

●

●

●

●

●

●

●

●

●0

50000

100000

150000

10 20 30 40 50

maximum depth

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

●

●

●

●

●

●
●

●

●

●

●

●0

2000

4000

6000

10 20 30 40 50

maximum depth

nu
m

be
r

of
 le

av
es

dataset
●

●

●

standard

unbalanced

x−biases

Figure 19: Top: Average depth of trees in the forest. Bottom: Average number of leaves of

trees in the forest. The black horizontal line corresponds to the maximum number of leaves

used in experiments of Sections 4.2 and 4.3.

4.5. Airline dataset

In the present section, similar experiments are performed with a real world

dataset related to flight delays. The data were first processed in [6] to illus-

trate the use of the R packages for Big Data computing bigmemory and foreach

[38]. In [6], the data were mainly used for description purpose (e.g., quantile

calculation), whereas we will be using it for prediction. More precisely, five

variables based on the original variables included in the data set were used to

predict if the flight was likely to arrive on time or with a delay larger than 15

minutes (flights with a delay smaller than 15 minutes were considered on time).

The predictors were: the moment of the flight (two levels: night/daytime), the

moment of the week (two levels: weekday/week-end), the departure time (in

41

minutes, numeric) and distance (numeric). The dataset used to make the sim-

ulations contained 120,748,239 observations (observations with missing values

were filtered out) and had a size equal to 3.2 GB (compared to the 12.3 GB of

the original data with approximately the same number of observations). Load-

ing the dataset and processing it to compute and extract the predictors and the

target variables took approximately 30 minutes. Another feature of the dataset

is that it is unbalanced: most of the flight are on time (only 19.3% of the flights

are late).

The same method than the one described in Section 4.2 were compared:

• a standard RF, seqRF, was computed sequentially. It contained 100

trees. The RF took 16 hours to be obtained and its OOB error was equal

to 18.32%;

• sampRF was trained with a subsample of the total data (1% of all the

observations were sampled at random without replacement). These RF

were trained in parallel with 15 cores, each core building 7 trees from boot-

strap samples coming from the common subsample (the final RF hence

contained 105 trees);

• a blbRF was also trained using K = 15 subsamples, each containing

about 454,272 observations (about 0.4% of the size of the total data set).

15 sub-forests were trained in parallel with 7 trees each (the final forest

hence contained 105 trees);

• Finally dacRF was also obtained with K = 15 chunks and q = 7 trees

in each sub-forest grown in the different (the final RF contained from to

1000 trees).

The number of trees, q, built in each chunk for dacRF is smaller than

what seemed a good choice in Section 4.2, but for this example, increasing the

number of trees did not lead to better accuracy (even if it increased a lot the

computational time).

42

0.00

0.05

0.10

0.15

blbRF dacRF sampRF

RF type

pr
ed

ic
tio

n
er

ro
r

0

500

1000

1500

blbRF dacRF sampRF

RF type

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

error type

BDerrForest

errForest

Figure 20: Performance (computational time and misclassification rates) obtained by three

different RF methods for Big Data on Airline data.

In all methods, the maximum number of terminal leafs in the trees was set

to 500 and all RF were trained in parallel on 15 cores, except for the sequential

approach. Results are given in Figure 20 in which the notations are the same as

in Section 4.2. The results show that there is almost no difference in terms of

performance accuracy between using all data and using only a small proportion

(about 0.01%) of them. In terms of compromise between computational time

and accuracy, using a small subsample is clearly the best strategy, provided that

the user is able to obtain a representative subsample at a low computational

cost. Also, contrary to what happened in the example described in Section 4.3,

BDerrForest is always a good approximation of errForest. An explanation of

this result might be that for Airline dataset, prediction accuracy is quite poor

and this might be due to explanatory variables that are not informative enough.

Hence differences between BDerrForest and errForest may be hidden by the fact

that the two estimations of the prediction error are quite high.

In addition, the impact of the representativity, with respect to the target

variable, of the samples on which the RF were trained was assessed: instead

of using a representative (hence unbalanced) sample from the total dataset, a

43

balanced subsample (for 50% of delayed flights and 50% of on time flights) was

obtained and used as the input data to train the random forest. Its size was

equal to 10% of the total dataset size. This approach obtained an errForest

equal to 33.34% (and BDerrForest was equal to 39.15%), which is strongly

deteriorated compared to the previous misclassification rates. In this example,

the representativity of the observations contained in the subsample strongly

impacts the estimated model. The model with balanced data has a better

ability to detect late flights and favors the sensitivity over the specificity.

5. Conclusion and discussion

This final section provide a short conclusion and opens two perspectives.

The first one proposes to consider re-weighting random forests as an alternative

for tackling the lack of representativeness for BD-RF and the second one focuses

on alternative online RF schemes as well RF for data streams.

5.1. Conclusions

This paper aims at extending standard Random Forests in order to process

Big Data. Indeed RF is an interesting example among the widely used statistical

methods in machine learning since it already offers several ways to deal with

massive data in offline or online contexts. Focusing on classification problems,

we reviewed some of the available proposals about RF in parallel environments

and online RF. We formulated various remarks for RF in the Big Data context,

including approximations of out-of-bag type errors. We experimented on two

massive datasets (15 and 120 millions of observations), a simulated one and real

world data, five variants involving subsampling, adaptations of bootstrap to Big

Data, a divide-and-conquer approach and online updates.

Among the variants of RF that we tested, the fastest were sampRF with

a small sampling fraction and blbRF. On the contrary, onRF was not found

computationally efficient, even compared to the standard method seqRF, in

which all data are processed as a whole and trees are built sequentially. On

44

a performance point of view, all methods provide satisfactory results but pa-

rameters (size of the subsamples, number of chunks...) must be designed with

care so as to obtain a low prediction error. However, since the estimation of

OOB error that can be simply designed from the different variants was found a

bad estimate of the prediction error in many cases, it is also advised to rather

calculate an error on an independent smaller test subsample. When the amount

of data is that big, computing such a test error is easy and can be performed at

low computational cost.

Finally, one of the most crucial point stressed in the simulations is that the

lack of representativeness of subsamples can result in drastic deterioration of

the performances of Big Data variants of RF, especially of dacRF. However,

designing a subsample representative enough of the whole dataset can be an

issue per se in the Big Data context, but this problem is out of the scope of the

present article.

5.2. Re-weighting schemes

As an alternative, some re-weighting schemes could be used to address the

issue of the lack of representativeness for BD-RF. Let us sketch some possibili-

ties.

Following a notation from Breiman [21], RF lead to better results when there

is a higher diversity among the trees of the forest. So recently, some extensions

of RF have been defined for improving an initial RF. In [39], Fawagreh et al.

use an unsupervised learning technique (Local Outlier Factor, LOF) to identify

diverse trees in the RF and then, they perform ensemble pruning by selecting

trees with the highest LOF scores to produce an extension of RF termed LOFB-

DRF, much smaller in size than RF and performing better. This scheme can

be extended by using other diversity measures, see [40] presenting a theoretical

analysis on six existing diversity measures.

Another possible variant would be to consider the whole forest as an ensemble

of forests and to adapt the majority vote scheme with weights that address,

e.g., the issue of the sampling bias. Recently in [41], Winham et al. propose

45

to introduce a weighted RF approach to improve predictive performance: the

weighting scheme is based on the individual performance of the trees and could

be adapted to the dacRF framework.

Along the same ideas it would be, at least for an exploratory stage, possible

to adapt a simple idea coming from the variants of AdaBoost [42] for classi-

fication boosting algorithms. Recall that the basic idea of boosting is, as for

the RF case, to generate many different base predictors obtained by perturbing

the training set and to combine them. Each predictor is designed sequentially

highlighting the observations poorly predicted. This is a crucial difference with

RF scheme for which the different training samples are obtained by independent

bootstraps. But the aggregation part of the algorithm is interesting here: in-

stead of taking the majority vote of the trees predictions as in the RF context,

a weighted combination of trees is considered. The unnormalized weight of the

tree t is simply αt = 1/2 ln(εt/(1 − εt)) where εt is the misclassification error

computed on the whole training sample L. This could be adapted by consid-

ering weighted forests using weights of such form, evaluated on a same (small)

subset of observations supposed to be representative of the whole dataset.

5.3. Online data and Data Streams

The discussion sketched about online RF can be extended. Indeed the use of

ERT variant of RF instead of Breiman’s RF allows to reduce the computational

cost. It would be of interest to use this RF variant in dacRF, or even more

randomized ones (like [43] PERT, Perfect Random Tree Ensembles, or [44, 45]

PRF, Purely Random Forests). The idea of those latter variants is to not choose

the variable involved in a split and the associated threshold from the data but

to randomly choose them according to different schemes. Finally, onRF could

be a way to use only a portion of the data set until the forest is accurate enough.

Moreover, one valuable characteristic of onRF is that it could address both the

issue of Volume and Velocity.

In the framework of online RF, only sequential inputs are considered. But

more widely in the Big Data context, data streams are of interest. They allows

46

to consider not only sequential inputs, but also entail unbounded data that

should be processed in limited (given their unboundedness) memory and in

an online fashion to obtain real-time answers to application queries (for an

accurate and formal one, see [46]). Moreover, data streams can be processed in

observation- or time-based windows or even batches which collect a number of

recent observations (see for instance [47]). It could be interesting to fully adapt

online RF to the data stream context (see for example [48] and [49]) and obtain

similar theoretical results.

[1] J. Fan, F. Han, H. Liu, Challenges of big data analysis, National Science

Review 1 (2) (2014) 293–314. doi:10.1093/nsr/nwt032.

[2] R. Hoerl, R. Snee, R. De Veaux, Applying statistical thinking to ‘Big Data’

problems, Wiley Interdisciplinary Reviews: Computational Statistics 6 (4)

(2014) 222–232. doi:10.1002/wics.1306.

[3] M. Jordan, On statistics, computation and scalability, Bernoulli 19 (4)

(2013) 1378–1390. doi:10.3150/12-BEJSP17.

[4] P. Besse, A. Garivier, J. Loubes, Big data - Retour vers le futur 3. De

statisticien à data scientist, arXiv preprint arXiv:1403.3758 (2014).

URL http://arxiv.org/abs/1403.3758

[5] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,

R. Murthy, H. Liu, Data warehousing and analytics infrastructure at face-

book, in: Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD 2010), 2010, pp. 1013–1020.

[6] M. Kane, J. Emerson, S. Weston, Scalable strategies for computing with

massive data, Journal of Statistical Software 55 (14).

URL http://www.jstatsoft.org/v55/i14

[7] R Core Team, R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna, Austria (2016).

URL http://www.R-project.org

47

http://dx.doi.org/10.1093/nsr/nwt032
http://dx.doi.org/10.1002/wics.1306
http://dx.doi.org/10.3150/12-BEJSP17
http://arxiv.org/abs/1403.3758
http://arxiv.org/abs/1403.3758
http://arxiv.org/abs/1403.3758
http://www.jstatsoft.org/v55/i14
http://www.jstatsoft.org/v55/i14
http://www.jstatsoft.org/v55/i14
http://www.R-project.org
http://www.R-project.org

[8] P. Besse, N. Villa-Vialaneix, Statistique et big data analytics. Volumétrie,

l’attaque des clones, arXiv preprint arXiv:1405.6676 (2014).

URL http://arxiv.org/abs/1405.6676

[9] C. Wang, M. Chen, E. Schifano, J. Wu, J. Yan, A survey of statistical meth-

ods and computing for big data, arXiv preprint arXiv:1502.07989 (2015).

[10] M. Bǎdoiu, S. Har-Peled, P. Indyk, Approximate clustering via core-sets,

in: J. Reif (Ed.), Proceedings of the 34th annual ACM Symposium on

Theory of Computing, no. 250-257, ACM New York, NY, USA, Montreal,

QC, Canada, 2002. doi:10.1145/509907.509947.

[11] D. Yan, L. Huang, M. Jordan, Fast approximate spectral clustering, in:

J. Elder, F. Soulié-Fogelman, P. Flach, M. Zaki (Eds.), Proceedings of

the 15th ACM SIGKDD international Conference on Knowledge Discovery

and Data Mining, ACM New York, NY, USA, 2009, pp. 907–916. doi:

10.1145/1557019.1557118.

[12] A. Kleiner, A. Talwalkar, P. Sarkar, M. Jordan, A scalable bootstrap for

massive data, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 76 (4) (2014) 795–816.

[13] N. Laptev, K. Zeng, C. Zaniolo, Early accurate results for advanced ana-

lytics on MapReduce, in: Proceedings of the 28th International Conference

on Very Large Data Bases, Vol. 5 of Proceedings of the VLDB Endowment,

Istanbul, Turkey, 2012.

[14] X. Meng, Scalable simple random sampling and stratified sampling, in: Pro-

ceedings of the 30th International Conference on Machine Learning (ICML

2013), Vol. 28 of JMLR: W&CP, Georgia, USA, 2013.

[15] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, K. Olukotun, Map-

Reduce for machine learning on multicore, in: J. Lafferty, C. Williams,

J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.), Advances in Neural Informa-

48

http://arxiv.org/abs/1405.6676
http://arxiv.org/abs/1405.6676
http://arxiv.org/abs/1405.6676
http://dx.doi.org/10.1145/509907.509947
http://dx.doi.org/10.1145/1557019.1557118
http://dx.doi.org/10.1145/1557019.1557118

tion Processing Systems (NIPS 2010), Vol. 23, Hyatt Regency, Vancouver,

Canada, 2010, pp. 281–288.

[16] X. Chen, M. Xie, A split-and-conquer approach for analysis of extraordi-

narily large data, Statistica Sinica 24 (2014) 1655–1684.

[17] S. del Rio, V. López, J. Beńıtez, F. Herrera, On the use of MapReduce for

imbalanced big data using random forest, Information Sciences 285 (2014)

112–137. doi:10.1016/j.ins.2014.03.043.

[18] V. Chandrasekaran, M. Jordan, Computational and statistical tradeoffs via

convex relaxation, Proceedings of the National Academy of Sciences USA

13 (2013) E1181–E1190.

[19] A. Saffari, C. Leistner, J. Santner, M. Godec, H. Bischof, On-line random

forests, in: Proceedings of IEEE 12th International Conference on Com-

puter Vision Workshops (ICCV Workshops), IEEE, 2009, pp. 1393–1400.

[20] M. Denil, D. Matheson, N. de Freitas, Consistency of online random forests,

in: Proceedings of the 30th International Conference on Machine Learning

(ICML 2013), 2013, pp. 1256–1264.

[21] L. Breiman,

Random forests, Machine Learning 45 (1) (2001) 5–32.

URL http://www.springerlink.com/content/u0p06167n6173512/

fulltext.pdf

[22] E. Scornet, G. Biau, J. Vert, Consistency of random forests, The Annals of

Statistics 43 (4) (2015) 1716–1741. doi:10.1214/15-AOS1321.

[23] A. Verikas, A. Gelzinis, M. Bacauskiene, Mining data with random forests:

a survey and results of new tests, Pattern Recognition 44 (2) (2011) 330–

349. doi:10.1016/j.patcog.2010.08.011.

[24] A. Ziegler, I. König, Mining data with random forests: current options for

real-world applications, Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery 4 (1) (2014) 55–63. doi:10.1002/widm.1114.

49

http://dx.doi.org/10.1016/j.ins.2014.03.043
http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
 http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
 http://www.springerlink.com/content/u0p06167n6173512/fulltext.pdf
http://dx.doi.org/10.1214/15-AOS1321
http://dx.doi.org/10.1016/j.patcog.2010.08.011
http://dx.doi.org/10.1002/widm.1114

[25] C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag,

New York, NY, USA, 2006.

[26] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,

2nd Edition, Springer-Verlag, New York, NY, USA, 2009.

[27] L. Breiman, J. Friedman, R. Olsen, C. Stone, Classification and Regression

Trees, Chapman and Hall, New York, USA, 1984.

[28] R. Genuer, J. Poggi, C. Tuleau-Malot, Variable selection using random

forests, Pattern Recognition Letters 31 (14) (2010) 2225–2236. doi:10.

1016/j.patrec.2010.03.014.

[29] P. Bickel, F. Götze, W. van Zwet, Resampling fewer than n observations:

gains, losses and remedies for losses, Statistica Sinica 7 (1) (1997) 1–31.

[30] P. Bickel, A. Sakov, On the choice of m in the m out of n bootstrap and

confidence bounds for extrema, Statistica Sinica 18 (3) (2008) 967–985.

URL http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/

J18N38.html

[31] N. Oza, S. Russel, Online bagging and boosting, in: M. Kaufmann (Ed.),

Proceedings of Eighth International Workshop on Artificial Intelligence and

Statistics, Key West, Florida, USA, 2001, pp. 105–112.

[32] H. Lee, M. Clyde, Online Bayesian bagging, Journal of Maching Learning

Research 5 (2004) 143–151.

[33] J. Hanley, B. MacGibbon, Creating non-parametric bootstrap samples us-

ing Poisson frequencies, Computer Methods and Programs in Biomedicine

83 (57-62).

[34] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Machine

Learning 63 (1) (2006) 3–42. doi:10.1007/s10994-006-6226-1.

50

http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
 http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
 http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://dx.doi.org/10.1007/s10994-006-6226-1

[35] H. Wickham, R. François, readr: Read Tabular Data, R package version

0.2.2 (2015).

URL http://CRAN.R-project.org/package=readr

[36] A. Liaw, M. Wiener, Classification and regression by randomForest, R News

2 (3) (2002) 18–22.

URL http://CRAN.R-project.org/doc/Rnews

[37] J. Weston, A. Elisseff, B. Schoelkopf, M. Tipping, Use of the zero norm with

linear mmodel and kernel methods, Journal of Machine Learning Research

3 (2003) 1439–1461.

[38] Revolution Analytics, S. Weston, foreach: Foreach looping construct for R,

R package version 1.4.2 (2014).

URL http://CRAN.R-project.org/package=foreach

[39] K. Fawagreh, M. Gaber, E. Elyan, An outlier detection-based tree se-

lection approach to extreme pruning of random forests, arXiv preprint

arXiv:1503.05187 (2015).

[40] E. Tang, P. Suganthan, X. Yao, An analysis of diversity measures, Machine

Learning 65 (2006) 247–271.

[41] S. J. Winham, R. Freimuth, J. Biernacka, A weighted random forests ap-

proach to improve predictive performance, Statistical Analysis and Data

Mining: The ASA Data Science Journal 6 (6) (2013) 496–505.

[42] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learn-

ing and an application to boosting, Journal of Computer and System Sci-

ences 55 (1) (1997) 119–139.

[43] A. Cutler, G. Zhao, Pert-perfect random tree ensembles, Computing Sci-

ence and Statistics 33 (2001) 490–497.

[44] G. Biau, L. Devroye, G. Lugosi, Consistency of random forests and other

averaging classifiers, The Journal of Machine Learning Research 9 (2008)

2015–2033.

51

http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/doc/Rnews
http://CRAN.R-project.org/doc/Rnews
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach

[45] S. Arlot, R. Genuer, Analysis of purely random forests bias, arXiv preprint

arXiv:1407.3939 (2014).

[46] M. Garofalakis, J. Gehrke, R. Rastogi, Data Stream Management: Pro-

cessing High-Speed Data Streams, Data-Centric Systems and Applications,

Springer-Verlag, Berlin Heidelberg, 2016.

[47] C. Giannella, J. Han, J. Pei, X. Yan, P. Yu, Mining frequent patterns in

data streams at multiple time granularities, in: H. Kargupta, A. Joshi,

K. Sivakumar, Y. Yesha (Eds.), Data Mining: Next Generation Challenges

and Future Directions (Proceedings of the NSF Workshop on Next Gener-

ation Data Mining), AAAI Press / The MIT Press, Menlo Park, CA, USA,

2004, pp. 191–212.

[48] H. Abdulsalam, D. Skillicorn, P. Martin, Classification using streaming

random forests, IEEE Transactions on Knowledge and Data Engineering

23 (1) (2011) 22–36. doi:10.1109/TKDE.2010.36.

[49] H. Abdulsalam, D. Skillicorn, P. Martin, Classifying evolving data streams

using dynamic streaming random forests, in: S. Bhowmick, J. Küng,

R. Wagner (Eds.), Proceedings of 19th International Conference on

Database and Expert Systems Applications (DEXA 2008), Vol. 5181 of

Database and Expert Systems Applications, Springer, Berlin Heidelberg,

2008, pp. 643–651. doi:10.1007/978-3-540-85654-2_54.

Additional Files

Additional file 1 — R and python scripts used for the simulation

R scripts used in the simulation sections are available at https://github.

com/tuxette/bigdatarf.

52

http://dx.doi.org/10.1109/TKDE.2010.36
http://dx.doi.org/10.1007/978-3-540-85654-2_54
https://github.com/tuxette/bigdatarf
https://github.com/tuxette/bigdatarf

	Introduction
	Statistics in the Big Data world
	Random forests and Big Data

	Random Forests
	Scaling random forests to Big Data
	Sub-sampling RF (sampRF)
	Parallel implementations of random forests
	Alternative bootstrap schemes for RF (moonRF and blbRF)
	Divide-and-conquer RF (dacRF)
	Mismatches with original RF
	Out-of-bag error and variable importance measure

	Online random forests

	Experiments
	Experimental framework and simulation model
	Four RF methods for Big Data involving parallel implementations
	More about subsampling biases and tree depth
	Online random forest
	Airline dataset

	Conclusion and discussion
	Conclusions
	Re-weighting schemes
	Online data and Data Streams

