
Numerical Accuracy and Reliability Issues in HPC

SIAM CSE, Boston (USA), February 25th, 2013

Towards a Reliable Performance Evaluation
of Accurate Summation Algorithms

Philippe Langlois, Bernard Goossens, David Parello

University of Perpignan Via Domitia, DALI,

University Montpellier 2, LIRMM,

CNRS UMR 5506, France

1 / 30

1 Why measure summation algorithm performance?

2 How to measure summation algorithm performance?

3 ILP and the PerPI Tool

4 Experiments with recent acurate summation algorithms

5 Conclusion

2 / 30

How to manage accuracy and speed?

A new “better” algorithm every year since 1999

1965 Møller, Ross

1969 Babuska, Knuth

1970 Nickel

1971 Dekker, Malcolm

1972 Kahan, Pichat

1974 Neumaier

1975 Kulisch/Bohlender

1977 Bohlender, Mosteller/Tukey

1981 Linnaimaa

1982 Leuprecht/Oberaigner

1983 Jankowski/Semoktunowicz/-

Wozniakowski

1985 Jankowski/Wozniakowski

1987 Kahan

1991 Priest

1992 Clarkson, Priest

1993 Higham

1997 Shewchuk

1999 Anderson

2001 Hlavacs/Uberhuber

2002 Li et al. (XBLAS)

2003 Demmel/Hida, Nievergelt,

Zielke/Drygalla

2005 Ogita/Rump/Oishi,

Zhu/Yong/Zeng

2006 Zhu/Hayes

2008 Rump/Ogita/Oishi

2009 Rump, Zhu/Hayes

2010 Zhu/Hayes

3 / 30

Accurate or faithful floating point summation

Limited accuracy for backward stable sums

Accuracy of the computed sum ≤ (n − 1)× cond × u

No more significant digit in IEEE-b64 for large cond, i.e. > 1016

Accurate but still conditioning dependent

Accuracy of the computed sum . u + cond × uK

double-double, compensated sums: Kahan(72), Sum2(05), SumK(05)

Faithfully or correctly rounded sums

Accuracy of the computed sum ≤ u

Kahan (87), . . . , Rump et al.: AccSum (SISC-08), FastAccSum (SISC-09)

Zhu-Hayes: iFastSum, HybridSum (SISC-09), OnLineExact (TOMS-10)

Run-time and memory efficiencies are now the choice factors

4 / 30

Accurate or faithful floating point summation

Limited accuracy for backward stable sums

Accuracy of the computed sum ≤ (n − 1)× cond × u

No more significant digit in IEEE-b64 for large cond, i.e. > 1016

Accurate but still conditioning dependent

Accuracy of the computed sum . u + cond × uK

double-double, compensated sums: Kahan(72), Sum2(05), SumK(05)

Faithfully or correctly rounded sums

Accuracy of the computed sum ≤ u

Kahan (87), . . . , Rump et al.: AccSum (SISC-08), FastAccSum (SISC-09)

Zhu-Hayes: iFastSum, HybridSum (SISC-09), OnLineExact (TOMS-10)

Run-time and memory efficiencies are now the choice factors

4 / 30

1 Why measure summation algorithm performance?

2 How to measure summation algorithm performance?

3 ILP and the PerPI Tool

4 Experiments with recent acurate summation algorithms

5 Conclusion

5 / 30

Reliable and significant measure of the time complexity?

Flop count vs. run-time measures: which one trust?

Metric Sum DDSum Sum2

Flop count n − 1 10n 7n

Flop count ratio vs. Sum (approx.) 1 10 7

Measured #cycles ratio (approx.) 1 7.5 2.5

Flop counts and measured run-times are not proportional

Run-time measure is a very difficult experimental process

6 / 30

How to trust non-reproducible experiment results?

Measures are mostly non-reproducible

The execution time of a binary program varies, even using the same data

input and the same execution environment.

Why? Experimental uncertainty (even) of the hardware performance counters

Spoiling events: background tasks, concurrent jobs, OS interrupts

Non predictable issues: instruction schedul., branch pred., cache mng.

Timing in seconds depends on external conditions: temperature of the room

Timing in cycles difficult: 1 core cycle 6= 1 bus cycle on modern processors

Uncertainty increases as computer system complexity does

Architecture and micro-architecture issues: multicore, hybrid, speculation

Compiler options and its effects

7 / 30

Software and system performance experts’ point of view

The limited Accuracy of Performance Counter Measurements

We caution performance analysts to be suspicious of cycle counts

. . . gathered with performance counters.

D. Zaparanuks, M. Jovic, M. Hauswirth (2009)

Can Hardware Performance Counters Produces Expected, Deterministic Results?

In practice counters that should be deterministic show variation from

run to run on the x86 64 architecture. . . . it is difficult to determine

known “good” reference counts for comparison.

V.M. Weaver, J. Dongarra (2010)

8 / 30

How to trust the current literature?

Numerical results in S.M. Rump et al. contributions (for summation)

26% for Sum2-SumK (SISC-05) : 9 pages over 34

20% for AccSum (SISC-08) : 7 pages over 35

20% for AccSumK-NearSum (SISC-08b) : 6 pages over 30

less that 3% for FastAccSum (SISC-09) : 1 page over 37

Lack of proof, or at least of reproducibility

Measuring the computing time of summation algorithms in a high-level

language on today’s architectures is more of a hazard than scientific

research. S.M. Rump (SISC, 2009)

. . . in the paper entitled Ultimately Fast Accurate Summation

9 / 30

Outline

1 Why measure summation algorithm performance?

2 How to measure summation algorithm performance?

3 ILP and the PerPI Tool

4 Experiments with recent acurate summation algorithms

5 Conclusion

10 / 30

ILP and the performance potential of the algorithm

Instruction Level Parallelism (ILP) describes the potential of the instructions of

a program that can be executed simultaneously

Hennessy-Patterson’s ideal machine (H-P IM)

every instruction is executed one cycle after the execution one of the

producers it depends

no other constraint than the true instruction dependency (RAW)

Our ideal run measures : C=#cycles, I=# instruc. and I/C

ideal run = maximal exploitation of the program ILP

ILP measures the potential of the algorithm performance

processor and ILP in practice: superscalar out-of-order executions

11 / 30

The ideal execution of Sum: hand-made analysis

The ideal execution of Sum takes n cycles

Sum iter. 1 2 3 . . . n − 1

s = x[0]; 0

for(i=1; i<n; i++)

a s = s + x[i]; 1 2 3 · · · n-1

return(s); n

No ILP in Sum

CSum = n

I = n

ILP=1

12 / 30

DDSum ideally runs in 7n − 5 cycles

DDSum iter. 1 2 3 . . . n − 1

s = x[0]; 0

for(i=1; i<n; i++){

a s_ = s; 1 8 15 · · · 7n-13

b s = s + x[i]; 1 8 15 · · · 7n-13

c t = s - s_; 2 9 16 · · · 7n-12

d t2 = s - t ; 3 10 17 · · · 7n-11

e t3 = x[i] - t; 3 10 17 · · · 7n-11

f t4 = s_ - t2; 4 11 18 · · · 7n-10

g t5 = t4 + t3; 5 12 19 · · · 7n-9

h s_l = s_l + t5; 6 13 20 · · · 7n-8

i s_ = s; 2 9 16 · · · 7n-12

j s = s + s_l; 7 14 21 · · · 7n-7

k e = s_ - s; 8 15 22 · · · 7n-6

l s_l = s_l + e; 9 16 23 · · · 7n-5

}

return(s); 7n-4
13 / 30

Sum2 ideally runs in n + 7 cycles

Sum2 iter. 1 2 3 . . . n − 1

s = x[0]; 0

for(i=1; i<n; i++){

a s_ = s; 1 2 3 · · · n-1

b s = s + x[i]; 1 2 3 · · · n-1

c t = s - s_; 2 3 4 · · · n

d t2 = s - t ; 3 4 5 · · · n+1

e t3 = x[i] - t; 3 4 5 · · · n+1

f t4 = s_ - t2; 4 5 6 · · · n+2

g t5 = t4 + t3; 5 6 7 · · · n+3

h c = c + t5; 6 7 8 · · · n+4

}

return(s+c); n+6

14 / 30

Less ILP in DDSum(top) than in Sum2 (bottom)

2a 2c 3a 3c

1a 1c 1d 2b 2i 2d 3b 3i

1b 1i 1e 1f 1g 1h 1j 1k 1l 2e 2f 2g 2h 2j 2k 2l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6a 7a 8a 9a 10a 11a 12a

5a 6b 7b 8b 9b 10b 11b 12b

4a 5b 5c 6c 7c 8c 9c 10c 11c

3a 4b 4c 4d 5d 6d 7d 8d 9d 10d

3b 3c 3d 4e 5e 6e 7e 8e 9e 10e

2a 2c 2d 3e 3f 4f 5f 6f 7f 8f 9f

1a 2b 1d 2e 2f 2g 3g 4g 5g 6g 7g 8g

1b 1c 1e 1f 1g 1h 2h 3h 4h 5h 6h 7h

Cycle 1 2 3 4 5 6 7 8 9 10 11 12

15 / 30

ILP hand-made analysis: conclusion

Metric Sum DDSum Sum2

Flop count (approx. ratio) 1 10 7

Measured #cycles (approx. ratio) 1 7.5 2.5

Flop count / measured #cycles (approx.) 1 1.4 2.8

Ideal C (approx. ratio) 1 7 1

Ideal flop count / C (approx.) 1 1.7 8

DDSum actually run as fast as it can

Current architectures exploit only 30% of Sum2’s ILP

Huge potential in Sum2 which can run as fast as Sum

16 / 30

The PerPI Tool automatizes this ILP analysis

PerPI: a pintool to analyse and visualise the ILP of x86-coded algorithms

Pin (Intel) tool (http://www.pintool.org)

Outputs: ILP measure (#C, #I), IPC histogram, data-dependency graph

Input: x86 64 binary file

Developed and maintained by B. Goossens and D. Parello (DALI)

In progress: http://perso.univ-perp.fr/david.parello/perpi/

17 / 30

http://perso.univ-perp.fr/david.parello/perpi/

1 Why measure summation algorithm performance?

2 How to measure summation algorithm performance?

3 ILP and the PerPI Tool

4 Experiments with recent acurate summation algorithms

5 Conclusion

18 / 30

Seven recent accurate and fast summation algorithms

Recursive summation (not accurate)

Sum

Accurate sums: twice more precision

Sum2

DDSum

Faithfully or exactly rounded sums

iFastSum

AccSum

FastAccSum

HybridSum

OnLineExactSum

19 / 30

PerPI and reproducibility: one run is enough

20 / 30

PerPI # cycle ratio: accurate (left) and faithful sums (right)

 0

 1

 2

 3

 4

 5

 6

 7

 8

Sum(1)

Sum2(7)

DDSum(10)

1000

10000

100000

1000000

 0

 0.5

 1

 1.5

 2

 2.5

 3

Sum(1)

AccSumIn(7)

FastAccSumIn(6)

iFastSumIn(6)

HybridSum(6)

OnlineExact(5)

1000
10000
100000
1000000

cond = 1032 and n = 103, 104, 105, 106.

Twice more precision “free” with the compensated sum

Faithful sum for even less

How to trust it? PerPI bug vs. reality?

21 / 30

Huge ILP of HybridSum and OnLineExact

 0

 0.5

 1

 1.5

 2

 2.5

 3

Sum(1)

AccSumIn(7)

FastAccSumIn(6)

iFastSumIn(6)

HybridSum(6)

OnlineExact(5)

1000
10000
100000
1000000

PerPI helps to highlight many details . . . but not all

PerPI measures and exhibits C=n/2 histograms

Assembly code analysis confirms C=n/2

Floating-point consistency: Sum does not benefit from loop unrolling

Faithfulness consistency: use as much as possible optimisations

Loop unroll (×2) in the exponent extraction step

Short vector summation starts as soon as possible . . .

. . . depending on the distribution of the data exponent even for a given

exponent range Skip x86 peculiarities

22 / 30

PerPI histograms for HS (↑) and OLE (↓) for dU : left, dD : right

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

I
L
P

cycles

HybridSum d_U

BINARY

CALL

CMOV

COND_BR

CONVERT

DATAXFER

LOGICAL

MISC

NOP

POP

PUSH

RET

SEMAPHORE

SHIFT

SSE

UNCOND_BR

WIDENOP

Ret.

23 / 30

Exponent distribution at δ = cst for HS and OLE

 0
 1
 2
 3
 4
 5
 6
 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=103

HybridSum, dU
HybridSum, dD

OnLineExact, dU
OnLineExact, dD

 0

 1

 2

 3

 4

 5

 6

 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=104

HybridSum, dUHybridSum, dDOnLineExact, dUOnLineExact, dD

 0

 1

 2

 3

 4

 5

 6

 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=105

HybridSum, dUHybridSum, dDOnLineExact, dUOnLineExact, dD

 0

 1

 2

 3

 4

 5

 6

 7

10100 500 1000 1500 2000

C
yc

le
s/

n

delta

n=106

HybridSum, dUHybridSum, dDOnLineExact, dUOnLineExact, dD

dU : uniform dist. in [−δ/2, δ/2] vs. dD : Dirac-like distr.: one −δ/2, n-1 δ/2

24 / 30

Zooming and understanding the worst measures (dD)

start : <HybridSum>

start : <iFastSumIn>

stop : <iFastSumIn> I[62719]::C[2580]::ILP[24.3097]

stop : <HybridSum> I[267980]::C[20020]::ILP[13.3856]

start : <OnlineExact>

start : <iFastSumIn>

stop : <iFastSumIn> I[334]::C[32]::ILP[10.4375]

stop : <OnlineExact> I[229263]::C[30026]::ILP[7.63548]

Explanation: extraction step and x86 ISA peculiarities

Cycles between two iterations: 2 in HS vs. 3 in OLE

25 / 30

Conclusion

1 Why measure summation algorithm performance?

2 How to measure summation algorithm performance?

3 ILP and the PerPI Tool

4 Experiments with recent acurate summation algorithms

5 Conclusion

26 / 30

Conclusion

Highly accurate algorithm needs reliable performance evaluation

PerPI provides reproducible measures of the performance potential

PerPI highlights how the algorithm and the architecture interact

PerPI may help to improve the algorithm or its implementation

Hand-made vs. PerPI analysis: the ideal machine vs. one ISA machine

Towards a dynamic reference repository for accurate sums and other core

routines

exponent distribution x86 peculiarities

27 / 30

References I

D. H. Bailey.

Twelve ways to fool the masses when giving performance results on parallel computers.

Supercomputing Review, pages 54–55, Aug. 1991.

B. Goossens, P. Langlois, D. Parello, and E. Petit.

PerPI: A tool to measure instruction level parallelism.

In K. Jónasson, editor, Applied Parallel and Scientific Computing - 10th International

Conference, PARA 2010, Reykjav́ık, Iceland, June 6-9, 2010, Revised Selected Papers,

Part I, volume 7133 of Lecture Notes in Computer Science, pages 270–281. Springer,

2012.

N. J. Higham.

Accuracy and Stability of Numerical Algorithms.

SIAM, 2nd edition, 2002.

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,

N. Revol, D. Stehlé, and S. Torres.

Handbook of Floating-Point Arithmetic.

Birkhäuser Boston, 2010.

28 / 30

References II

T. Ogita, S. M. Rump, and S. Oishi.

Accurate sum and dot product.

SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

S. M. Rump.

Ultimately fast accurate summation.

SIAM J. Sci. Comput., 31(5):3466–3502, 2009.

S. M. Rump, T. Ogita, and S. Oishi.

Accurate floating-point summation – part I: Faithful rounding.

SIAM J. Sci. Comput., 31(1):189–224, 2008.

V. Weaver and J. Dongarra.

Can hardware performance counters produce expected, deterministic results?

In 3rd Workshop on Functionality of Hardware Performance Monitoring, 2010, pages

1–11, Atlanta, USA, 2010.

29 / 30

References III

D. Zaparanuks, M. Jovic, and M. Hauswirth.

Accuracy of performance counter measurements.

In IEEE International Symposium on Performance Analysis of Systems and Software,

ISPASS 2009, April 26-28, 2009, Boston, Massachusetts, USA, pages 23–32, 2009.

Y.-K. Zhu and W. B. Hayes.

Correct rounding and hybrid approach to exact floating-point summation.

SIAM J. Sci. Comput., 31(4):2981–3001, 2009.

Y.-K. Zhu and W. B. Hayes.

Algorithm 908: Online exact summation of floating-point streams.

ACM Transactions on Mathematical Software, 37(3):37:1–37:13, Sept. 2010.

30 / 30

	Why measure summation algorithm performance?
	How to measure summation algorithm performance?
	ILP and the PerPI Tool
	Experiments with recent acurate summation algorithms
	Conclusion
	Appendix

