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How to manage accuracy and speed?

A new “better” algorithm every year since 1999

1965 Møller, Ross

1969 Babuska, Knuth

1970 Nickel

1971 Dekker, Malcolm

1972 Kahan, Pichat

1974 Neumaier

1975 Kulisch/Bohlender

1977 Bohlender, Mosteller/Tukey

1981 Linnaimaa

1982 Leuprecht/Oberaigner

1983 Jankowski/Semoktunowicz/-

Wozniakowski

1985 Jankowski/Wozniakowski

1987 Kahan

1991 Priest

1992 Clarkson, Priest

1993 Higham

1997 Shewchuk

1999 Anderson

2001 Hlavacs/Uberhuber

2002 Li et al. (XBLAS)

2003 Demmel/Hida, Nievergelt,

Zielke/Drygalla

2005 Ogita/Rump/Oishi,

Zhu/Yong/Zeng

2006 Zhu/Hayes

2008 Rump/Ogita/Oishi

2009 Rump, Zhu/Hayes

2010 Zhu/Hayes
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Accurate or faithful floating point summation

Limited accuracy for backward stable sums

Accuracy of the computed sum ≤ (n − 1)× cond × u

No more significant digit in IEEE-b64 for large cond, i.e. > 1016

Accurate but still conditioning dependent

Accuracy of the computed sum . u + cond × uK

double-double, compensated sums: Kahan(72), Sum2(05), SumK(05)

Faithfully or correctly rounded sums

Accuracy of the computed sum ≤ u

Kahan (87), . . . , Rump et al.: AccSum (SISC-08), FastAccSum (SISC-09)

Zhu-Hayes: iFastSum, HybridSum (SISC-09), OnLineExact (TOMS-10)

Run-time and memory efficiencies are now the choice factors
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Reliable and significant measure of the time complexity?

Flop count vs. run-time measures: which one trust?

Metric Sum DDSum Sum2

Flop count n − 1 10n 7n

Flop count ratio vs. Sum (approx.) 1 10 7

Measured #cycles ratio (approx.) 1 7.5 2.5

Flop counts and measured run-times are not proportional

Run-time measure is a very difficult experimental process
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How to trust non-reproducible experiment results?

Measures are mostly non-reproducible

The execution time of a binary program varies, even using the same data

input and the same execution environment.

Why? Experimental uncertainty (even) of the hardware performance counters

Spoiling events: background tasks, concurrent jobs, OS interrupts

Non predictable issues: instruction schedul., branch pred., cache mng.

Timing in seconds depends on external conditions: temperature of the room

Timing in cycles difficult: 1 core cycle 6= 1 bus cycle on modern processors

Uncertainty increases as computer system complexity does

Architecture and micro-architecture issues: multicore, hybrid, speculation

Compiler options and its effects
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Software and system performance experts’ point of view

The limited Accuracy of Performance Counter Measurements

We caution performance analysts to be suspicious of cycle counts

. . . gathered with performance counters.

D. Zaparanuks, M. Jovic, M. Hauswirth (2009)

Can Hardware Performance Counters Produces Expected, Deterministic Results?

In practice counters that should be deterministic show variation from

run to run on the x86 64 architecture. . . . it is difficult to determine

known “good” reference counts for comparison.

V.M. Weaver, J. Dongarra (2010)
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How to trust the current literature?

Numerical results in S.M. Rump et al. contributions (for summation)

26% for Sum2-SumK (SISC-05) : 9 pages over 34

20% for AccSum (SISC-08) : 7 pages over 35

20% for AccSumK-NearSum (SISC-08b) : 6 pages over 30

less that 3% for FastAccSum (SISC-09) : 1 page over 37

Lack of proof, or at least of reproducibility

Measuring the computing time of summation algorithms in a high-level

language on today’s architectures is more of a hazard than scientific

research. S.M. Rump (SISC, 2009)

. . . in the paper entitled Ultimately Fast Accurate Summation
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ILP and the performance potential of the algorithm

Instruction Level Parallelism (ILP) describes the potential of the instructions of

a program that can be executed simultaneously

Hennessy-Patterson’s ideal machine (H-P IM)

every instruction is executed one cycle after the execution one of the

producers it depends

no other constraint than the true instruction dependency (RAW)

Our ideal run measures : C=#cycles, I=# instruc. and I/C

ideal run = maximal exploitation of the program ILP

ILP measures the potential of the algorithm performance

processor and ILP in practice: superscalar out-of-order executions
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The ideal execution of Sum: hand-made analysis

The ideal execution of Sum takes n cycles

Sum iter. 1 2 3 . . . n − 1

s = x[0]; 0

for(i=1; i<n; i++)

a s = s + x[i]; 1 2 3 · · · n-1

return(s); n

No ILP in Sum

CSum = n

I = n

ILP=1
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DDSum ideally runs in 7n − 5 cycles

DDSum iter. 1 2 3 . . . n − 1

s = x[0]; 0

for(i=1; i<n; i++){

a s_ = s; 1 8 15 · · · 7n-13

b s = s + x[i]; 1 8 15 · · · 7n-13

c t = s - s_; 2 9 16 · · · 7n-12

d t2 = s - t ; 3 10 17 · · · 7n-11

e t3 = x[i] - t; 3 10 17 · · · 7n-11

f t4 = s_ - t2; 4 11 18 · · · 7n-10

g t5 = t4 + t3; 5 12 19 · · · 7n-9

h s_l = s_l + t5; 6 13 20 · · · 7n-8

i s_ = s; 2 9 16 · · · 7n-12

j s = s + s_l; 7 14 21 · · · 7n-7

k e = s_ - s; 8 15 22 · · · 7n-6

l s_l = s_l + e; 9 16 23 · · · 7n-5

}

return(s); 7n-4
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Sum2 ideally runs in n + 7 cycles

Sum2 iter. 1 2 3 . . . n − 1

s = x[0]; 0

for(i=1; i<n; i++){

a s_ = s; 1 2 3 · · · n-1

b s = s + x[i]; 1 2 3 · · · n-1

c t = s - s_; 2 3 4 · · · n

d t2 = s - t ; 3 4 5 · · · n+1

e t3 = x[i] - t; 3 4 5 · · · n+1

f t4 = s_ - t2; 4 5 6 · · · n+2

g t5 = t4 + t3; 5 6 7 · · · n+3

h c = c + t5; 6 7 8 · · · n+4

}

return(s+c); n+6

14 / 30



Less ILP in DDSum(top) than in Sum2 (bottom)

2a 2c 3a 3c

1a 1c 1d 2b 2i 2d 3b 3i

1b 1i 1e 1f 1g 1h 1j 1k 1l 2e 2f 2g 2h 2j 2k 2l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6a 7a 8a 9a 10a 11a 12a

5a 6b 7b 8b 9b 10b 11b 12b

4a 5b 5c 6c 7c 8c 9c 10c 11c

3a 4b 4c 4d 5d 6d 7d 8d 9d 10d

3b 3c 3d 4e 5e 6e 7e 8e 9e 10e

2a 2c 2d 3e 3f 4f 5f 6f 7f 8f 9f

1a 2b 1d 2e 2f 2g 3g 4g 5g 6g 7g 8g

1b 1c 1e 1f 1g 1h 2h 3h 4h 5h 6h 7h

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
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ILP hand-made analysis: conclusion

Metric Sum DDSum Sum2

Flop count (approx. ratio) 1 10 7

Measured #cycles (approx. ratio) 1 7.5 2.5

Flop count / measured #cycles (approx.) 1 1.4 2.8

Ideal C (approx. ratio) 1 7 1

Ideal flop count / C (approx.) 1 1.7 8

DDSum actually run as fast as it can

Current architectures exploit only 30% of Sum2’s ILP

Huge potential in Sum2 which can run as fast as Sum
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The PerPI Tool automatizes this ILP analysis

PerPI: a pintool to analyse and visualise the ILP of x86-coded algorithms

Pin (Intel) tool (http://www.pintool.org)

Outputs: ILP measure (#C, #I), IPC histogram, data-dependency graph

Input: x86 64 binary file

Developed and maintained by B. Goossens and D. Parello (DALI)

In progress: http://perso.univ-perp.fr/david.parello/perpi/
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Seven recent accurate and fast summation algorithms

Recursive summation (not accurate)

Sum

Accurate sums: twice more precision

Sum2

DDSum

Faithfully or exactly rounded sums

iFastSum

AccSum

FastAccSum

HybridSum

OnLineExactSum
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PerPI and reproducibility: one run is enough
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PerPI # cycle ratio: accurate (left) and faithful sums (right)
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cond = 1032 and n = 103, 104, 105, 106.

Twice more precision “free” with the compensated sum

Faithful sum for even less

How to trust it? PerPI bug vs. reality?
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Huge ILP of HybridSum and OnLineExact
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PerPI helps to highlight many details . . . but not all

PerPI measures and exhibits C=n/2 histograms

Assembly code analysis confirms C=n/2

Floating-point consistency: Sum does not benefit from loop unrolling

Faithfulness consistency: use as much as possible optimisations

Loop unroll (×2) in the exponent extraction step

Short vector summation starts as soon as possible . . .

. . . depending on the distribution of the data exponent even for a given

exponent range Skip x86 peculiarities
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PerPI histograms for HS (↑) and OLE (↓) for dU : left, dD : right
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Exponent distribution at δ = cst for HS and OLE
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dU : uniform dist. in [−δ/2, δ/2] vs. dD : Dirac-like distr.: one −δ/2, n-1 δ/2
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Zooming and understanding the worst measures (dD)

start : <HybridSum>

start : <iFastSumIn>

stop : <iFastSumIn> I[62719]::C[2580]::ILP[24.3097]

stop : <HybridSum> I[267980]::C[20020]::ILP[13.3856]

start : <OnlineExact>

start : <iFastSumIn>

stop : <iFastSumIn> I[334]::C[32]::ILP[10.4375]

stop : <OnlineExact> I[229263]::C[30026]::ILP[7.63548]

Explanation: extraction step and x86 ISA peculiarities

Cycles between two iterations: 2 in HS vs. 3 in OLE
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Conclusion

Highly accurate algorithm needs reliable performance evaluation

PerPI provides reproducible measures of the performance potential

PerPI highlights how the algorithm and the architecture interact

PerPI may help to improve the algorithm or its implementation

Hand-made vs. PerPI analysis: the ideal machine vs. one ISA machine

Towards a dynamic reference repository for accurate sums and other core

routines

exponent distribution x86 peculiarities
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