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Univ de Lyon, Université Lyon 1, LIRIS UMR5205, F-69622, Lyon, France
* andre.fabbri@liris.cnrs.fr, † frederic.armetta@liris.cnrs.fr,
** eric.duchene@liris.cnrs.fr, ‡ salima.hassas@liris.cnrs.fr

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

MCTS (Monte Carlo Tree Search) is a well-known and efficient process to cover and evaluate a large
range of states for combinatorial problems. We choose to study MCTS for the Computer Go problem,
which is one of the most challenging problem in the field of Artificial Intelligence. For this game, a
single combinatorial approach does not always lead to a reliable evaluation of the game states. In order
to enhance MCTS ability to tackle such problems, one can benefit from game specific knowledge in
order to increase the accuracy of the game state evaluation. Such a knowledge is not easy to acquire. It
is the result of a constructivist learning mechanism based on the experience of the player. That is why
we explore the idea to endow the MCTS with a process inspired by constructivist learning, to self-
acquire knowledge from playing experience. In this paper, we propose a complementary process for
MCTS called BHRF (Background History Reply Forest), which allows to memorize efficient patterns
in order to promote their use through the MCTS process. Our experimental results lead to promising
results and underline how self-acquired data can be useful for MCTS based algorithms.

Keywords: Monte Carlo Tree Search; Computer-Game; Reinforcement Learning; Knowledge Engi-
neering

1. Introduction

In this paper, we propose a self-acquiring knowledge process to deal with the resolution
of hard combinatorial problems. The generic MCTS enhancement is applied to a difficult
combinatorial game: the game of Go. We observe that MCTS is a very efficient process to
cover a huge set of states. Nevertheless it does not take full advantage of its experience.
This statement motivates us to explore a new approach to increase the ability for such a
process to capitalize and re-use its experience.

The game of Go is a good testbed for Artificial Intelligence 1. The rules are simple but
capturing the underlying explanations for an efficient sequence of moves remains an open
problem. The human players acquire an advanced internal representation of the game by
an extensive practice. This explains why the best players still defeat computer programs.
Indeed a better representation allows to focus on the most relevant parts of the game. Com-
paratively, a default tree search would instead consider all the possible evolutions of the
game. In order to cope with the combinatorial hardness of the problem, a recurrent ap-
proach has been to endow the programs with a large amount of encoded expert knowledge

1
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(rules, patterns, etc.).
MCTS led to a major breakthrough for the game of Go2 and is now applied to a wide

range of problems3. Contrary to the former approaches, the evaluations of possible evolu-
tions are learned on-line, through random simulations. The program acquires hence some
knowledge about the current state by a self-play simulated experience. Nevertheless, MCTS
does not suffice to overcome the combinatorial complexity of the game of Go yet. The
performance of the programs levels off whatever the additional simulation time allowed
and the supplementary expert knowledge provided 4. In our understanding, after a certain
threshold, the pure computational approach cannot be a substitute for a better cognitive
integration of the experience.

A promising way to increase the efficiency of a program would be to enhance its ability
to accumulate knowledge about its experience simulated. The general idea consists in a
better assimilation of the inherent knowledge associated with the states covered by MCTS.
This approach has been partially considered in the literature but we claim and argue that
this kind of process can be improved in many ways. With our approach BHRF (Background
History Reply Forest), we choose to endow the program with the ability to memorize pat-
terns learned on-line and adapt their estimated value during the game. These patterns in-
fluence back the simulations in order to enrich the simulated experience. This paper gives
insights about the potential of such an approach. Note that our results mainly focus on the
quality of the learning rather than on the effective performance in a competitive setting.

More details about BHRF will be provided in Section 3. The MCTS baseline and the
main knowledge endowment will be presented in Section 2. Experimental results are given
and analyzed in Section 4. A conclusion and some perspectives are drawn in Section 5.

2. How to complement MCTS ?

MCTS progressively weights by self-play several possible evolutions of the game. How-
ever, additional knowledge can substantially enhance the learning process. A brief presen-
tation of the MCTS process along with its dynamic is presented in Section 2.1. Section 2.2
reviews the main enhancement in the current programs based on MCTS and Section 2.3
details the underlying data structure.

An extensive presentation of MCTS and its enhancements is beyond the scope of this
paper, we invite the reader to refer to a more detailed survey3.

2.1. Monte Carlo Tree Search

The standard MCTS algorithm gradually expands a search tree starting from the current
state. The four steps descent, growth, roll-out and update (see Figure 1) are iteratively
applied until we meet some restraining constraints (time, memory or iteration number).
The descent policy covers the tree and selects a new node to sample. The growth phase
adds a node to the tree search. From this node, the roll-out policy generates the remaining
moves until the simulation reaches a final state. The update phase finally propagates back
the outcome in the tree search.
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Figure 1. Monte Carlo Tree Search process

The values learned in the search tree are tightened with the underlying policies. On
the one hand, the descent policy considers the node’s values to reach the most promising
one to deepen. On the other hand, the outcome of the simulated end game adjusts the
values of the node selected during the descent and influences back the next descent policy.
The interaction between the policy and the learned values refers to the generalized policy
iteration process5.

In MCTS, the policy iteration involves also a roll-out policy. This policy generates
the last moves leading to the final state and therefore contributes to the learning process.
However the roll-out policy does not benefit from the learned weights. The purpose of the
proposed method is to influence back the roll-out policy as presented in Figure 2.

πdescent

πroll-out

V π

π: policy

V π: tree values

BHRF

Figure 2. Generalized policy iteration process for MCTS

2.2. Enhanced policy iteration process

As pointed out by the generalized policy iteration, the policies play a major role in the
learning. The descent and roll-out policies have been progressively enhanced to cope with
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the issues addressed by each phase. In this section, the main enhancements for each policy
are reviewed from a Go-specific and a more general perspective.

Over the iterations, the node’s weights are progressively refined and the descent policy
has to focus quickly on the most promising parts of the tree. For the game of Go, expert off-
line knowledge may efficiently promote states subsequent to interesting moves and avoid
silly ones. This knowledge may enhance the search by biasing the values or pruning the
tree6. From a broader perspective, the Upper Confidence bound applied to Trees 7 considers
the number of updates to achieve a good balance between the exploration of current sub-
optimal states and the exploitation of the current best states.

A pure random roll-out policy generates many non-representative final states whose
outcome slows the learning of the system. Thus the roll-out policies generally involve
additional knowledge to enhance the relevance of the final states. For the game of Go,
the sequence-like policies successfully consider expert or off-line knowledge to guide the
simulations8. Such a roll-out policy is difficult to improve because it has to balance care-
fully the distribution of the final states to cover 9. A promising way consists in designing
adaptive roll-out policies rather than static ones.

As presented in the next section, the expert knowledge involved in sequence-like poli-
cies is not suitable for an adaptive policy. General-game purpose methods such as N-
Grams10, Last-Good-Reply11 or an application of Win/Loss states12 propose a more adap-
tive knowledge representation. Such methods enhance the roll-out policy with small pat-
terns (spatial or temporal) evaluated on-line. However the patterns considered arise from
the roll-out itself rather than the search tree.

Previous attempts to exploit knowledge coming from the tree have been mostly limited
to single moves13,14,15a. To our best knowledge, the Pool-RAVE enhancement13 is the
best attempt applied to the game of Go so far. A pool of potential best moves are picked
up during the descent and re-exploited in the roll-out. This method achieves good results
for the roll-out policies without expert knowledge but does not intend to learn explicit
knowledge from the tree. Such a learning requires the adequate underlying data-structure
as presented in Section 2.3.

The search tree actually stores the outcomes of the simulations. Following this perspec-
tive, MCTS becomes then a cognitive problem: how to capitalize the simulated experience
of the system? This is a long-term issue and, in our approach, we will focus on the memo-
rization of raw moves sequences coming from the tree.

2.3. Overall view of additional data structures

The policies select the action to perform based on the knowledge available for the system.
The data-structure supporting this knowledge has a high influence on how this knowledge
may be re-exploited. Current programs based on MCTS handle different kinds of knowl-
edge. In the present paper, we differentiate the knowledge learned in the search tree from
the additional knowledge considered in the enhanced policies. The latter can be applied

aThe only exception is the second-order history heuristic15 which considers also the previous one
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to different situations contrary to the node’s knowledge which is specific to a single game
state. In this section, the existing complementary data-structures for MCTS are reviewed
for both kinds of knowledge.

(a) Spatial pattern (b) Temporal pattern

Figure 3. Additional knowledge for MCTS

In the best Go-program, the expert knowledge involved in descent and roll-out poli-
cies considers immediate reply to local spatial contexts. For each pattern, the surrounding
positions stand for the context and the middle move corresponds to an appropriated reply
(Figure 3a). This knowledge successfully simulates local fights in sequence-like policies
but is not prone to any adaptive policy. For the same spatial context, only one reply is pos-
sible: the one in the middle. Therefore the evaluation of such a pattern is not related to the
relevance of the last reply but to any move inside the whole pattern16 (whether the context
or the reply). To propose a truthful comparison among all the possible replies, the pattern
could share the same context as in temporal patterns.

The general-game approach considers mainly temporal patterns, i.e, the immediate re-
ply to a sequence of immediately previous moves. For each pattern, the first moves stand
for the context and the last move stands for an appropriated reply (Figure 3b). This context
is generally small. N-grams 10 and LGR methods11 consider up to two moves for the con-
text. TO-MAST14 and pool-RAVE 13 actually consider only the reply move itself. However
this short term perimeter for the contexts may raise a short-sighted phenomenon, i.e., the
so formed sequences can be applied to many different states but are not relevant for each
of them. Previous attempts such as the move answer tree17 or the local tree18 propose to
specialize the temporal pattern but does not provide effective results yet. Spatial and tem-
poral patterns have been already combined 12 for the game of Go. The temporal sequence
considered involves a spatial pattern rather than single moves but their size has been limited
to a context of size one (an immediate reply pattern to the previous one).

The values learned in the search tree corresponds to the estimated win probability of
the specific game states covered during the descent phase. This knowledge is not prone to
be re-exploited in similar states (except for the very same game state see 19). Indeed, if a
branch of the tree learns a sequence of actions that solves a local sub-problem, this sequence
has to be rediscovered in the other branches where this sub-problem occurs 20. Moreover
each time the opponent has played his move, one has to prune the tree to keep only the
subtree associated with the moves that are effectively played. As a result, the knowledge
accumulated in the other branches is also lost.
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The purpose of our approach is to design temporal patterns in order to extract the knowl-
edge inside the search tree. We choose to extend the size of the patterns so that they can
specialize to more specific contexts, as for the search tree.

3. A transversal data structure to complete MCTS

Our proposal is generic and can be applied to MCTS whatever the considered problem.
The purpose of our approach is to increase the system ability to memorize data and also its
ability to adapt it to close applicative contexts. The overall idea of BHRF is presented in
Section 3.1 and an implementation is detailed in Section 3.2.

Figure 4. Background History Reply Forest process

3.1. Background History Reply Forest

We propose to build up an independent data-structure to complement the Monte Carlo tree
and allow transversal knowledge memorizing. In order to improve the roll-out reliability,
we choose to exploit the self-acquired and long-term data to influence the roll-out policy.
Moreover the purpose of this contribution is to produce a policy that improves the learning
process using knowledge that is already gathered in the search tree. That is why, in our
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proposal, the complementary data structure is updated according to the current sequence
played during the descent phase and the simulation outcome (Winning, Loosing).

The complementary data structure presented here accumulates small temporal patterns
of increasing size, thanks to a forest data structure. The root of each tree stands for a reply
while considering a context formed by a path between a leaf and the root. The set of all
reply trees defines the Background History Reply Forest (BHRF). As the search tree of
MCTS progressively expands, the reply trees of BHRF grows concurrently. Though the
new nodes added to BHRF trees form to new temporal patterns. Each new pattern has its
context extended by one more preceding action with respect to a pattern already gathered
by BHRF. As presented in Figure 4, the temporal patterns accumulated are then considered
by the roll-out policy.

Similar methods involving temporal pattern11,10 learn the temporal patterns according
to the moves generated during the roll-out. However the roll-out policies focus mainly on
the position around the last move generated. The originality of this method is to learn tem-
poral pattern from the search tree, i.e., according to the moves selected during the descent
phase. As a consequence, the evaluation of temporal patterns consider the exact configura-
tion associated with the search tree.

The moves played during the descent phase are selected and evaluated according to
the whole board configuration. Therefore the tree search is more able to handle complex
configurations arising during the game such as Ko fights. Hence BHRF benefits to a certain
extent from the global understanding of the search tree and can consider complex moves
such as Ko threats; provided that these moves have been sufficiently explored curing the
descent phase 21.

3.2. Knowledge accumulation and exploitation

During the update phase, MCTS and BHRF are independently updated using the same sim-
ulation outcomes. The knowledge acquisition of BHRF is detailed through two algorithms.
We cover each move of the descent sequence and launch a reply tree update (Algorithm 1).
Indeed, the whole descent sequence contains many different context-reply associations to
memorize. The details of the tree update process is presented in Algorithm 2. As for MCTS,
the node estimates are updated each time a stored sequence matches with the current one.
For each reply tree, new nodes are regularly added and the whole structure is kept over the
turns. Unlike Last Good Reply11 or N-grams10 approaches, we do not restrain the maximal
size of the context (the size of patterns is bounded by the depth of the search tree). The
number of temporal patterns added after each simulation is then bounded by the size of the
descent sequence.

During the roll-out phase, the knowledge accumulated in BHRF influences back the
roll-out policy. The ε parameter sets a priori the exploitation rate of BHRF during the
simulation process. If BHRF is not applied or BHRF does not suggest any reply, the default
policy is applied. The knowledge exploitation of BHRF applies temporal patterns according
to their contexts and their estimated quality.

As a first step, the policy considers only the temporal patterns whose the reply complies
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Algorithm 1 update algorithm - Reply Forest
procedure UPDATEREPLYFOREST(descentSeq: Array<Move>, outcome: Result)
//descentSeq: moves selected in the last tree descent
//outcome: result of the simulation following the descent i.e {Win, Loss}

for i← descentSequence.size −1 to 0 do
rt: ReplyTree
rt← self.getReplyTree(descentSeq[i])

// the reply tree leading to move i is considered
if opponentMove(i) then

rt.updateTree(i,descentSeq,inv(outcome))
else

rt.updateTree(i,descentSeq,outcome)
end if

end for
end procedure

Algorithm 2 update algorithm - Reply Tree
procedure UPDATETREE(i: int, descentSeq: Array<Move>, outcome: Result)
//i: position of the reply move in the sequence descentSeq

nodeCreated: Boolean
mv: Move
nodeCreated← false
childNode, lastNode: Node
lastNode← self.getRoot()

// the root node of the tree corresponds to the reply
while i > 0 && ¬ nodeCreated do

i← i −1
mv← descentSeq[i]
childNode← lastNode.getDirectChild(mv)
if childMove == null then

childMove← lastNode.createChild(mv)
childMove.updateMean(outcome)
nodeCreated← true

else
childMove.updateMean(outcome)
lastNode← childNode

end if
end while

end procedure

with the rules and the context matches exactly the last moves generated. Since a richer
context defines a more accurate knowledge, we keep only the more accurate patterns with
the highest number of compatible previous moves. Hence all the remaining patterns share
the same matching context length. As a second step, the appropriate reply is selected among
the remaining patterns according to its evaluation. We propose here two different selection
processes: soft-UCT and last-reply.

The soft-UCT process computes an estimate for each remaining pattern (Algo-
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rithm 3.). The estimate is inspired from the initial UCT formula7. Though the UCT al-
gorithm selects deterministically the next action according to the complete description of
the board state, as for the nodes in the search tree. In BHRF, we have only a partial descrip-
tion of the board state. Therefore the reply is selected according to the UCT formula in a
softmax version as followsb:

P (r|c) =

x̄r|c + b×
√

ln
∑

i∈C ni|c
nr|c∑

i∈C P (i|c)
, (1)

where

r : legal reply x̄r|c : average result of r in c
c : context b : UCT bias term
C : set of legal replies for context c nr|c : selection number of r in c

Since only a few BHRF patterns generally match the same context, the selected reply is
eventually played according to its UCT estimate, as presented in Algorithm 3. The estimate
is computed each time we use BHRF during the roll-out phase. Hence this selection process
is more accurate, at the expense of a computational overhead.

Algorithm 3 roll-out policy with soft-UCT selection process
procedure ROLLOUTPOLICY(lastMoves: Array<Move>) : Move
//lastMoves: moves previously selected (temporal context)

candidate: Move
lstCandidate: List<Move>

//Probability ε to use BHRF
if randomValue() < ε then

// Get the legal replies associated to the longest matching patterns
lstCandidate← getReplyForest().longestMatchingPattern(lastMoves)
lstCandidate← getReplyForest().checkLegalReplies(lstCandidate)

// Select and apply the reply according to the UCT estimate (Equation 1)
candidate← softMaxUctSelection(lstCandidate)
if randomValue() < candidate.uctEstimate() then

return candidate
end if

end if
// Plays default policy otherwise

return defaultPolicyMove()
end procedure

However, the temporal pattern of BHRF are progressively accumulated and updated
according to the actions selected during the descent phase. Following this perspective, one
can note that the selection process of BHRF mimics a selection process occurring already

bthe bias term b has been set to 0.7 empirically
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during the descent phase. Indeed, each action selected during a descent phase may be seen
as the reply in response to the moves that have been previously selected during this phase.

The last-reply process simplifies the selection process of BHRF by considering
directly the decisions that have already been adopted during a previous descent phase (Al-
gorithm 4). Among the longest matching patterns, the appropriate reply is the last that has
been selected in a previous descent phase, for this context. This selection process is in-
spired by the Last Good Reply enhancement11. However in this case, the replies arise from
the accurate selection that occurs during the descent phase, rather than from the random
sampling of the roll-out phase. Due to computational costs, we do not check for a legal
reply during the selection process. If the reply suggested by BHRF is not legal, the default
policy is applied.

Algorithm 4 roll-out policy with last-reply selection process
procedure ROLLOUTPOLICY(lastMoves: Array<Move>) : Move
//lastMoves: moves previously selected (temporal context)

candidate: Move
lstCandidate: List<Move>

//Probability ε to use BHRF
if randomValue() < ε then

// Get the replies associated to the longest matching patterns
lstCandidate← getReplyForest().longestMatchingPattern(lastMoves)

// Select the last updated pattern and play it if legal
candidate← lastReplySelection(lstCandidate)
if legalMove(candidate) then

return candidate
end if

end if
// Plays default policy otherwise

return defaultPolicyMove()
end procedure

4. Experimental results

In this section, we study the influence of BHRF knowledge over the learning process. Un-
like the expert patterns involved in competitive programs, this knowledge does not rely on
prior considerations. As a consequence, BHRF patterns are self-acquired by the program
along with MCTS, according to its own simulated experience.

The experimental protocol is detailed in Section 4.1. The results presented in Sec-
tion 4.2 and Section 4.3 show that BHRF successfully catches the knowledge of the tree
search. In Section 4.4 we highlight that this tree knowledge may successfully complement
an expert roll-out policy and Section 4.5 compare the results obtained according to the dif-
ferent selection processes proposed. Finally, we draw in Section 4.6 a first understanding
of the BHRF approach according to a cognitive perspective of Artificial Intelligence.
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4.1. Experimental setup

The BHRF heuristic has been implemented using the open source framework Fuego (ver-
sion 1.1)22. This framework offers the main enhancements for MCTS computer-go pro-
grams such as UCT and expert knowledge. In this program, the expert knowledge is used
to initialize the new node of the tree search and also for the roll-out policy.

In the following experiments, the program with the BHRF heuristic competes against
the same baseline program without BHRF (All game results are provided with 95% con-
fidence interval). The common settings of both programs are the same (if not mentioned).
The settings we will further consider in the experiments are the following:

• Board size (M): 9x9,19x19: determines the difficulty of the game played. The
search space is huge on 19x19 and the program has to focus even more on game
state of interest. Moreover games on wider boards produce more complex situa-
tions which may not be covered by expert knowledge.

• roll-out simulations (H): 1k, ..., 10k, 30k: corresponds to the maximum
number of simulations granted. A larger value generates a more accurate tree
knowledge and therefore a better descent policy.

• roll-out expert knowledge (�): True, False: defines whether the roll-out po-
licy involves expert knowledge or not.

• BHRF: ε = 0 .. 100% (�): tunes the rate of exploitation of the self-acquired
knowledge in the roll-out phase.

• Selection process: soft-UCT or last-reply (�): defines how to select the
appropriate reply between different patterns sharing the same context. Most results
are presented for the soft-UCT selection process.

In this article we mainly focus on the potential for using such a knowledge, rather than
on the next-step optimisation. That is why we consider both programs with an equal number
of simulations rather than an equal computing time. Considering our lightly optimized
BHRF algorithms and a middle range hardware configuration (Intel(R) Core(TM) i7-2600
CPU 3.40 GHz with 8GB memory), the BHRF module tends to slow down the computing
time from 4 to 12 times with the soft-UCT selection process, according to the game size
and the roll-out simulation number. The current implementation is not competitive on equal
time settings but provides a substantial improvement in the learning quality.

4.2. Increasing efficiency due to self-acquired knowledge

For these experiments, competing programs are both set without expert roll-out knowledge
but both programs initialize the node value using prior expert knowledge. In Table 1, we
report the values of BHRF knowledge for 9x9 and 19x19 game sizes with the maximum
number of roll-out simulations allowed.

The program that considers self-acquired knowledge, significantly outperforms the
baseline program in all the configurations and whatever is the number of allowed simu-
lations. Pool-RAVE13 provides similar results for the game of Go without expert roll-out
knowledge (their results are provided only for the 9x9 game size). These results confirm
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Table 1. Success rate for the BHRF approach against a random roll-out policy

SETTINGS

MBoard size = 9x9,19x19H Simulations = 10k,30k,100k � Expert roll-out = False

� ε = 100 � Selection process = soft-UCT

Simulations 10000 30000 100000
Goban 9x9 +17.3%± 1.6 +16.9%± 2 +18%± 2.6

Goban 19x19 +24.3%± 3.5 +26.6%± 2.5 +27.7%± 3.4

further the interest of using knowledge from the search tree in the roll-out.
The BHRF usage may explain the difference in the results between both sizes. The

game length on a 19x19 goban are bigger than the games on a 9x9 goban. In the same
way, the roll-out are longer on a 19x19 goban and, as a consequence, BHRF has been
more exploited for this size. Moreover 19x19 game size has a huge combinatorial space. A
more careful move generation has more influence on the resulting performances. This may
explain the slight improvement on 19x19 as the number of simulations increases.

SETTINGS

M Board size = 9x9 H Simulations = 1k,3k,5k,7k,9k� Expert roll-out = False

� ε = 100 � Selection process = soft-UCT
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Figure 5. Success rate and CPU time ratio for BHRF approach considering roll-out number variations (opposed
to the same configuration without BHRF, roll-out number fixed to 10k)

In order to appreciate the BHRF ability to manage and benefit from complementary
knowledge, we choose to vary the available number of roll-out simulations available for
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BHRF, while keeping it constant (fixed to 10k) for the baseline program. As shown in
Figure 5, BHRF outperforms the baseline program as soon as it reaches the half of the
available number of roll-out simulations of the baseline program. However, as mentioned
previously, the process of real-time self-acquiring knowledge is time-consuming and a fur-
ther optimization is required before being time-competitive with the current programs.

4.3. Quality of the self-acquired knowledge

The purpose of our proposal is to accumulate the experience occurring through the general
MCTS process in order to consider it during the roll-out phase (see Figure 4). In this sec-
tion, our main objective is to get a better understanding of the way knowledge is acquired
by our approach (BHRF).

One can note that the more realistic the roll-out moves are, the more relevant is the
evaluation for a game state. An unavoidable strategy for Go is to play locally if possible,
i.e. , not leaving a local position unstable as far as possible. The sequence-like policies are
meant to reproduce this behavior in the professional-level programs such as Fuego. These
policies consider the positions around the last move played in order to promote local replies.
Since all local moves are not relevant, an appropriate local reply is selected according to
some tactical knowledge such as the spatial pattern presented in Section 2.3. In this section,
we assess the roll-out moves in the light of such a behavior. We define a roll-out profile by
considering the two criteria presented on Figure 6. These criteria are:

• The ability to play locally: a move is local if it is played within a Manhattan
distance of three from the previous one (Section 4.3.1).

• The ability to play local patterns: a move corresponds to a local pattern if the
move is local and matches one of the spatial pattern considered by sequence-like
policies (Section 4.3.2).

Figure 6. Criteria of the roll-out profiles

In particular, Fuego considers spatial patterns and local play in the roll-out and the
descent policies: in the descent policy to tune the initial values and, in the roll-out policy,
to generate the moves in a sequence-like manner. This expert roll-out policy is defined a-
priori according to explicit rules. Hence we investigate to what extent BHRF reproduces
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such a sequence-like behavior in the roll-out, without explicit prior knowledge about it. We
compare the profile of BHRF moves with two other profiles:

• A random roll-out profile, obtained with Fuego set without expert roll-out.
• An expert roll-out profile, obtained with default Fuego (with expert roll-out).

In order to obtain the profile of BHRF moves only, we disable the Fuego expert roll-out
policy in our program. The propensity to use BHRF is set to its maximum (ε equals 100%).
Hence, each time the current sequence matches a context memorized by BHRF, the selected
reply is played according to its UCT estimate (see Algorithm 3). BHRF feeds about 51%
of the roll-out moves and the other moves are played at random.

4.3.1. Ability to play locally

In Figure 7, we compare the profiles of roll-outs resulting from a raw baseline program (no
expert roll-out data) with or without the use of BHRF. One can note that BHRF tends to
show more locality than the random roll-out strategy. To our point of view, this local play
explains in a large part why BHRF defeats a random roll-out policy (cf. Section 4.2).
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(b) Random policy with BHRF (ε = 100)

Figure 7. Roll-out profiles: moves locality (Random approach vs BHRF approach)

As we can see from Figure 8, the BHRF approach allows to play as much locally as the
expert approach (48%), though both policies are not equivalent. Indeed, local play in expert
roll-out policies is defined a-priori according to explicit rules whereas BHRF retrieves it
from the search tree. However all the local moves are not relevant and, as mentioned earlier,
the spatial patterns considered in sequence-like policies are a way to identify the most
promising ones.
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(b) Random policy with BHRF (ε = 100)

Figure 8. Roll-out profiles: moves locality (Fuego approach vs BHRF approach)

4.3.2. Ability to play local patterns

In this section, we focus on the ability to play roll-out patterns for the selected approaches
(pure random, Fuego and BHRF). Figure 9 states that the BHRF roll-out plays more than
four times more local patterns than the pure random one. One can understand that BHRF
can acquire relevant patterns that helps the general MCTS process to understand the neces-
sity to play locally. Without these self-acquired patterns, a pure random approach misses
the pattern opportunities which considerably decreases the program competitiveness.
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(b) Random policy with BHRF (ε = 100)

Figure 9. Roll-out profiles: local move pattern (Random approach vs BHRF approach)

In Figure 10, one can note that expert Fuego roll-out plays even more local patterns.
In fact, Fuego plays local patterns in a more systematic way, and cannot consider the rele-
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vance of a pattern move. From our point of view, this is the counterpart of myopic a-priori
patterns. BHRF copes with locality but can also perceive and memorize patterns adapted to
the current situation.

SETTINGS
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Figure 10. Roll-out profiles: local move pattern (Fuego approach vs BHRF approach)

4.4. Combining BHRF with expert knowledge

In the previous section, we have shown that BHRF produces local moves which do not fol-
low expert spatial patterns in a systematic way. However the temporal patterns memorized
by BHRF may, even though, complement sequence-like policies. In this section, we choose
to involve expert knowledge heuristics for BHRF roll-out as a second choice. When no
move is selected by BHRF, the standard rules originating from Fuego roll-out policy are
applied. BHRF competes then with Fuego set to the best of its ability.

In Figure 11, we show that BHRF with a soft-UCT selection process outperforms
Fuego by 11% when we use BHRF data moderately (ε = 15). The number of simulation
was set to 30k in order to accumulate substantial data about the game. A low ε value in-
volves more exploration through the general MCTS process. BHRF nevertheless allows to
significantly increase the global performance while memorizing efficient situated patterns.

The expert knowledge involved in the roll-out policy plays locally, around the last
move generated. On a 9x9 board, local fights quickly cover the whole board, but on a
19x19 board, local fights have also to consider the situation in other areas of the board. As
mentioned in Section 4.3, our data-structure embeds both the expert and the self-acquired
knowledge of the tree. BHRF knowledge may adjust this locality according to the state cov-
ered in the tree. Therefore, the enhanced roll-out policy benefits from knowledge adapted
to the real situation.
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Figure 11. Success rate on 19x19 with an expert roll-out policy

4.5. Comparison between both selection processes

As presented in section 3.2, we propose two different selection processes for BHRF. In the
previous experiments we have consider only the soft-UCT process. This process selects
the appropriate reply according to the evaluation of the BHRF patterns, which seems more
accurate but suffers from a high computational cost. The last-reply applies just the last
reply that has been previously selected in the descent phase for this context. In other words,
this selection process suggests to consider, besides the temporal patterns, the decision made
in the search tree.

In Figure 11, we plot also the success rates of the last-reply selection process
with the same settings stated in Section 4.4 (30k simulation and expert roll-out). The
last-reply selection process obtains results similar to the soft-UCT selection pro-
cess: an increase of +11% success rate. This result is obtained for an higher exploitation
of BHRF (ε = 25) in this case. Though we remind that last-reply does not check
during the selection process whether the replies are legal. As a consequence, many replies
suggested by BHRF have been probably discarded. This can explain why this result is ob-
tained .

The last-reply selection process is faster than the soft-UCT process. According
to these settings, the computational consumption of the program with last-reply is
only increased by 2 times compared with Fuego. The program with soft-UCT requires
much more CPU time with these settings (about 12 times). Hence the exploitation of the
decisions made during the descent phase appears as a promising way to fasten the exploita-
tion process. Though a slow down of 2 times is still consequent with an equal time setting
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and would require further optimizations.

4.6. Toward an autonomous system

Professional level programs like Fuego involve expert knowledge in both policies: in the
descent policy to bootstrap the values and in the roll-out policy as it is. This knowledge
is defined a priori with a limited number of explicit rules. It is applied equally for every
board position and every game possible. The Fuego roll-out policy does not benefit from
any feedback, whereas the results of the simulations may balance the bias introduced by
this prior in the tree. Therefore the expert knowledge considered have to suit to the largest
number of possible positions.

As presented in Figure 2, BHRF aims to provide an adaptive roll-out policy based
on knowledge coming from the search tree. In Section 4.3, we have shown that BHRF
successfully embeds the prior expert knowledge in the tree. It appears difficult to bypass
this kind of long-term expert knowledge when it is available. On the other hand, the result
presented in Section 4.4 suggests that BHRF learns new patterns which ones successfully
complement the Fuego roll-out policy. Moreover we have shown in Section 4.5 that the
decisions themselves made during previous descent phases can be successfully applied
during the roll-out through BHRF.

From a cognitive perspective, human players gain expertise through the acquisition of
perceptual patterns. The progressive enhancement of such patterns may explain the differ-
ence of skills between a professional and an amateur player23. Following this perspective,
BHRF applies the following two processes: adaptation of existing pattern and accumu-
lation of new patterns. In order to go further in this way, other processes are necessary to
create higher level patterns. For instance, BHRF does not allow generalizations between the
accumulated patterns. Indeed the temporal pattern are applied only with an exact context
matching, as this is usually done for the game of Go11,10. As an example, a fuzzy match
may generalize the patterns to much more situations. Moreover the temporal patterns pre-
sented here cannot abstract spatial notions such as symmetries or rotational invariance.

5. Conclusion

This paper proposes new enhancements to complete the well-known MCTS search process
in the context of combinatorial games. We show that a better assimilation of the knowledge
learned by MCTS may enhance the performance of the system. As presented in this paper,
the knowledge stored in the search tree is not prone to be re-exploited. A promising way
is to consider MCTS as a cognitive system (Section 4.6). Indeed, a better assimilation of
this knowledge allows to adapt it to different situations and may avoid to learn redundant
patterns among the branches20 for instance. Moreover, such an approach may provide better
insights on how the system considers its simulated experience and therefore the underlying
mechanisms of MCTS.

The data-structure detailed in this paper is a raw manner to memorize adaptive knowl-
edge coming from the search tree. The presented results show that this data-structure suc-
cessfully catches such a knowledge (Section 4.2 and Section 4.3) and this knowledge may
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actually complement expert knowledge (Section 4.4). In particular, a professional program
combined with BHRF achieves up to a 11% increase in performance. These results points
out the potential of such an approach though the slow down of the learning process prevents
from experiments with constant time. Following this perspective, we propose a simplified
selection process that reaches similar results with a limited amount of additional time (Sec-
tion 4.5).

We decided to apply our algorithm to the game of Go because this problem is de-
manding in terms of knowledge, nevertheless the current implementation is designed for a
general-game perspective. A more time-efficient implementation may consider character-
istics of the game such as the locality of the reply but this was beyond the scope of the
present paper.
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