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Abstract: This paper addresses a method for fault detection (FD) in linear parameters varying
(LPV) systems by maximizing the fault to residual sensitivity. It uses the newly developed H−
index properties and minimizing the well known H∞ norm for worst case uncertainties and
disturbance attenuation. A loop shaping approach for the H− FD problem is proposed.
The multi-objectives problem is formulated as Linear Matrix Inequalities (LMI) problem for
polytopic systems. An application on lateral vehicle dynamics is given as an illustrative example
for this approach.
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1. INTRODUCTION

Fault detection have received significant interest in both
research and application domains since the last two
decades. Among all concrete systems, automotive and
aerospace applications represent a wide field of interest in
terms of diagnosis (Varrier et al., 2014). Highly equipped
with sensors and actuators, fault detection have become
one essential issue for reliability and safety of these sys-
tems.

In comparison with analytical and soft computing ap-
proaches (such as neural networks and set-membership
approaches), model based approaches including observer
based design or parity space methods are powerful tools
when plant dynamical equations are available (Chen and
Patton, 1999; Liu and Patton, 1998; Ding, 2013; Iser-
mann, 2005). Trying to enhance the robustness to un-
known inputs and sensitivity for faults, many performance
indexes has been introduced and developed: H∞, H−,
mixed H∞/H− (Hou and Patton, 1996; Liu et al., 2005;
Wang et al., 2007; Chadli et al., 2011). Such criteria are
often in the LMI control framework (Boyd et al., 1994).

On the other hand, LPV modeling offers an interesting
framework to model non-linear plants with parameter
variations, that are treated as linear systems with not
necessarily known but on-line measurable, time-varying
parameters. LPV-control has evolved rapidly and have
been employed in many control applications (Mohammad-
pour and Scherer, 2012).

Hence, fault detection for LPV system has recently gained
much attention. Authors proposed algebraic approach,
model redundancy (Bokor and Balas, 2004; Seron and
Don, 2015). In (Chadli et al., 2011) an optimization
criterion for the H−/H∞ objective is proposed.

In this paper, an observer based filter is designed with the
mixed H−/H∞ and pole placement objectives:

• the H− index is used to enhance the residual to fault
sensitivity,

• the H∞ norm is used to attenuate the residual to
disturbances effects,

• pole placement region is used to tune the time re-
sponse of the FD observer.

The desired observer is computed by solving a set of
LMIs in the framework of the quadratic stability for LPV
polytopic systems. A compromise between fault sensitivity,
unknown input rejection and eigen region assignment is
optimized via a convex optimization algorithm.

The outline of this paper is as follows. Problem formu-
lation is given in Section II. In section III, preliminar-
ies for the synthesis of H∞ observer, H− fault detector,
and pole placement technique. Fault detection observer
scheme is given in Section IV using loop shaping by
additive/multiplicative filter design. A minimization and
maximization criteria are used to solve an optimization
problem set by the LMIs. The above results are illustrated
by an example with application to lateral vehicle dynamics
in Section V. Finally, Section VI shows the concluding
remarks and the possible future work.

Notations: Notations used in this paper are standard. XT

is the transposed of matrix X, the star symbol (?) in
a symmetric matrix denotes the transposed block in the
symmetric position. The notation P > (<)0 means P is
real positive (negative) definite matrix. 0 and I denote
zeros and identity matrix of appropriate dimensions.

2. PROBLEM FORMULATION

Consider the state space representation of a LPV system:{
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

+Ed(ρ(t))d(t) + Ef (ρ(t))f(t)
y(t) = Cx(t) +Du(t) + Fdd(t) + Fff(t)

(1)



where x ∈ Rn is the state vector, y ∈ Rp is the measure-
ment output vector, u ∈ Rm is the input vector, d ∈ Rnd
is the disturbance vector, f ∈ Rnf is the vector of faults
to be detected.

ρ(.) is a varying parameter vector that takes values in the
parameter space Pρ such that:

Pρ := {ρ(t) , [ρ1(t) ρ2(t) . . . ρl(t)]
T ∈ Rl and ρi(.) ∈[

ρ
i
ρi
]
∀i = 1, . . . , l}

In the following the subscript t is omitted without confu-
sion for simplification.

Assuming that Pρ is a convex hull, the system is rewritten
into a polytopic description:[

A(ρ) B(ρ) Ed(ρ) Ef (ρ)
C D Fd Ff

]
=

N∑
i=1

αi(ρ)

[
A(ωi) B(ωi) Ed(ωi) Ef (ωi)
C D Fd Ff

]
(2)

with αi is a scheduling parameter that lies in a convex set:

Ψ = {αi(ρ) ∈ RN , αi(ρ) = [α1(ρ), ..., αN (ρ)]T ,

αi(ρ) ≥ 0,∀j,
N∑
i=1

αi(ρ) = 1} (3)

with N = 2l is the number of vertices of the polytope.
Define S = 1, . . . , N , and denote Xi , X(ωi). The
matrices Ai, Bi, Ed,i, Ef,i, C, D, Fd and Ff are the
nominal system matrices at each i-th vertex, known and
of appropriate dimensions.

Consider the following residual generator observer:

˙̂x =

N∑
i=1

αi(ρ) [Aix̂+Biu+ Li(y − ŷ)]

ŷ =

N∑
i=1

αi(ρ) [Cx̂+Du]

r =

N∑
i=1

αi(ρ)[y − ŷ]

(4)

In all what follows, for simplicity, denote Xρ , X(ρ).

Define the state error at each vertex as x̃ = x− x̂. Then:

˙̃x= (Aρ − LρC)x̃+ (Edρ − LρFd)d
+(Efρ − LρFf )f

r=Cx̃+ Fdd+ Fff (5)

It can be put in the form:{
˙̃x = A∗ρx̃+ E∗dρd+ E∗fρf
r = Cx̃+ Fdd+ Fff

(6)

with A∗ρ = Aρ−LρC, E∗dρ = Edρ−LρFd, and E∗fρ = Efρ−
LρFf .

The objective of the H−/H∞ FD observer is resumed by
the following conditions:

sup
d∈Rnd

‖r‖2
‖d‖2

< γ (H∞) (7)

inf
f∈Rnf

‖r‖2
‖f‖2

> β (H−) (8)

The problem is formulated as following: ∀i ∈ S, find the
matrices Li that maximize β and minimize γ such that
the conditions (7)-(8) are satisfied and the FD observer is
stable.

Assumption 1. In this study the pair (Aρ, C) is assumed
observable, or without loss of generality is detectable. It is
a standard assumption for all fault detection problems.

Assumption 2. In this study, it is assumed that faults are
spectrally located in low frequencies (offsets, low time
varying failures). However, both sensor faults and actuator
faults are considered.

Remark 1. In the problem formulation, the C matrix is
assumed parameter independent. However this approach
can be generalized in the case of parameter dependent
matrix C(ρ), by adding the strictly proper filter to the
output (Apkarian et al., 1995):

Fy :

[
ẋf
yf

]
=

[
Af Bf
Cf 0

] [
xf
y

]
(9)

By interconnecting the two systems, it is obtained:

 ẋẋf
yf

 =

 A(ρ) 0 B(ρ) Ed(ρ) Ef (ρ)
BfC(ρ) Af BfD BfFd BfFf

0 Cf 0 0 0



x
xf
u
d
f

 (10)

Then in the new extended system, the output matrix is ρ
independent.

3. PRELIMINARIES

3.1 H∞ synthesis problem

Theorem 1. For a given LPV system with faults as defined
in (1), ∀i ∈ S, if there exists matrices Ui, a symmetric
matrix P > 0 and positive scalar γ, such that minimizing
γ subject to the following inequalities : PAi +ATi P

+UiC + CTUTi + CTC

PEdi + UiFd
+CTFd

? FTd Fd − γ2I

 < 0 (11)

Then anH∞ observer can be designed where the gain filter
at the i-th vertex is Li = −P−1Ui
Proof 1. Considering the candidate common Lyapunov
function V = x̃TPx̃ > 0, and combining the H∞ unknown
inputs rejection condition in (7) to the stability sufficient

condition in the fault free case (V̇ |f=0 < 0), the following
condition could be written:

V̇ + rT r − γ2dT d < 0 (12)

Denote Uρ , −PLρ, then (12) is equivalent to:



(A∗ρx̃+ E∗dρd)TPx̃+ x̃TP (A∗ρx̃+ E∗dρd)

+(Cx̃+ Fdd)T (Cx̃+ Fdd)− γ2dT d < 0

⇔x̃T (PA∗ρ +A∗Tρ P + CTC)x̃

+2x̃T (PE∗dρ + CTFd)d+ dT (FTd Fd − γ2I)d < 0

⇔x̃T (PAρ +ATρ P + UρC + CTUTρ + CTC)x̃

+2x̃T (PEdρ + UTρ Fd + CTFd)d

+dT (FTd Fd − γ2I)d < 0

(13)

Thus, putting (13) in the quadratic form :

[
x̃
d

]T 
PAρ +ATρ P

+UρC + CTUTρ
+CTC

PEdρ + UρFd
+CTFd

? FTd Fd − γ2I


[
x̃
d

]
< 0 (14)

This inequality hold ∀
[
x̃T dT

]T 6= 0, and using the
assumption that the system is under a polytopic state
space representation, the above inequality stands if the
following LMIs hold ∀i ∈ S: PAi +ATi P

+UiC + CTUTi + CTC

PEdi + UFd
+CTFd

? FTd Fd − γ2I

 < 0 (15)

�

3.2 H− synthesis problem

Theorem 2. For a given LPV system with faults as defined
in (1), ∀i ∈ S, if there exists matrices Ui, a symmetric
matrix P > 0 and positive scalar β, such that maximizing
β subject to the following inequality : PAi +ATi P

+UiC + CTUTi − CTC
PEfi + UiFf
−CTFf

? −FTf Ff + β2I

 < 0 (16)

Then an H− observer can be designed where the gain filter
at the i-th vertex is Li = −P−1Ui
Proof 2. Using the same Lyapunov function as in distur-
bance free case and the H− fault sensitivity property from
(8), it follows:

V̇ |d=0 − rT r + β2fT f < 0 (17)

And following the steps of calculations as in the proof of
Theorem 1, the LMI in (16) is straightforward. �

Remark 2. The LMI proposed in this theorem states only
sufficient condition to satisfy the H− problem. In (Liu
et al., 2005), it has been proven that solution of (8) does
not require the matrix P to be sign defined. However in the
case of the multi-objectives design, the condition P > 0
becomes necessary condition for the H∞ problem.

3.3 Eigen region assignment

Theorem 3. For a given square n × n matrix Aρ that
respects the assumption of the polytopic framework, if
there exists a symmetric matrix P > 0 and a scalar Ωmax
such that ∀i ∈ S the following inequalities hold:

ATi P + PAi − 2ΩmaxP < 0 (18)

Then all eigenvalues of Aρ are on left half plane of
Ωmax.(Chilali and Gahinet, 1996)

Proof 3. (18) is a result of a classical Lyapunov function
for sufficient condition of stability.

ẋ = (Aρ − ΩmaxI)x is stable if there exist a symmetric

matrix P > 0 where V = xTPx, V̇ < 0. Thus

(Aρ − ΩmaxI)TP + P (Aρ − ΩmaxI) < 0 (19)

which is equivalent to (18) by the polytopic representation
assumption.

Remark 3. Since the dominant eigenvalue of Aρ is less
than Ωmax, and through the relation between the eigen-
value and time performance, one can translate this theo-
rem to a time constraint (that is the third objective of the
FD observer design).

4. H− WITH LOOP SHAPING FILTER DESIGN

It is easy to show that for strictly proper systems, where
Ff = 0 or not of full row rank, the H− index is always
zero. In fact:

lim
ω→∞

Trfρ(jω) = lim
ω→∞

(C(jωI −A∗ρ)−1E∗fρ + Ff ) = Ff

(20)

This is also expressed in the LMI (16), the condition of the
problem feasibility is that all diagonal terms are negative.
In particular:

Ψfρ = −FTf Ff + β2I < 0

The maximum value of β is:

β =
√
FTf Ff (21)

Thus in strictly proper system, the H− strategy cannot
be used. This is the case of actuators faults for example.
Moreover, even for just proper systems where Ff 6= 0, the
smallest gain over all frequency range β will always be
restricted to the relation (21) regardless the choice of Li.

To avoid this restriction, one solution have been proposed
in (Liu et al., 2005; Wang et al., 2007) and extended in
(Farhat and Koenig, 2014).

In order to enhance the residuals to fault sensitivity in
low frequencies, i.e. under Assumption 2, one can add an
auxiliary direct channel to the system, and then multiply
by a high pass filter FH as it is shown in figure (1).

For Ff =

[
Ff1
0

]
, a suitable matrix is Ffadd =

[
0
σI

]
.

Σob FH
y − ŷ = r r̃

Ff,add

f r′

Fig. 1. H− Loop Shaping with Additive filter

The high pass filter FH is a weighting filter that is used
to raise up the high-frequency response, so the minimum
singular value of the whole system occurs near the low-
frequency region. This high pass filter is designed as:

FH(s) :=

[
Ah Bh
Ch Dh

]
(22)



The parameters Ah, Bh, Ch, and Dh are chosen such that
the transfer function Trf (s) has the desired shape. This
procedure is analog to the loop shaping method in the
standard H∞ problem.

By interconnecting the filter with the observer, the systems
becomes: 

˙̂x = Aρx̂+Bρu+ Lρ(y − ŷ)
ŷ = Cx̂+Dρu
r̃ρ = (y − ŷ) + Ffaddf
ẋh = Ahxh +Bhr̃
r = Chxh +Dhr̃

(23)

From equations (23) and using the formulation in (6), an
augmented residual generator is deduced:

[
˙̃x
ẋh

]
= A∗aρ x̃+ E∗adρd+ E∗afρf

r = Cax̃+Dadd+Daff
(24)

where

A∗aρ =

[
Aρ − LρC 0
BhC Ah

]
, Ca = [DhC Ch]

E∗afρ =

[
Efρ − LρFf

Bh(Ff + Ffadd)

]
, E∗adρ =

[
Edρ − LρFd

BhFd

]
Daf = Dh(Ff + Ffadd), Dad = DhFd

Theorems (1) - (3) are then applied to the augmented
system (24). That leads to the following theorem:

Remark 4. Since the system (24) is affine in Ah, Bh, Ch,
and Dh, the filter FH could be designed to be parameter
dependent, i.e.: different Ah,i, Bh,i, Ch,i, and Dh,i matrices
∀i ∈ S for each vertex i.

Theorem 4. Consider H−/H∞/pole assignment fault de-
tection observer for the augmented system in (24), for
given positive real scalars γ, β and Ωmax, and ∀i ∈ S,
there exist matrices Uai and a symmetric matrix Pa > 0
such that the following inequalities hold:

PaA0i + UaiC0

+AT0iPa + CT0 U
T
ai

+CTa Ca

PaBd0i + UaiFd

+CTa Dad

? DT
adDad − γ2I

 < 0 (25)


−PaA0i − UaiC0

−AT0iPa − CT0 UTai
+CTa Ca

−PaBf0i
−UaiFf
+CTa Daf

? DT
afDaf − β2I

 > 0 (26)

PaA0i + UaiC0 +AT0iPa + CT0 U
T
ai + 2ΩmaxPa < 0 (27)

Then the observer gains at each i − th vertex are Li =
IT0 (Pa)−1Uai .

where the matrices A0i , Bf0i , Bd0i , C0, and I0 are:

A0i =

[
Ai 0
BhC Ah

]
, C0 = [C 0] , I0 =

[
−I
0

]
,

Bf0i =

[
Ef,i

Bh(Ff + Ffadd)

]
, Bd0i =

[
Ed,i
BhFd

]
.

Proof 4. Only the calculation to get inequality (25) are
given here, the same steps are used to find (26).

Apply Theorem 1 to the augmented system Gadρ . The
deduced inequality is: PaAai + CTa Ca PaBadi

+ATaiPa +CTa Dad

? DT
adDad − γ2I

 < 0 (28)

Then decomposing Aai and Badi it follows:

PaAai = Pa

[
Ai 0
BhC Ah

]
+ Pa

[
−I
0

]
Li [C 0]

PaBadi = Pa

[
Ed,i
BhFd

]
+ Pa

[
−I
0

]
LiFd

Therefore, (28) becomes:
Pa(A0i + I0LiC0)

+(A0i + I0LiC0)TPa
+CTa Ca

Pa(Bd0i
+I0LiFd)

+CTa Dad

? DT
adDad − γ2I

 < 0 (29)

And by replacing PaI0Li by Uai , the BMI becomes the
following LMI:

PaA0i + UaiC0

+AT0iPa + CT0 U
T
ai

+CTa Ca

PaBd0i + UaiFd

+CTa Dad

? DT
adDad − γ2I

 < 0 (30)

�

To resume, the algorithm to design the 3-objectives FD
observer , at each vertex, is:

(1) Choose the parameter σ in additive term Ffadd , it
should have small value (σ = 0.1),

(2) Choose the filter’s FH parameters: Ah, Bh, Ch, and
Dh such that the filters bandwidth is higher than the
system’s bandwidth.

(3) Choose Ωmax such that the observers dynamics (rise
time) meets the desired specifications.

(4) Choose a value for γ, such that γ < 1.
(5) Compute β and Li solution to the optimization prob-

lem formulated by LMIs (25), (26) and (27).
(6) repeat steps 4) and 5) by minimizing γ till a compro-

mise between γ and β is reached.

Remark 5. It is to note that in the augmented system, the
matrix Pa is of dimension n+nH , with nH is the dimension
of the weighting filter FH .

Remark 6. As described in the algorithm of the filter
design, the LMIs (25), (26) and (27) are solved using
iterative algorithm.

In fact, only LMIs (26) are subject to the optimization
criterion max(β), while LMIs (25) and (27) are only tested
for their feasibility i.e. for given scalars Ωmax and γ that
are manually set over iterations: γ(k + 1) < γ(k), k being
the kth step of iteration.

Using this iterative bisection method transforms the joint
H−/H∞ optimization problem that might be non-convex
into tow separate problems, whereas convexity is guaran-
teed.



It is to be pointed that the resulting values of the couple
(γ, β) is a local optimum of the H−/H∞ problem, since
it depends on the initial values of γ, and the steps of
minimization.

5. EXAMPLE

Consider the problem of the FD in the lateral control of
a vehicle. Some experimental data have been taken from
a real ”Renaul Scenic”, provided by the french laboratory
MIPS (Mulhouse).

The widely used bicycle-model is a good representation of
the system (Mammar and Koenig, 2002). However, this
model is non-linear since it has 1

v and 1
v2 terms in it:

[
β̇(t)

ψ̈(t)

]
=

 −
cr + cf
mv(t)

crlr − cf lf
mv2(t)

− 1

crlr − cf lf
Iz

−
crl

2
r + cf l

2
f

Izv(t)

[β(t)

ψ̇(t)

]

+


cf

mv(t)
crlf
Iz

uL(t) +

 1

mv
lw
Iz

Fw(t)

y =

[
−cr + cf

m

cf lf − crlr
mv2(t)

] [
β(t)

ψ̇(t)

]
+
[cf
m

]
uL(t)

The measured output is the lateral acceleration γL, the
entry command is the steering angle uL, the states are the
side slip angle β and the yaw rate ψ̇, and we consider the
wind force as an unknown perturbation signal Fw.

The fault considered in this application is an actuator
fault, that occurs on the actuator. Let ρ1 = 1

v and ρ2 = 1
v2 ,

the LPV state space representation in this case becomes :{
ẋ = A(ρ)x+B(ρ)(u+ f) + Ed(ρ)d
y = C(ρ)x+D(ρ)(u+ f)

(31)

Here, only two parameters are variant and they affect
matrices A, B, Ed and C, then:

A(ρ) = A0 + ρ1A1 + ρ2A2

B(ρ) = B0 + ρ1B1

Ed(ρ) = Ed,0 + ρ1Ed,1
C(ρ) = C0 + ρ2C1

(32)

Since the output matrices are parameter dependent, the
transformation described in Remark 1 can be performed.

In this example, a velocity range is considered: v(t) varies
between 20 and 40 km/h. A polytope of 2N = 4 vertices
can be constructed:

ω1 =
[
ρ
1
ρ
2

]
, ω2 =

[
ρ1 ρ2

]
,

ω3 = [ρ1 ρ2] , ω4 =
[
ρ
1
ρ2
]
.

(33)

Now, noticing the relation between the varying parame-
ters: ρ2 = ρ21, the vertex ω4 =

[
ρ
1
ρ2
]

is not required
since the 3 other vertices are sufficient to characterize the
parameter definition. Then the polytope could be reduced
to only three vertices: ω1, ω2 and ω3. This method has
been considered in Robert et al. (2010)

The polytopic coordinates could be obtained by solving
the following matrix equality:

ρ̄1

ρ
2

ρ
1

ρ̄2

ρ2 = ρ21

ω4

ω1 ω2

ω3

Fig. 2. Illustration of the polytope reductionρ1 ρ1 ρ1ρ
2
ρ
2
ρ2

1 1 1

α1

α2

α3

 =

[
ρ1
ρ2
1

]
(34)

In this case, the resulting residual is calculated according
to (4):

r = α1r1 + α2r2 + α3r3 (35)

where ri is the residual obtained from the observer at
vertex ωi
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Fig. 3. System output: Lateral acceleration [m/s2]
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Fig. 4. System command input: Steering Angle [rad]

Applying the algorithm for the design of the observer:

First, define the loop shaping filter: suitable Ffadd matrix
is chosen for the additive filter. Let

Ffadd = [.06] ,

and

FH,1(s) = FH,2(s) =

(
s/.05 + 1

s/7 + 1

)2

Then, choose a value of poles assignment for a time
response of less than 0.5 second: Ωmax = −6



And following the steps 3) to 5), the resulting LMIs as
detailed in section IV are solved using SeDuMi and the
LPV fault detection observer can be designed, meeting the
H−/H∞ and time constraints objectives.

The result of the design is given in figure 6. For a fault
that occurs between t = 43 and t = 48 s, the residuals
raises alarming a fault detection.
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36 38 40 42 44 46 48 50 52

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

residual signals

time [s]

re
si

du
al

s

Fig. 6. Residuals signal

6. CONCLUSION AND FURTHER WORK

The technique presented in this paper provides a frame-
work for generating a class of fault detection observers for
LPV systems.

Several time- and frequency-domain specifications have
been expressed as LMI constraints on the observers’ state-
space matrices. These analyses are then used for multi-
objective synthesis purposes. A compromise of these ob-
jectives is proposed as a criterion to minimize. It is for-
mulated an LMIs feasibility problem. The solution of the
optimization problem can be found by using efficient LMI
solver. An example with real data is given to validate this
approach.

In future work, this design can be be applied to critical
situation detection in lateral vehicle dynamics. The ideas
presented here can be generalized for uncertain LPV sys-
tems, and quasi LPV system. LPV-Fault tolerant control
is also one possible extension of this work.
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