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Abstract 

In this paper, the propagation of SH (shear horizontal) wave in the periodically-layered piezomagnetic structure is studied 
theoretically. Both the dispersion equation and transmission coefficients are derived to reveal the wave behavior when the 
piezomagnetism is ignored or the magnetic circuit is closed and open. The zero-order mode of the piezomagnetism-ignored 
single layer is not dispersive and every higher order mode is dispersive with a cut-off frequency. Same features are found for 
the closed and open cases, except that the zero-order mode of the latter case is dispersive. The pass bands of the 
piezomagnetism-ignored periodically-layered structure appear when the normalized frequency is an even integer under the 
normal incidence, and new stop bands will appear from the pass bands when the incident angle increases. Same features are 
observed for the band gaps of the magnetically closed and open cases, except that the zero-order mode of the latter case is 
dispersive.  

Keywords: SH wave; periodic structure; dispersion; band gaps; piezomagnetism 

1. INTRODUCTION

Periodically-layered piezomagnetic structures are class of one-dimensional phononic crystal (PC) whose material 
parameters are periodically arranged in space. Under certain conditions, these hetero structures exhibit many amazing 
properties including band gaps, negative refraction of elastic waves etc. All these properties make these PCs very promising 
to potential applications, such as wave filters, sonic lenses and so on.  

The PCs have received extensive attention since they were investigated for the first time by Kushwaha et al. [1] twenty 
years ago. In this seminal work, it was established that the three-dimensional (3D) PCs have many amazing properties which 
cannot exist in nature; later the two-dimensional (2D) and one-dimensional (1D) PCs were analyzed, and it was shown that 
both have identical features as well [2-4]. These features may concern any type of waves, including the longitudinal wave, 
transverse wave [3], P-SV waves [4], etc.  

Recently, both piezoelectric(PE) and piezomagnetic(PM) materials were introduced to the PC to create special smart 
structures [5-9].The PCs with PE material attracted extensive attention, and the propagation of SH wave in such a type of PCs 
was discussed recently [10]. Simultaneously, as much as the piezoelectricity, the piezomagnetism which is the inverse of the 
magnetostrictive effect, have also attracted much attention. But most of the researches on this topic are focused on the 
magnetoelectric conversion in composite structures made of PE and PM materials [11,12]. However, the interaction between 
the wave propagation and the PCs with PM materials is still not enough understood. One knows that the piezomagnetism has 
to be included in the constitutive equation of the material, and thus that it plays a key role in the monitoring of the band gaps 
in such PCs. Although the propagation of the relatively complex P-SV wave in these systems has been analyzed, the 
relationship between the band gaps and the incident angle is still imperfectly known [9,13], even when the piezomagnetism is 
ignored [2, 10]. 

In the mid of the nineties, Auld et al. [14] have paid attention to the propagation of shear horizontal waves (SH) in 1D 
PC. They have shown that the opening of a band gaps occurs even in this relatively simple system. Later, Qian et al.[6] in 
2004 analyzed the propagation of SH waves in 1D PC made of a PE material and polymeric ceramics. Nie G Q et al.[15] in 
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2007 studied the propagation of SH wave in two layered PE/PM coupled plates, and pointed out the influences both of the PE 
material properties and of the ratios of the thicknesses of the PE layer to the PM layer on the propagation behaviors. More 
recently, Liu J X et al. [7] in 2010 analyzed the propagation of SH waves in PE-PM periodically layered structures. They 
have computed the dispersion relations for when the direction of propagation is either normal or parallel to the interface. 
Although the band gaps of the PE-PM PCs have been identified in these works [7,9,13], their relationship with the incident 
angle and the influence of the piezomagnetism to their location and magnitude have not been investigated to date. In a 
previous paper, we have analyzed the propagation of SH waves both in a single PE layer and in PEPCs [10]. However the 
PM material has its own properties which are totally different from the ones of the PE material and the knowledge of the 
wave propagation in the PM PCs is still lacking. 

Measuring the transmission coefficients is the straightest way to experimentally determine the band gaps for a direct 
comparison with the computation of the dispersion relation. It is therefore of great importance to study them. One can also 
compute the transmission coefficients but, due to the inherent instability of the transfer matrix, this could be particularly 
challenging [16, 17]. Global transfer matrix is one of the most useful methods to calculate the transmission coefficients, but 
the computing time may increase quickly with the increase of PC’s thickness. Meanwhile, it needs being properly 
implemented and it faces more challenges at high frequency [18]. Although the periodic PE and PM materials were recently 
considered as layered structures, the transmission coefficients are still difficult to be obtained [9,13].  

The magnetic boundary conditions for the PM material may significantly affect the propagation of the wave due to the 
introduction of piezomagnetism. This phenomenon has been theoretically analyzed for the P-SV wave and the relationship 
between the phase velocity and the magnetic boundary condition of the PE/PM bi-material plate has been established 
numerically [19]. However, little attention has been paid to the propagation of SH wave under different magnetic boundary 
conditions. 

In this article, the SH wave propagation in the periodically-layered PM structure is studied. We first describe the physical 
model and the basic formulation. The dispersion relation of a single PM layer and of a layered periodic structure will then be 
derived for different magnetic boundary conditions from which the corresponding transmission coefficients are obtained. 
Numerical results are given to demonstrate the characteristics of the SH wave propagation in both single and periodic layer of 
PM materials. 

2. PHYSICAL MODEL AND BASIC FORMULATION

2.1. Physical model 
Consider a steady anti-plane shear (SH) wave propagating in the x-y plane with its displacement along z-direction. The 

SH wave propagates from a semi-infinite material (I)through a transversely isotropic elastic material (A) or a transversely 
isotropic PM material (B) to another semi-infinite material (II) with the incident angle θ0 as shown in Fig.1(a). We suppose 
that media I and II are made of the same transversely isotropic elastic material with density ρI.  We further suppose that the 
single layer of material A or B has the density ρ and the thickness h. The PM material is magnetized along the z-coordinate. 
Moreover, we consider a periodic structure on which SH wave propagate (Fig. 1(b)). The periodic structure is made by 
alternating layer A (density ρA and thickness hA) and layer B (density ρB and thickness hB) as shown in Fig. 1(a). The unit cell 
of the periodic structure has a thickness d=hA+hB, and the number of cells is N, so that the total thickness is L=Nd. Numbers 1, 
2, 3…in Fig. 1(b) indicate the interfaces between the different layers. 

2.2. Basic formulation 

Since we are dealing with the propagation of elastic waves in the linear regime, only small dynamic perturbations around 
an equilibrium state due to the incidence of the SH wave, is considered. The constitutive equations of the transversely 
isotropic PM or elastic material under conditions of small wave perturbations, could be written as8,9,13,15,17 

,
( , , , 1, 2,3)

,
jp jpkl kl kjp k

j jkl kl jk k

c h H
j p k l

B h H
σ ε

ε μ
= −⎧

=⎨ = +⎩
 (1) 

with the dynamic stress σjp, the dynamic strain εkl, the dynamic magnetic field intensity Hk, the dynamic magnetic induction 
Bj, the elastic constants cjpkl, the magnetic permeability μk, the PM constants hjkl. Subscript 1, 2 and 3 stand for x-, y- and z-
coordinates respectively. The corresponding constitutive equations for the layers I, A, B and II can be found just by replacing 
the material properties of Eq. (1) with their corresponding material constants. The elastic constants A

jpklc , the permeability

constants A
jkμ , and the PM constants A

jklh are for the layer A. The superscript A of the constants can be replaced by B and I to 
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denote the corresponding material properties of the layers B and I. The general form of the dynamic differential equations for 
the transversely isotropic PM or elastic material are 

2 2
, ,, 0, ( , 1, 2,3)j jp p j ju t B j pρ σ∂ ∂ = = =   (2) 

 where uj is the dynamic displacement in the jth direction, a comma followed by a subscript p means space differentiation 
with respect to the p-coordinate. The dynamic strain tensor and the intensity of the magnetic field can be expressed as 

, , ,( ) / 2, , ( , 1, 2,3)kl k l l k k ku u H k lε ψ= + = − =    (3) 

 where ψ is the magnetic potential function. All the following variables are related to the dynamic part introduced by the 
wave excitation around the equilibrium state. The displacement u1, u2 and u3 and the magnetic potential function ψ are 
supposed to have solutions in the form  

1 2 3 30, ( )exp[ ( )], ( ) exp[ ( )],x xu u u U y i t s x y i t s xω ψ ψ ω= = = − = −       (4) 

where the angular frequency is ω (frequency f=ω/2π), the slowness along x-coordinate is sx, the time is t and the unit of 
imaginary number is i. U3(y) and Ψ(y) stand for the amplitudes of u3 and Ψ respectively. Substituting Eq. (4) into Eq. (3), the 
strain tensor and the magnetic field intensity are derived as 

11 22 33 12 23 3,1 31 3,1

1 ,1 2 ,2 3

0, 2 , 2 ,
, , 0.

u u
H H H
ε ε ε ε ε ε

ψ ψ
= = = = = =⎧

⎨ = − = − =⎩
 (5) 

Substituting Eq. (5) into Eq. (1), the stress tensor and the magnetic induction can be written as 

11 22 33

23 44 3,2 24 ,2 31 55 3,1 15 ,1 12

0, 0, 0,
, , 0,c u h c u h

σ σ σ
σ ψ σ ψ σ

= = =⎧
⎨ = + = + =⎩

                     (6a) 

1 15 3,1 11 ,1 2 24 22 ,2 33,2, , 0.B h u B h u Bμ ψ μ ψ= − = − =                    (6b) 

 Since we only consider transversely isotropic PM or elastic materials, h15=h24 in the coupling matrix. The partial 
differential equations could therefore be obtained from Eqs. (6) as 

3,2 11 23 15 2 ,2 15 23 44 2( ) / , ( ) / ,u h B h c Bμ σ ϕ σ= + Δ = − Δ              (7) 

where 2
44 11 15.c hμΔ = +  Substituting Eqs. (6) into Eq. (2), we obtain the partial differential equations 

2 2 2 2 2 2
23,2 44 3 15 2,2 15 3 11[( ) ], ( ).x x x xc s u h s B h s u sσ ω ρ ψ ω μ ψ= − + + = −         (8) 

If moreover we define the vector 3 23 2[ ]v Bη χ σ ′= where 3 3 /v u t= ∂ ∂  and / tχ ψ= ∂ ∂ , the state-vector 
form of equations could be derived from Eqs. (7) and (8) as 

,2 ,iη ω η= Π      (9a) 

where the system matrix Π is 

1 1
11 15

1 1
15 44

2 2
44 15

2 2
15 11

0 0
0 0

.
0 0
0 0

x x

x x

h
h c

c s h s
h s s

μ

ρ
μ

− −

− −

⎡ ⎤Δ Δ
⎢ ⎥Δ − Δ⎢ ⎥Π =
⎢ ⎥− −
⎢ ⎥
−⎢ ⎥⎣ ⎦

      (9b) 

Here Eqs. (1)-(9)can be applied to the materials of the layers I, A, B and II, if considering their respective physical properties. 
Waves propagating in the periodic structure satisfy the Bloch’s law as 

2 1 2 1,
i d

n neη ηΛ
+ −=                (10) 

where Λ is the periodic wave number. 
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3. CONTINUITY CONDITIONS

For the problem described in Fig. 1(b), the velocity v3, the stress component σ23, the parameter χ and the magnetic 
induction B are continuous along the interfaces. These boundary conditions lead to the following relations 

3 3 23 23 2 2, , , ,I A I A I A I Av v B Bσ σ χ χ= = = =                                                   (11a) 

for the interface 1, 

3 3 23 23 2 2, , , ,A B A B A B A Bv v B Bσ σ χ χ= = = =               (11b) 

for the interfaces 2,3…2N and  

3 3 23 23 2 2, , , ,B II B II B II B IIv v B Bσ σ χ χ= = = =  (11c) 

for the interface 2N+1. 

For the magnetically open boundary condition of the PM materials, the magnetic potential function ψ must be zero along 
interfaces 1, 2,3…2N+1. Under this hypothesis, the velocity v3 and stress σ23 still satisfy the Bloch’s law 

3 3

23 232 1 2 1

.i d

n n

v v
e

σ σ
Λ

+ −

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
     (12) 

Meanwhile the velocity v3 and the stress component σ23 also satisfy Eqs. (11). Similar procedures can be applied to analyze 
the continuity conditions for the problem described in Fig. 1(a). 

4. SOLUTION OF DISPERSION
The general analytical solutions of Eqs.(7) and (8) have been given by Qian et al.6while using a different approach, 

which could be summarized as 

( )
( )

( ) ( )
( )

( )
3 1 1

( )1
15 11 1 1 2 2

( )
23 44 1 1 15 2 2

2 11 2 2

,

( ) ,

,

i s y i s y i t s xy y x

i s y i s y s y s y i t s xy y x x x

i s y i s y s y s y i t s xy y x x x
y x

s y s y ix x
x

u C e C e e

h C e C e C e C e e

is c C e C e h s C e C e e

B s C e C e e

ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω

ψ μ

σ ω

ωμ

− −+ −

− − −− + − + −

− − −+ − + −

−+ −

= +

⎡ ⎤= + + +
⎣ ⎦

⎡ ⎤= − + − ⎦⎣

= − − ( ) ,t s xxω −

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

  (13a) 

with 2 2
44 44 44 15 11/ , ( ) /y xs c s c c hρ μ= − = + , where 1 1 2, ,C C C+ − + and 2C− are unknown coefficients, sy is the

slowness along y-axis, 44c is the piezomagnetically stiffened elastic constant. If the PM constant h15 approaches zero, the PM 
effect can be ignored for the SH propagation, and Eq. (13a) will become 

( )
( )

( )
( )

ˆ ˆ ( )
3 1 1

( )
2 2

ˆ ˆ ( )
23 44 1 1

( )
2 11 2 2

,

,

ˆ ,

,

i s y i s y i t s xy y x

s y s y i t s xx x x

i s y i s y i t s xy y x
y

s y s y i t s xx x x
x

u C e C e e

C e C e e

is c C e C e e

B s C e C e e

ω ω ω

ω ω ω

ω ω ω

ω ω ω

ψ

σ ω

ωμ

− −+ −

− −+ −

− −+ −

− −+ −

⎧ = +
⎪
⎪ = +⎪
⎨

= −⎪
⎪
⎪ = − −⎩

 (13b) 

with 2
44ˆ /y xs c sρ= − . These are the general solutions for the magnetically closed circuit boundary condition if

slowness ˆys is replaced by sy.
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For the magnetically open circuit boundary condition, the general solution of displacement u3 takes the same form as that 
in Eqs. (13a) and (13b), but the solutions for the potential function ψ and stress σ23 are different. They are found to be 

( )
( )
( )

( ) ( )

1 1 ( )15

11 1 11 21 1 12 22

44 1 1 (
23

2 1
15 11 1 11 21 1 12 22

,
( )

i s y i s yy y
i t s xx

s y s y s y s yx x x x

i s y i s yy y
y i t

s y s y s y s yx x x x
x

C e C eh e
C a e a e C a e a e

is c C e C e
e

h s C a e a e C a e a e

ω ω

ω

ω ω ω ω

ω ω

ω

ω ω ω ω

ψ
μ

σ ω
μ

−+ −

−

− −+ −

−+ −

− −− + −

⎡ ⎤+ +
⎢ ⎥=
⎢ ⎥+ + +⎢ ⎥⎣ ⎦
⎧ ⎫−⎪ ⎪= ⎨ ⎬

⎡ ⎤+ − + −⎪ ⎪⎣ ⎦⎩ ⎭

) ,s xx−

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

   (14a) 

with 

[ ]11 12 21 22, , , , , , / ,

, , .

i i i iy y y yx x x x
x

x x
x x y y x

a a a a e e e e e e e e

s h s h e e

δ δ δ δδ δ δ δ

δ δδ ω δ ω

− −− −

−

⎧ ⎡ ⎤= − − − − Δ⎪ ⎣ ⎦⎨
⎪ = = Δ = −⎩

 (14b) 

If the PM effect is ignored, Eq. (14a) can be simplified into 

( )ˆ ˆ ( )
23 44 1 1

0,

ˆ .i s y i s y i t s xy y x
yis c C e C e eω ω ω

ψ

σ ω − −+ −

=⎧⎪
⎨ = −⎪⎩

    (14c) 

After comparison of stress σ23 in Eqs. (13) and (14), it can be found that the influence of the magnetic boundary condition 
(closed or open circuit) appears only when the PM effect is not ignored. The analytical solutions described in Eqs.(13) and 
(14) are suitable for the layers I, A, B and II just by introducing there in the corresponding material properties.  

4.1. Single layer 

Consider the SH wave propagation in a single layer shown in Fig. 1(a) and let media I and II be vacuum. The magnetic 
induction B2 and stress component σ23 satisfy  

23 20, 0,Bσ = =   (15) 

at y=0 and y=h for the magnetically closed circuit boundary. Substituting Eq. (15) into Eq. (13a), the coefficients 2C +   and 

2C −  shall be zero. The expression of σ23 in Eq. (13a) can be rewritten in terms of cosine and sine functions, so that the SH 
wave’s dispersion equation could be derived as 

2

44

( )
2x
ms

c fh
ρ

= ± − , (m=0, 1, 2, 3…)     (16) 

where m is the mode number. If the PM effect is neglected, the elastic constant 44C should be replaced by 44C  in Eq. (16). If 
the magnetically open circuit boundary is considered, the stress component σ23 and the magnetic potential function ψ satisfy 

23 0, 0,σ ψ= =      (17) 

at y=0 and y=h. Substituting Eq. (17) into Eq. (14a), the SH wave’s dispersion equation becomes 

2 22 2
215 15

12 22 11 21
44 11 44 11

( ) ( ) 0is hyx x
y y

h s h sis a a e is a a
c cμ μ

−⎡ ⎤ ⎡ ⎤
− − − + − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
.      (18) 

If the PM effect can be neglected, Eq. (18) takes the same form as Eq. (16) with 44 44c c= .As the coefficients a11, a12, a21 and 
a22 depend on the slowness sx and sy, it’s challenging to decouple Eq. (18), and numerical calculations are needed for further 
analysis.  
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4.2. Periodic structure 

For SH wave propagating in the periodic structure displayed in Fig. 1(b), the 4×4 transfer matrices M could be derived 
for each layer A and B from the system matrix Ψ in Eq. (9) as [20] 

( )
A B

2 2 1 2 1 2

1

, ,

, exp ,
n n n nM M

M X X diag i hα α
α α α α β α

η η η η

ωλ
− +

−

⎧ = =⎪
⎨ ⎡ ⎤= Θ Θ =⎪ ⎣ ⎦⎩

 (α=A, B; β=1, 2, 3, 4)     (19) 

where the α
βλ  and Xα are respectively the eigen value and eigenvector of the system matrix Πα for the layer α. If the general

velocity vector v  and stress vector σ are set as [ ]3 'v v ψ=  and [ ]23 2 'Bσ σ=  respectively, the following 4×4

compliance matrices could be derived from Eq. (19) as 

2 1 2 1 2 2A B

2 2 2 1 2 1

, ,n n n n

n n n n

v v
S S

v v
σ σ
σ σ

− −

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
   (20a) 

where the compliance matrix reads 

1 1
21 22 21

1 1
12 11 21 22 11 21

( ) ( )
( ) ( )

M M M
S

M M M M M M

α α α
α

α α α α α α

− −

− −

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

, (α=A or B)     (20b) 

 In Eq. (20b) jpM α  ( j, p=1, 2) is the jth row and pth column 2×2 sub-matrix of Mα. The cell compliance matrix SC of the
periodic structure can be derived from Eq. (20) as 

A A B A 1 A A B A 1 B
C 11 12 11 22 21 12 11 22 12

B B A 1 A B B B A 1 B
21 11 22 21 22 21 11 22 12

( ) ( )
( ) ( )

S S S S S S S S S
S

S S S S S S S S S

− −

− −

⎡ ⎤+ − − −
= ⎢ ⎥− − −⎣ ⎦

,     (21a) 

with 

2 1 2 1C

2 1 2 1

n n

n n

v
S

v
σ
σ

− −

+ +

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
.    (21b) 

The jpSα  ( j, p=1, 2) is the jth row and pth column 2×2 sub-matrix of Sα. After the substitution of Eq. (21) into Eq. (10), the
dispersion equation of the periodic structure is obtained as 

C 2 C C C
12 11 22 21( ) ( ) 0i d i dS e S S e SΛ Λ+ − − = .     (22) 

When considering the magnetically open circuit boundary, the 2×2 transfer matrices for each layer of the periodic structure 
can be derived as 

A A A
3 3A A

A A A
23 232 2 1

cos( ) sin( ) / ( )
,

sin( ) cos( )
y y y

y y yn n

v v i Z
M M

iZ
δ δ

σ σ δ δ
−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
,    (23) 

for the layer A with A A
Ay yh sδ ω= , A A 2 A

A ( )y sh yZ c sρ= , A A 2 21/ ( )y sh xs c s= − , A A
44 A/shc c ρ= , and 

B B
B

3 3B B
B B B B

2 223 232 1 2

2 sin( ) 1,
i iy y

y

i i i iy y y yn n

v v e e i
M M

e e e e

δ δ

δ δ δ δ

τ ς δ
σ σ τ ςτ ς τ ς

−

− −
+

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ +⎣ ⎦ ⎣ ⎦ − +⎣ ⎦
,    (24) 

for the layer B with 
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B B B B B B B
12 22 11 21 B B

B B 2 2 B B 2 B B B 2 B B B
15 11 B 44 B

( ), ( ), , ,

1/ ( ) , ( ) / , ( ) , / .
y x y x x x y y

y sh x x x y sh y sh

Z iZ a a Z iZ a a h s h s

s c s Z s h Z c s c c

τ ς δ ω δ ω

μ ρ ρ

⎧ = + − = − − = =⎪
⎨

= − = = =⎪⎩
If the PM effect is ignored, the transfer matrix MB takes the same form as MA. The cell transfer matrix MC of the periodic 
structure satisfies 

3 3C C B A

23 232 1 2 1

,
n n

v v
M M M M

σ σ
+ −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
.     (25) 

After the substitution of Eq. (25) into Eq. (12), the dispersion equation of the periodic structure is expressed as 

B A 0.i dM M e Λ− =        (26) 

5. SOLUTION OF TRANSMISSION COEFFICIENTS
For the problem described in Fig. 1(b), the displacement for the semi-infinite layers I and II can be respectively 

expressed as 

I I I ( )( ) ( )I II
3 3, ,i s y i s y i s y Li t s x i t s xy y yx xu a e a e e u b e eω ω ωω ω− −− −+ − +⎛ ⎞= + =⎜ ⎟

⎝ ⎠
                                 (27) 

where I I 2 21/ ( )y sh xs c s= − , I I
44 I/shc c ρ= . a+, a- and b+ are unknown coefficients. The magnetic potential function for

layers I and II are assumed to read respectively  

( ) ( ) ( )
I I II II( , , ) , ( , , ) ,s y i t s x s y L i t s xx x x xx y t C e e x y t C e eω ω ω ωψ ψ− − − −= =   (28) 

where CI and CII are unknown coefficients. The vector η  along interfaces 1 and 2N+1 could then be derived as 

1 I 2 1 II

I I II II

, ,

1 / 0 ', 0 0 / ',
Ni a W i a W

C a C a

η ω ζ η ω ζ

ζ ϑ ζ ξ

+ +
+

+ +

⎧ = =⎪
⎨ ⎡ ⎤ ⎡ ⎤= =⎪ ⎣ ⎦ ⎣ ⎦⎩

  (29a) 

where the transmission coefficient ξ= b+/a+, the transmissivity T=|b+/a+|2,the reflective coefficient ϑ = a-/a+, and the
reflectivity R=|a-/a+|2. The matrix W is expressed as 

I I
I 44 I 44

I I
11 11

1 1 0 0
0 0 1 1

0 0
0 0 x x

W
s c s c

is isμ μ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

.     (29b) 

If the continuity conditions are considered, the total compliance matrix ST of the periodic structure could be derived by a 
recursive algorithm [21], and it is found as 

T T
1 1T T 11 12

T T
2 1 2 1 21 22N N

v S S
S S

v S S
σ
σ+ +

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, = .    (30) 

If Eq. (30) is substituted into Eq. (29), one finds 

T T 1 T T T 1 T
1 22 12 21 22 12 11

I II T 1 T 1 T
12 12 11

( ) ( )
,

( ) ( )
S S S S S S S S

W M W M
S S S

ζ ζ
− −

−
− −

⎡ ⎤−
= = ⎢ ⎥−⎣ ⎦

.      (31) 

The transmission coefficients can be calculated using Eq. (31). If the magnetically closed circuit boundary is considered, the 
total transfer matrix MT of the periodic structure is derived as 
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( )
T T

3 3T T B A 11 12
T T

23 23 21 222 1 1

, = =
N

N

v v m m
M M M M

m mσ σ
+

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.    (32) 

After combining Eqs.(32) and (29), the transmission coefficients can be derived as 
2 T T T T T T T T

I 2 I12 11 22 21 12 21 11 22
I2 T T T T 2 T T T T

12 11 22 21 12 11 22 21

( ) 2 ( ), ( )
( ) ( ) sh y

Z m Z m m m Z m m m m Z c s
Z m Z m m m Z m Z m m m

ξ ϑ ρ+ − − −
= = =

− + + − + +
, .                 (33) 

In terms of the problem depicted in Fig. 1(a), Eqs. (27) and (28) are still sufficient to describe the displacement and the 
magnetic potential function for layers I and II. Therefore, the similar procedures could be applied to calculate the 
transmission coefficients using Eqs. (29)-(33). 

6. NUMERICAL RESULTS AND DISCUSSION

 In order to validate the theoretical solutions of the dispersion equation and transmission coefficients derived in the 
previous sections, the elastic properties of polythene and the PM material of Terfenol-D are chosen for the numerical 
calculation. Their physical parameters are given in Table I as below.  
TABLE 1. Material properties of Terfenol-D and polythene. 

Properties c44, c55 (109N/m2) ρ (kg/m3) h15,h24 (N/Am) μ11, μ22  (10-6Ns2/c2) 

Polythene 1.28 1180 - 1.26

Terfenol-Da 15.87 9100 166.29 2.865
a Reference [22] 

In the next section, the numerical results for the single layer are firstly calculated and analyzed, and those for the 
corresponding periodic structures are then presented.  

6.1. Single PM layer 

For sake of easier understanding, the SH wave propagation in the single PM layer (Fig. 1(a)) is considered in this 
subsection. The SH wave dispersion curves are calculated when the piezomagnetism is ignored, or the magnetic circuit is 
closed and open. As shown in Fig. 2, the vertical axis corresponds to the slowness sx of the SH wave along x-direction, where 
as the horizontal axis corresponds to the frequency-thickness product fh and normalized wavelength h/λe by 

B/ /e shh fh cλ = .Here λe is the wavelength when the piezomagnetism is ignored, and B /e shc fλ = . First, one needs getting 
insight on the dispersion curves of the PM plate when the piezomagnetism is ignored (dotted dashed lines in Fig. 2). These 
curves are calculated using Eq. (16) with the piezomagnetism ignored elastic constant c44. From top to bottom, these curves 
correspond respectively to different SH modes with the mode order numbered m from 0 to 5. The zero-order SH mode (m=0) 
is not dispersive with a constant maximum slowness of the bulk SH wave 44/ cρ . It may be regarded as a SH skimming 
wave along x-axis with no wave penetration in the thickness of the plate. Every higher order SH mode (m>0) is dispersive 
with a cut-off frequency or wavelength. The cut-off wavelength is found to be 2h/m, i.e. the ratio of twice the thickness h to 
the mode number m. These higher SH wave modes approach the zero-order mode in the high frequency or small wavelength 
limit with the same physical nature. 

The dispersion curves of the magnetically closed PM plate (thick solid lines in Fig. 2 ) calculated using Eq. (16), have 
the same feature as that of the piezomagnetism ignored situation described in the preceding paragraph with the cut-off 
frequency shifted to the higher value domain and the maximum slowness to the smaller value determined by the 
piezomagnetic-stiffened elastic constant ĉ44 (ĉ44 > c44). The dispersion curves for the piezomagnetism ignored or the magnetic 
closed PM plate well agree with former work [23]. The dispersion curves of the magnetically open  PM plate (dashed lines in 
Fig. 2) calculated using Eq. (18), are of quite similar nature as those determined within the piezomagnetism ignored and 
magnetically closed  situations, except that the zero-order SH mode becomes dispersive in that case. The difference comes 
from the coupling of the magnetic and elastic fields that introduces the nonzero term h15 in Eq. (18). If h15 approaches zero, 
the dispersion curves correspondingly becomes those of the magnetically closed case.  

To further reveal the properties of the single layer, the transmissivity or the reflectivity of the SH wave at normal 
incidence from the Layer I is calculated. The reflectivity curves corresponding to the three cases depicted in Fig. 2 are 
calculated using Eqs. (29) and (33), in which the incident angle θ0 is set to zero. The same horizontal coordinates and similar 
curve types are chosen for comparison. As shown in Fig. 3, the reflectivity curve for the piezomagnetism ignored PM plate 
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(dotted dashed lines in Fig. 3) goes to zero when the wavelength λe is equal to the ratio of the mode number m(1,2, 3…)  to 
twice the thickness h, which corresponds to the mth order of the SH wave mode at sx=0 (dotted dashed lines in Fig. 2). This 
means that the SH waves can fully penetrate to the layer II when there is a corresponding solution in the dispersion curve. On 
the other hand, the SH wave undergoes total reflection if there is no solution in the dispersion curve as the reflectivity R 
approaches the value of one. Same features can be observed for the reflectivity curves calculated for the magnetically closed 
(solid lines in Fig. 3) and magnetically open  (dashed lines in Fig.3) PM plate.  

Let us now consider the reflectivity spectra of the SH wave when it is incident from the layer I. The reflective spectra 
corresponding to the three cases in Fig. 2 are calculated using Eqs. (29) and (33). For further comparisons with experiments, 
the vertical coordinate is set to be the incident angle θ0 instead of the slowness. This parameter can be switched to the 
slowness sx by A

0sin /x shs cθ= . As shown in Fig. 4(a), the reflectivity of the piezomagnetism ignored PM plate goes to zero
when there is a corresponding solution in the dispersion curve; the reflectivity approaches one if there is no solution in the 
dispersion curve. The dark lines (Fig. 4(a)) of various SH modes in the spectra are identical to the corresponding dispersion 
curves (dotted dashed lines in Fig 2). The zero-order SH wave is excited when the incident angle reaches the critical angle 
52o, as shown in Fig. 4(a).  

Same features can be observed for the reflective spectra calculated for the magnetically closed (Fig. 4(b)) and 
magnetically open (Fig. 4(c)) conditions, except that the dark lines at high incident angle in Fig. 4(b) is slightly small in the 
spectra to the corresponding dispersion curves (solid lines in Fig. 2) for the influence of the magnetic permeability of the 
layer I . Since the occurrence of piezomagnetism increases the shear velocity of the PM material, the fundamental cut-off 
frequency or wavelength is different from the case where the piezomagnetism is ignored. The fundamental cut-off 
wavelength λe in Fig. 4(a) must be replaced by the piezomagnetism increased wavelength λp (

B /p shc fλ = ) as shown in Figs. 
4(b) and (c). For the magnetically closed PM plate (Fig. 4(b)), the cut-off wavelength is found to be 2h /m. For the 
magnetically open PM plate (Fig. 4(c)), the cut-off wavelength is found to be 2h/m for even number modes, and slightly 
below 2h/m for the odd number modes. The mismatch is inversely proportional to the frequency-thickness product when m is 
odd. The zero-order SH wave  is excited when the incident angle reaches the critical angles 39.5o or 42o as shown in Fig. 4(b) 
Fig. 4(c) respectively.  

6.2. Periodic structure 

The comparison of the corresponding dispersion curves and reflective spectra of a single PM layer when the 
piezomagnetism is ignored, the magnetic circuit being closed or open, have clearly revealed the complex behavior of the SH 
wave propagation. In this subsection, we show that even more complicated phenomena happen when one considers the 
periodically-layered structures. To calculate the band gaps and the transmission coefficients for the corresponding situations, 
we have considered a periodic structure featuring 20 unit cells, as shown in Fig. 1(b). The thickness of the elastic layer A is 

assumed to be A
0/ (4 )A shh c f= where the bulk shear velocity is A A

44 A/shc c ρ= ; the thickness of the PM layer B is 

assumed to be B
0/ (4 )B shh c f= , and it becomes B

0/(4 )shc f  if the piezomagnetism is ignored. 

As already done in the section devoted to the single PM plate, the normal incidence is firstly considered for the periodic 
structure. Band gaps of the periodic structure are calculated using Eqs. (22) and (26). As shown in Fig. 5, the horizontal 
coordinate is the normalized periodic wave number Λd/π and the vertical coordinate is the normalized angular frequency 
ω/ωe. Here ωe is the primary angular frequency of the periodic structure when the layer B is exempt of piezomagnetism, and 

A B
A B/( / / )e sh shh c h cω π= + . When the piezomagnetism accounted for, the primary angular frequency is identified as ωp 

instead of ωe, and A B
A B/ ( / / )p sh shh c h cω π= + .

We first have analyzed the band structures in the case where the piezomagnetism is ignored. As show in Fig. 5(a), stop 
bands appear regularly when ω/ωe is an odd integer while pass bands appear regularly when ω/ωe is an even integer. Same 
features can be observed for the band gaps when the PM layer B is under magnetically closed boundary condition (Fig. 5(b)). 
The widths of the stop bands are respectively 1.2ωe and 1.28ωp for the first two cases. The small difference in the band width 
is caused by the different ratio of SH wave impedances of the layer B to that of the layer A, which are respectively 9.78 and 
12.4. When the magnetic boundary condition changes from the closed circuit to the open circuit (Fig. 5(c)), the band gap 
changes in a large amount, from ω/ωp=1.04 to 1.39. 

We have also calculated the transmissivity of three corresponding cases in Fig.5 for potential experimental verification. 
As shown in Fig. 6(a) for the piezomagnetism ignored case, the stop bands open up when the transmissivity T is zero, 
whereas a pass band appears when the transmissivity T is different from zero. The band structures are identical to those 
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calculated by the dispersion equation (Fig. 5(a)).Similar features can be found for the magnetically closed (Figs. 5(b) and 
6(b)) and open cases (Figs. 5(c) and 6(c)).  

As we did for the single PM plate, we now consider the case of the periodic structure excited at oblique incidence. The 
band gaps of three corresponding cases to the ones depicted in Fig. 5 are determined using Eqs. (22) and (26). We first 
analyze the band structure of the periodic stacking when the piezomagnetism is ignored (see Fig. 7(a)). The vertical 
coordinate is for the incident angle θ0, and the horizontal coordinates correspond respectively the frequency-thickness 
product fhB and the normalized angular frequency ω/ωe. As noticed by Fin. Fig.7(a), the pass bands (shown in black color) 
exist when ω/ωe is even with θ0 being zero, while the stop bands (shown in white color) exist when ω/ωe is odd. This is in 
good agreement with the corresponding results of the normal incidence. As θ0 increases, new stop bands emerge from the 
original pass zones except for the first-order pass band. When the incident angle is above the critical angle of 52o, the y-
coordinate displacement component of the wave in the layer B shall decay exponentially, since the bulk shear wave velocity 
of the polythene is smaller than that of the Terfenol-D. 

Similar features can be observed when the PM layer B of the periodic structure is magnetically closed (see Fig. 7(b)) or 
open (see Fig. 7(c)). As shown in Fig. 7(c), affected by the magnetically open circuit, the normalized frequency does not 
strictly take the feature as that shown in Fig. 7(a). Small stop bands arise when ω/ωp is close to 2 or 6 with θ0 being zero. The 
critical angle of the three cases can be taken the same as their corresponding ones, and are respectively 52o, 39.5o and 42o.  

We have also calculated the reflective spectra of the three corresponding cases depicted in Fig. 7 for potential 
experimental verification. The situation when the piezomagnetism is ignored (Fig. 8(a)) is first analyzed. The stop bands exist 
where the reflectivity is equals to unity, and these stop bands (Fig. 8(a)) are in good agreement with those derived from the 
dispersion relation (Fig. 7(a)). Same features are found for the magnetically closed (Figs. 7(b) and 8(b)) or open cases (Figs. 
7(c) and 8(c)).  

7. CONCLUSIONS

In this article, the propagation of SH wave in a single PM layer and in a periodically-layered PM structure is studied. 
Theoretical solution, numerical calculation and analysis allowed drawing the following conclusions: 

In terms of the dispersion curves in a single plate when the piezomagnetism is ignored, the zero-order SH mode is found 
to be not dispersive with a maximum slowness, while any higher order SH mode is dispersive with a cut-off wavelength of 
the division of mode number m to be twice the plate thickness. Identical features are found for the dispersion curves of the 
magnetically closed and open situations, except that the cut-off frequency of the former case shifts to a relatively high value 
and the zero-order SH mode of the latter case is gets dispersive. The SH wave can fully penetrate the single PM layer when 
there is a corresponding solution in the dispersion curve; in contrast, it is fully reflected if there is no solution in the 
dispersion curve, the piezomagnetism being ignored, or the magnetic circuit being closed or open. 

In the case of the periodically-layered PM structure, and when the piezomagnetism is ignored, stop bands appear if the 
normalized frequency is an odd integer for the normal incidence; , correspondingly, pass bands cover the reverse areas. New 
stop bands open up where the pass bands exist and separate them. Similar feature are observed for the band gaps of the 
magnetically closed and open situations, except that the critical angle in the former case becomes smaller and the zero-order 
SH mode in the latter case is dispersive. In the case where the piezomagnetism is ignored, or where the magnetic circuit is 
closed or open, the stop bands of the periodic structure change from zero to a maximum. On the other hand it goes to zero as 
the geometric ratio ranges from zero to unity. Besides, the stop bands repeat such a cycle as the normalized frequency 
increases under the corresponding critical angles.  

The above theoretical findings may help designing phononic crystals for potential applications, and therefore corresponding 
experimental verifications are required to realize the expected applications. The corresponding wave propagation for a two-
dimensional case will be more meaningful and practical, and the extension to the two-dimensional case is going to be 
considered.    
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Figure Captions 

FIG. 1. Schematic diagram of SH wave propagating through (a) a single layer and (b) a periodic structure. 

FIG. 2. SH wave dispersion curves of the single PM layer when (1) piezomagnetism ignored (dot dashed lines), (2) magnetic closed (thick 
solid lines) and (3) magnetic open (dashed thick lines). 

FIG. 3. Reflectivity of the normal incident wave for the single PM layer when (1) piezomagnetism ignored (dot dashed lines), (2) magnetic 
closed (solid lines) and (3) magnetic open (dashed lines). 

FIG. 4(a). Reflective spectrum of the incident wave for the single PM layer when piezomagnetism ignored. 

FIG. 4(b). Reflective spectrum of the incident wave for the single PM layer when magnetic closed. 

FIG. 4(c). Reflective spectrum of the incident wave for the single PM layer when magnetic open. 

FIG. 5. Band structures of the normal incident wave for the periodic structure when the PM layer B (a) ignored piezomagnetism, (b) 
magnetic closed, and (c) magnetic open. 

FIG. 6. Transmissivities of the normal incident wave for the periodic structure when the PM layer B (a) ignored piezomagnetism, (b) 
magnetic closed, and (c) magnetic open. 

FIG. 7(a). Band structures of the incident wave for the periodic structure when the PM layer B ignored piezomagnetism (stop bands in 
black). 

FIG. 7(b). Band structures of the incident wave for the periodic structure when the PM layer B magnetic closed (stop bands in black). 

FIG. 7(c). Band structures of the incident wave for the periodic structure when the PM layer B magnetic open (stop bands in black). 

FIG. 8(a). Reflective spectrum of the incident wave for the periodic structure when the PM layer B ignored piezomagnetism. 

FIG. 8(b). Reflective spectrum of the incident wave for the periodic structure when the PM layer B magnetic closed. 

FIG. 8(c). Reflective spectrum of the incident wave for the periodic structure when the PM layer B magnetic open.
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Fig. 1 

Fig. 2 
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Fig. 3 

Fig. 4(a)
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Fig. 4(b) 

Fig. 4(c) 
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Fig. 5 

Fig. 6 
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Fig. 7(a)

Fig. 7(b) 
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Fig. 7(c) 

Fig. 8(a) 
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Fig. 8(b) 

Fig. 8(c) 




