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Abstract

We describe an analytical approach that allows calculating the trajectories of an
elastic beam within a two-dimensional phononic crystal-based gradient index
medium. The formalism takes into account the anisotropy along the lines of
inclusions where the equi-frequency contours may depart from a circle. We then
report on a numerical and experimental study of the focusing of flexural Lamb
waves in gradient-indexed phononic crystals. The silicon/air heterostructures
that we considered for this work features an index that is obtained through the
modulation along one axis of either the diameter of the air inclusions or their
spacing. In both cases, numerical and experimental results agree very well. The
formalism that we have developed explains well the location, shape and size of
the focus in either system.

Keywords: phononic crystal, focusing, ray trajectory, Lamb waves, anisotropy

1. Introduction

Focusing of elastic waves via flat phononic lenses is definitely one of the most striking
phenomena that arise from the artificial periodicity of phononic crystals (PCs). After the first
experimental demonstration of the phenomenon was achieved in 2008 [1], an intense activity
has developed to optimize the geometrical and physical parameters of acoustical lenses in order
to realize the ultimate spatial resolution [2-7]. These promising perspectives for acoustic
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imagery relate to the fact that PCs are systems in which one can control the wave propagation at
the wavelength scale, making it possible to overcome the diffraction limit. Actually, it is not
possible for a conventional lens to produce an image containing details that are finer than half
the wavelength of the light or of the sound being focused. This drawback is called the ‘Abbé
diffraction limit’, and applies whatever the waves are, electromagnetic and elastic as well. This
is the consequence of the evanescent waves emerging from the object but that do not contribute
to the resolution of the image because of the exponential decay of their amplitude in any lens
made of a positive index material. In contrast, in lenses where negative refraction comes about,
the evanescent waves have their amplitude that increases during the transmission through the
medium. After emerging from the lens, their amplitude decays again down to their initial level
that is reached in the image plane. However, because they can still contribute to the resolution
of the image, the Abbé diffraction limit is overcome. Another consequence of the exponential
decay of the evanescent waves emitted by the source is that the super-resolution applies only to
near-field imaging. Actually, if the source is located at a distance from the lens that is greater
than one wavelength, the decay turns out to be prohibitive for the evanescent component to
reach the lens and the super-focusing effect cannot be achieved; this may constitute a severe
limitation for potential applications.

At the starting point of the super-focusing effect is the negative refraction of ultrasounds
that can be observed either in elastic metamaterials or in PCs. The former are constituted by a
set of local resonators embedded into a matrix; the dimensions of these resonators must be
much less than the acoustic wavelength in the host media, so that the effective refractive index
can be defined through homogenization theories. However, for this condition to be fulfilled, the
local resonators must be coupled to the matrix through a medium with very specific physical
properties, making these artificial structures hard to elaborate. As regards the PCs, the negative
refraction of elastic waves can be controlled through the band structure since this phenomenon
is the direct consequence of the bands folding and therefore of the negative slope of some
acoustical branches [8]: only elastic waves with frequencies above the first band gap can
contribute to the superlensing effect. Their wavelengths are then smaller than the period of the
PC lens and effective properties cannot be defined.

Using PC to focalize elastic waves with frequencies in the first branch of the Brillouin zone
where negative refraction effects are not involved, is however possible if considering gradient
index phononic crystals (GRIN PCs) [9-20].

These two-dimensional (2D) systems are engineered with a gradual variation of their
constitutive parameters (e.g., filling factors, geometry of the inclusions or material properties)
along one direction. As a result, they feature a sound velocity gradient along that direction,
making the focalization of an incident wave possible. Actually, when an acoustic beam
propagates through a 2D GRIN PC, it encounters redirection at every virtual interface between
layers, resulting in successive reorientations of the acoustic beam inside the structure. Thus, by
gradually modulating the parameters of a GRIN PC, one may create a focusing trajectory for the
acoustic waves [9-17]. In principle, this trajectory can be analytically calculated, at least for
some forms of the gradient. However, deviation between the focal distance predicted by the
theory and that derived from numerical simulations may be sometime significant, even in the
homogenization frequency range [9-11]. There are several reasons for this. First, the actual 2D
acoustic lenses feature discretized indices, which may be imperfectly represented by a
continuous gradient. However, this is probably not the most relevant reason since small
deviations of a few percent were observed for a wavelength only five times larger than the
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period [9—11]. The observed disagreement between the theory and the numerical simulations
can be explained to a larger extent by the overall shape of the equi-frequency contours (EFCs).
Actually, in PCs with large filling factors, the EFCs may depart from a circle, even at low
frequency [9-11], so analyzing the trajectories in terms of an effective index may not be
relevant. Instead, the effects of anisotropy are better described by considering both the group
velocity and the k vector as the local parameters [21]. Based on the same idea, a Hamiltonian
optics approach has been recently proposed to study light propagation in graded PCs in the
short-wavelength regime [22]. However, up to now, there have only been a few theoretical
works able to perform a quantitative analysis of the ray trajectory in the homogenization range
[23]. This is the reason why we address this issue in this work, where we describe a method that
allows analyzing the trajectory of an elastic beam propagating in a GRIN PC. Then we use this
physical model to analyze the focusing properties of 2D acoustical lenses, where the velocity
gradient is realized either by gradually modifying the lattice spacing or by varying the size of
the air inclusions along one direction of the PC. We present then an experimental investigation
of the focusing of the zero order anti-symmetric Lamb waves propagating through air hole/
silicon GRIN PCs with either of the two geometries and we compare their efficiency in focusing
flexural Lamb waves at sub-wavelength.

2. Ray trajectory analysis

Several refractive index profiles designed for focusing or collimating an elastic wave that enters
a GRIN PC have been proposed [9-20]. Deriving the trajectory y (x) of the waves without
carrying out any approximation is generally not doable. There is, however, an index profile
n (y) allowing for an exact determination of the acoustical rays: the transverse hyperbolic secant
profile, which can be formally written as [24]

n* () =1+ (ng — 1) sech’(8y), (1)

where ng is the index along the x-axis, at the center of the lens and ¢ is the gradient parameter. A
lens whose index features a hyperbolic secant profile is free of aberration, i.e., any ray normally
incident on the lens converges to a single point on the axis, at the focal length f,, which depends

only on ¢ through:
f,=r/24. (2)

The gradient index along y-axis obeying to equation (1) may result from the gradual
variation of the filling factor. This can be achieved by modulating either the diameter of the
cylindrical air inclusions or the distance separating two consecutive inclusions while keeping
their diameter uniform. In the former case, the GRIN PC has a square lattice whereas the unit
cell is rectangular in the latter case. Generally, as long as the wavelength is much larger than the
size of the unit cell, the medium can be considered as homogeneous and the group velocity can
be simply derived from the derivative of the corresponding dispersion curve at any location in
the GRIN PC. This allows in turn defining an effective index n.4 as being the average of the
index along I'X and along I'M directions [4, 9-12, 25].

We used a finite element method to compute the dispersion and the EFCs of Ay Lamb
mode in the case of periodic structures made of air cylinders into silicon plates having a
thickness 4. We first considered a rectangular unit cell whose dimensions were a along the
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Figure 1. First dispersion band of Lamb mode A, propagating in a Si/air phononic plate
with a rectangular lattice for different sizes of the unit cell along the y-axis.

x-axis and b along the y-axis. These axes were respectively parallel to the crystallographic
directions <100> and <010> of silicon’. A cylindrical hole with radius r was in the center of the
unit cell. To achieve an effective index with a hyperbolic secant profile, we have imposed
length b to gradually vary along the y-axis, whereas both parameters a and r kept as constant
values. This was equivalent to varying both the aspect ratio b/a and the filling factor along the
y-axis. The result for frequencies along the first branch is shown in figure 1 for different values
of the ratio b/a in between 1 and 2.09.

In all the calculations, the size of the unit cell along the x-axis and the thickness of the plate
were a=100 ym and /=110 um, respectively. The radius of the holes was kept constant to
r=40 ym. However, one should notice that, strictly speaking, GRIN PCs are not 2D phononic
crystals since they do not exhibit exact periodicity along the y-axis. Nevertheless, the dispersion
properties can be computed by considering as many reduced Brillouin zones as the number of
discrete values taken by the parameter b. All these reduced Brillouin zones extend over

[—7[/61, ﬂ/a] along I'X but the component k, takes values in intervals [—n/b, ﬂ/b] that are

different according to the value of b (see the inset in figure 1).

Then we considered the squared array, which was deduced from the preceding case by
setting a=>b. In that case, I'’X and XM have identical lengths in the reciprocal space and one
obtains a dispersion curve for each value of f (figure 2). The hyperbolic secant profile was
achieved by gradually varying the radius r of the holes, or equivalently, the filling factor f.

Note that we fixed the different geometrical parameters in such a way that they allow for
further comparisons between the two symmetries and that they remain compatible with
elaboration and experimental constraints. Actually, in the calculation, we used the parameters of
the lenses that we have elaborated for the experimental part of this work, namely ny=1.32 and
5=0.088 ¢ that turned out to represent the best compromise. However, anisotropy along some
rows of inclusions may occur and consequently the EFCs may depart from being circular along
these rows. In that case, equation (1) fails to describe the actual index profile since it does not
account for this anisotropy. In the present case, the anisotropy remains relatively weak. Indeed,
3 In all the computations, we took into account the elastic anisotropy of silicon of cubic symmetry. We used the
following physical parameter values (Elastic constants Cj; in units of GPa, mass density p in units of gem™):
C11=165.7, C12=63.9, C44=79.5, p=2.331 [26].
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Figure 2. First dispersion band of Lamb mode A, propagating in a Si/air phononic plate
with a square lattice for different values of the air inclusions radius.
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Figure 3. (a) Ray trajectory in a simplified GRIN PC made of five layers. P, P, and P3
indicate three different positions along the ray trajectory and ¢ is the angle between the
tangent to the ray trajectory and the x-axis; (b) the k vector gradually tilts from being
horizontal at P, to a direction with an angle 8, which depends on x, at P3. The tangential
component k, is conserved across the interface, as shown by the location dependent
EFCs; (c) k vector in a typical EFC with group velocity v, normal to the EFC. The
above representation is general and applies to any other ray trajectory in the lens.

in the square lattice, the anisotropy coefficient in the direction 6 between k and the x-axis,
defined as the ratio 5 () = [k ) — er] . k5, is maximum for @ = /4 where, depending on
the filling ratio, it takes a value between —0.03 (r=0.2a) and 0.07 (r=0.4a). As for the
rectangular lattice, the anisotropy coefficient has a maximum at an angle that depends on the
filling ratio but it always remains below 0.09. Still, as shown below, equation (1) is not factored
in the calculation of the ray trajectories, it was solely used to design both lenses.
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To calculate the ray trajectory within the GRIN PC of an elastic beam normally incident on
the lens, we first have defined ¢ as being the angle between the group velocity v, (tangent to the
trajectory) and the x-axis (figures 3(a) and (c)). The filling factor varying from one horizontal
layer to the next means one must compute the EFC in each layer, as depicted in figure 3(b).
Because of Snell’s law, which states that the component k, is conserved across the interface
between two consecutive layers, the initial k vector tilts gradually as the wave propagates in the
medium, from the horizontal direction to a maximum angle at the mid layer. In the general case,
the EFCs are not circular [10, 11] and the k vector makes an angle # with respect to the x-axis,
which is not equal to ¢ (figure 3(c)).

To account for this anisotropy, we state that the modulus of the k vector along a given row
of inclusions located at position y, may be written as:

k(y, 0) =kx O p(y. 0), 3)

where k., (y) is the k vector along I'X at position y, and p (y, 0) is a function whose value

deviates all the more from unity as the EFC departs from being circular.
The components of the wave vector k along the x- and y-axes are given by:

k. =k (y, 9) cos 0,
k,=k (y, 0)sin 6. 4)

To account for the effect of the local anisotropy, one must relate angles ¢ and 6. To this

.. . . . . ok,
end, it is sufficient to observe that the direction vector to the tangent to the EFC is (%, 5), the

group velocity, defined by v, = Viw (K), is normal to this tangent and points in the direction

. ok, ok, . .
given by a vector whose components are (ﬁ, _ﬁ)' Hence, the relationship between angles ¢
and 6 reads:
ok_ (k)"
tan p = —| —| . 5
7= " ( 20 ©)
In the direct space, v, is tangent to the trajectory and therefore:
d
tan @ = y (%) . (6)
dx

In the long wavelength limit, the value at x=0 of the x-component of the wave vector
varies continuously along the y-axis according to equation (1). Moreover, as a consequence of
Snell’s law, the component k, keeps a constant value all along the acoustical ray that originates
at position (x=0, y), which translates into:

k. =k} (). (7)

Finally, we used an iterative procedure to derive the ray path from equations (3)—(7).
Actually, for a given value of y and at each position along the x-axis, the angle 8 was derived
from equation (4) after setting k” (y) to an initial value, allowing in turn computing the slope ¢
using equation (5), from which the trajectory y(x) is obtained by numerically integrating
equation (6).
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Figure 4. EFCs at 5MHz (solid lines) and the corresponding fits derived from
equation (8) (circular markers) for a PC with the square symmetry and for different sizes
of the air holes.

To complete this procedure for both symmetries that we have considered, one must make
assumptions on the form of the function p (y, 9) appearing in equation (3).

2.1. Square lattice

In order to reflect well the anisotropy of the square lattice, the function p (y, #) must account
both for any departure from the circular shape of the EFC and for the four-fold axis

characterizing this class of symmetry. Introducing the dimensionless coefficient a (y) = %
™ X

in the definition of p (y, 0) allows satisfying the first requirement. On the other hand, we have
introduced a cosine function in the definition of p (y, #) in order to fulfill the condition of
periodicity of the wave vector, as 6 scans all angles within [0—27z] in the first Brillouin zone.
The analytical form of k (y, 8) that closest matches the EFCs, whatever the filling factor is
within the interval [0.07—0.5], corresponding to the actual samples that we have investigated
(see below), is:

1 — a(y) cos (49)
I —a®y) '

k(y, 0) = krx () (8)

The EFCs at 5 MHz for several values of the filling factor computed using a finite element
method (full lines) or derived from equation (8) (indicated by circular markers) are displayed in
figure 4. The agreement between both is excellent. We have also computed the EFCs using both
methods and setting the frequency to different values in between 3 and 13 MHz, i.e. close to the
lowest frequency of the incomplete band gap at point X in the first Brillouin zone (see r=0.4a
in figure 2): whatever the frequency and the filling ratio are, the agreement is equally good.
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Figure 5. EFCs at 5 MHz (solid lines) and the corresponding fits derived from
equation (9) (circular markers) for a PC with the rectangular symmetry and for different
aspect ratios b/a.

Deriving the trajectory y (x) within the GRIN PC is then straightforward. Indeed, one must
simply calculate both the derivatives of k, and k, with respect to @, using equation (4) and
equation (8) and then integrate their ratio according to equation (5) and equation (6).

2.2. Rectangular lattice

As with the preceding case, one can account for the anisotropy of the rectangular lattice by

introducing in the definition of p(y, 9) two dimensionless parameters, a (y) = % to
™ X

account for the difference in the lengths of the wave vector along I'X and I'M and
B (y) = 2% for the mismatch along I'X and I'Y. In addition, in the definition of p (y, 6), we

kry + krx
introduced a cosine function to account for the two-fold axis of the rectangular symmetry.
Considering both these requirements, we obtained the best fits to the computed EFCs with the
function:

1 — a(y) cos(46)
1 —a(y)

k(y, 0) = rm{ +pm[1 —cos(ze)]} ©)

As can be seen from figure 5, whatever the value of the aspect ratio b/a is in the sample, or
equivalently the filling factor in the range [0.24-0.5] that we have investigated, the fits to the
EFCs were as good as for the square lattice. Indeed, at 5 MHz, the largest deviation was less
than 2%; it appears along I'M for the aspect ratio b/a = 2.09.

Both equations (8) and (9) take into account the anisotropy along the lines of inclusions
where the EFCs may depart from a circle. Both remain valid as long as the EFC is a closed
curve and for any frequency below the first band gap in the dispersion curves that open at point
X and 13 MHz for the square symmetry (figure 2) and at point Y and 5 MHz for the rectangular
symmetry (see right panel in figure 1).
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Figure 6. Maximum of the out-of-plane displacement u, in a GRIN PC with a square
lattice (a) or with a rectangular lattice (b). Dashed lines are the ray trajectories derived
from the formalism described in section 2.

3. Numerical results

We used a finite element method (FEM) to calculate the out-of-plane component of the
displacements field associated to the zero order flexural Lamb mode propagating in the GRIN
PCs. a being the period along the x axis, the systems were designed to have a width along the y
axis of 17a for the square lattice and 16.5a for the rectangular lattice. Both samples had a length
of 120a. In addition, to best mimic the experimental situation and to avoid unwanted reflections
on the boundaries of the phononic plate, the structured part of the sample was surrounded by a
large area of homogeneous silicon, free of air inclusions. A line source vibrating at 5 MHz was
applied in front of the GRIN PCs. We compare in figure 6 the maximum amplitude of the out-
of-plane displacement u, in the GRIN PC with a square lattice (figure 6(a)) and with a
rectangular lattice (figure 6(b)). In these figures, the dash lines are for the ray trajectories
derived from the formalism established in the preceding section.

For the GRIN PC with the square lattice, FEM simulations predict the normal
displacement to be maximum at the distance 34.5a from the origin, almost twice the distance
of 18a derived from equation (2). Moreover, the amplitude along the x-axis is more than 90% of
its maximum value in between x =22a to x=40a (figure 6(a)). These spherical aberrations that
are not predicted by a simple theory of rays in a GRIN lens with a hyperbolic secant profile, are
the consequence of the non-circular shape of the EFC. Actually, in this case # and ¢ are not
equal, all the rays do not converge on a single point, and equation (2) is not relevant to calculate
the focus distance anymore. Consequently, the elastic energy spreads out along the x-axis and
the focal spot covers an area larger than expected.

As expected, the second maximum appears at x=103a, about three times the focal length
of 35a. The sound ray paths displayed in figure 6 explain the large spreading out of the elastic
energy along the x-axis. Indeed, the aberrations increase as the waves propagate and the
maximum amplitude on this second focus spot is only ~84% of the value measured on the first
one. At the same time, the normal displacement has a smoother profile along the x-axis.
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Similar features are observed for the spatial distribution of displacement in the GRIN PC
with rectangular symmetry (figure 6(b)). As in the previous case, the first focal point arises
around 33.5a, far from the theoretical value derived from the effective refractive index and
equation (2) (about 18a). However, this geometry leads to less spherical aberration, as can be
seen from the ray paths drawn in figure 6(b), and the elastic energy spreads out over a smaller
distance along the x-axis: the area where the amplitude is 0.95 times the maximum value
extends over 5a in the case of the rectangular lattice, against ~8a for the square lattice. This also
explains the lateral profile along the y-axis that turns out to be sharper with the rectangular
symmetry than it is with the square symmetry (see below). As expected, a second focus arises at
x=92a, about three times the focal length. The maximum amplitude of this second focus is
~0.80 times the maximum amplitude at the first focus, corresponding to a lessening similar to
what is observed with the square lattice.

4. Experimental results

In order to allow for relevant comparisons with the theory, two GRIN PCs were elaborated in a
110 um thick silicon plate according to the designs already described in the previous sections.
We used a non-contact laser based experimental technique [5] to excite the sample into
vibration and to measure the out-of-plane component of the displacement field at any location in
the GRIN PC. Ultra-short light pulses issued from a frequency-doubled (532 nm) Nd:YAG
were focused onto the sample after they have passed through an amplitude mask and an
imaging system. As a result, a series of fringes alternately bright and dark were produced and
because of the photoelastic processes, elastic waves were excited in turn. This technique allows
one to finely select any k vector in the first Brillouin zone by tuning the spacing of the light
fringes—or equivalently the wavelength of the elastic waves—with the imaging system. In all
the experiments described in this article, the excitation zone was located a few millimeters
ahead of the PC itself, in a uniform region of the sample free from any air inclusion, and we
fixed the carrier frequency at 5 MHz with a spectral width of about 1 MHz. Because of the large
number of fringes in the excitation spot and their length (~2.5 mm), both the direction and the
magnitude of the excited k vector were accurately defined and the elastic waves can be
considered as plane waves. We recorded the time dependence of the surface displacements at
any point of the sample, inside the GRIN PC using a Michelson interferometer in which the
light source was a He-Ne laser. One beam of the interferometer was focused on the sample
acting as one of the mirrors of the interferometer to a spot size of ~5 yum, whereas the reference
beam was reflected by an actively stabilized mirror. A high-speed photodiode collected the
interference pattern that was then digitized at 500 MS s~ by a digital oscilloscope. We obtained
a very good S/N ratio after averaging a few hundreds of scans. The microscope and the sample
were both mounted on translation stages in such a way that the probe beam could be scanned
across the sample with a precision of about 1 um. This noncontact technique allowed us to
record the out-of-plane component at any location on the surface of the sample with an accuracy
of a few pm and to study in detail the focalization of the acoustic waves into the GRIN PC.
We measured the wave propagation in the middle area of our GRIN PCs. We show in
figure 7 the displacement field recorded at three different times after the square symmetry
sample had been excited into vibration. A first focus is observed to be centered at a focal length
about x=32.5a (figure 7(a)), which is in good agreement both with the numerical results

10
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Figure 8. Amplitude of the out-of-plane displacement in a GRIN PC with the
rectangular lattice, measured at three different times.

(x=34.5a) and the ray trajectory analysis presented in section 2. Behind the focus spot, the
elastic beam is expected first to be divergent within the waveguide, as it is shown in figure 7(b),
and then to re-focus on a second point located at three times the focal distance of the lens at
97.5a (figure 7(c)). This is what is indeed observed, in good agreement with the numerical
results. We measured the maximum amplitude of the second focus to be about 0.68 times of the
first focal spot, which is a little less than the previous numerical case.

Very similar behaviors were observed with the experimental sample featuring the
rectangular symmetry (figure 8). We measured in this latter case a focal distance of ~28a,
slightly less than the focal distance of 32.5a measured in the previous sample. As expected, a
second focus is formed at x=90a with an amplitude of about 0.63 times the maximum value.
This is in good agreement with the corresponding numerical simulations.

The gain factor, defined as being the ratio of the maximum displacement at the focus to the
amplitude of the elastic wave measured close to the excitation area of the lens, allows for
quantitative comparisons between both structures. We found a gain factor of 3.5 (corresponding
to a maximum displacement of 21 pm at the focus) with the square lattice against 3.2 (a
maximum displacement of 16 pm) when using the lens with the rectangular lattice. These values
agree fairly well with the ones derived from the numerical simulations: 3.9 in the former case
and 3.6 in the latter case. Beside the smaller gain factor obtained with the rectangular lattice,
this system features a greater uniformity in the distribution of elastic energy inside the first
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Figure 9. Experimental maximum of the out-of-plane displacement u, in a GRIN PC
with a square lattice (a) or with a rectangular lattice (b). Dash lines represent the
calculated ray trajectories.

focus. Actually, we measured the average of the normal amplitude in the area wherein it is more
than 95% of the maximum value to be ~0.99 times of the maximum value for the rectangular
lattice against ~0.97 for the square lattice.

We show in figures 9(a) and (b) the measured maxima of the out-of-plane displacements
for the square symmetry and for the rectangular symmetry respectively. Whatever the symmetry
is, the amplitude is not homogeneous in between the two focal points. This is consistent with
our numerical results (see figure 6); above, we ascribed this feature to the spherical aberrations
at the second focus. We must also notice that the amplitude recorded within an area about 20a
long along the x-axis before the second focus is slightly less than expected from the simulations
(see figure 6): we measured a mean amplitude around 0.4 (in normalized units) instead of 0.5 if
we refer to the simulations. Several reasons may explain this small discrepancy, including the
slight coupling of the symmetric mode [10] or tiny irregularities in shape, sizes and spacing of
the holes, which may induce the non-coherent diffusion of the elastic waves onto the air
inclusions.

As regards the focalization efficiency of the acoustic lenses, it can be evaluated through the
profiles of the focal spot along both the x- and y-axes. In the left panel of figure 10, we show as
full lines the normalized longitudinal profiles achieved with the square lattice (figure 10(a)) and
with the rectangular lattice (figure 10(b)). We show the corresponding profiles along the y-axis
in figures 10(c) and (d) respectively. From these data, the full width at half maximum (FWHM)
was measured to be 74 along the x-axis. The experimental transverse size of the spot was 0.714
for the square lattice and 0.644 for the rectangular lattice. These values are in good agreement
with the ones derived from the numerical simulations: 0.844 in the former case and 0.754 in the
latter case, quite close to the Abbé limit of 0.54.

In addition, it should be noted that the formalism developed in section 2 also allows for a
quantitative analysis and efficiently predicting the waist of the beam. To show that, we have
drawn the ray trajectories for more than 3000 initial positions evenly distributed along the

12



New J. Phys. 16 (2014) 063031 J Zhao et al

0s (@)

06|
0.4
0.2
|
0.8
0.6 |
0.4 2 =
02|

0.8
0.6
0.4
| 0.2

ty of rays

08
0.6 &
0.4

0.2
0

max(u_) (a.u.)
ensi

0 10 20 30 40 50 -8-6-4-202468
X axis (a) y axis (a)

Figure 10. Normalized profiles of the out-of-plane component u, in the focus area. The
red lines are for the experimental data, the black lines are for the numerical simulations,
and the blue lines represent the density of rays (see the text). Along the x-axis: square
lattice (a); rectangular lattice (b). Along the y-axis: square lattice (c); rectangular lattice

().

y-direction in between +8a and we have computed the number of rays intersecting a segment of
a given length, sliding along a line parallel to the y-axis at position x =30a. This ‘linear density
of ray’ against the position of the segment is drawn as a blue line in figures 10(c) and (d). The
agreement with the experimental results and the FEM calculations is very good, except for the
peaks centered at y=+4qa that are not predicted by the model.

It is important to understand the physical reasons why the lateral profile along the y-axis is
sharper with the rectangular symmetry than it is with the square symmetry. Actually, the origin
of a better FWHM clearly lies in the smaller aberrations along the y-axis in the former case than
the ones founded in the GRIN PC with a square lattice. This follows from the dependence

against 0 of the anisotropy coefficient 7 (0) = [k (0) — kyy| - k

> which is very different
according to the symmetry. Indeed, for both symmetries and for any ray trajectory, the wave
vector Kk lies along a direction that makes an angle 6 with respect to the x-axis ranging between
0° and ~35° (see figures 6 and 9). In this range, for the rectangular symmetry, very little # (8)
depends on the aspect ratio b/a: as long as this ratio takes a value of no more than ~1.5, n (0)
varies almost linearly from 0 at 8 = 0° to a value comprised in between 0.05 (for b/a=1.37)
and 0.06 (for b/a=1) at 8=735°. This is in contrast to the situation encountered in the lens with
the square symmetry. In that case, 7 (6) varies quasi-linearly against 6 as well, but with a mean
slope, which is either positive or negative and strongly depends on the aspect ratio. As long as
the ratio r/a keeps values around ~0.3 or less, the anisotropy of the medium is mainly that of
crystalline silicon, whereas the anisotropy of the effective medium dominates for larger values
of the aspect ratio. Consequently, a greater spreading out of the rays, and a broader profile in
turn, occur with the square symmetry.

5. Conclusions
We have shown in this work that one can accurately determine the focal length, the size of the

focal spot, and the displacement distribution within a GRIN PC when accounting for the overall
shape of the EFCs or equivalently, for the local anisotropy if any, within a row of inclusions.

13



New J. Phys. 16 (2014) 063031 J Zhao et al

Being based on a geometrical approach, the ray analysis we have presented is
phenomenological in that it gives a full account of the observation although it is not derived
from a theory, however, it remains valid whatever the polarization of the waves is. Whereas the
paraxial ray equation [24] is well suited to accurately determine the focusing properties of a
GRIN lens only when the EFCs are circular [9], this ray analysis is more general and allows
accounting for both the position of the focus on the x-axis and for the extension along the y-axis.
It should also be noted that only real k vectors are considered in the formalism described in
section 2 and hence evanescent waves are not involved in the focusing processes.

From the experimental side, we have demonstrated the focusing of zero-order Lamb mode
at 5 MHz in GRIN PCs featuring two different designs. These heterostructures are free from
curved surfaces, compact, and therefore they can be integrated easily with other phononic
devices. In both systems, we found very good agreement between the numerical simulations
and the experimental results. In particular, we have shown that the focusing over a spot with the
lateral dimension close to the Abbé limit are easily obtained with the acoustic lens with the
rectangular symmetry. The anisotropy being responsible for the spreading out at the focus, one
must recognize that, on average, the ultrasound beam shall be subject along the path, to less
anisotropy with the rectangular symmetry than it is with the square symmetry. However, larger
vibration amplitudes are obtained with the heterostructure with the square symmetry. As
predicted by the numerical simulations, a second focus point was actually observed. For both of
the systems we studied, the vibration amplitudes at this second focal point were more than half
the vibration amplitude at the first focus.
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