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The SARAL/AltiKa mission is a complement of the Jason altimeter series. A two-
channels (23.8 GHz and 37 GHz) microwave radiometer (MWR) is combined to the

altimeter in order to correct the altimeter range for the excess path delay (referred as

WTC for wet tropospheric correction. First, the in-flight calibration of AltiKa MWR is

assessed from a systematic comparison to other radiometers using a complete set of
metrics (comparison to simulations and over geophysical targets). Then the “mixed”

empirical approach successfully used for Envisat shows nonoptimal performances for

the WTC retrieval. In order to find the potential sources of issues, this method is

compared to a purely empirical relationship established between measured brightness
temperatures (TB) and altimeter backscattering coefficient (s0) on one hand and mod-

eled WTC on the other hand. Various retrieval configurations for both AltiKa MWR

and advanced microwave radiometer (AMR) on Jason-2, are for the first time system-
atically compared with respect to their performances against the variance of sea sur-

face height differences at crossovers. Finally, the issues on the “mixed” approach are

attributed to the differences between simulated and measured s0 at Ka-band. Now, a

configuration of the empirical approach proved to have performances closed to what
is initially expected with the “mixed” approach.

Keywords Altimetry, data quality, microwave radiometry, wet tropospheric correction

1. Introduction

The SARAL/AltiKa mission is a complement of the Jason altimeter series. The use of a

Ka band altimeter results in better performances in terms of spatial resolution and accu-

racy. A two-channel microwave radiometer (23.8 GHz and 37 GHz) is combined to the

altimeter backscattering coefficient (s0) in order to correct the altimeter range for the

excess path delay (noted WTC for wet tropospheric correction) resulting from the
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presence of water vapor in the troposphere. Brightness temperatures (TB) are also used

for the estimation of the atmospheric attenuation of the backscattering coefficient, which

is significant in the Ka band. The microwave radiometer on SARAL/AltiKa mission (AL-

MWR) performs measurements of brightness temperatures in both bands at the location

of the altimeter footprint. First results at instrumental level exhibit its very good thermal

stability, its very fine sensitivity and its sharp spatial resolution, making of AltiKa radi-

ometer one of the best in-flight radiometers (Steunou et al. 2015).

The 23.8 GHz channel, chosen near the water vapor absorption line at 22.235 GHz,

is the most correlated to the WTC and the 37 GHz channel, while also well-correlated to

WTC, allows accounting for the cloud liquid water. Thus, the quality of the brightness

temperatures is crucial for the quality of the radiometer geophysical parameters retrieval.

Section 2 is dedicated to the validation of the TB of both channels using usual metrics:

comparison to simulated TB over ocean, vicarious calibration of coldest TB over ocean

and hottest TB over land, and systematic comparison to Jason-2 Advanced Microwave

Radiometer (AMR) and the Advanced Microwave Sounding Unit (AMSU-A) on

Metop02.

In Section 3, we present two empirical approaches for the retrieval of AltiKa radiom-

eter L2 products: a classical “mixed” approach successfully used in the past for ERS-1,

ERS-2, and Envisat MWR and an alternative method, purely empirical. The linear trans-

fer function between the simulated inputs and the measurements, a critical step for the

“mixed” approach, is described as well. Then, the difficulty of the comparison between

measured and simulated backscattering coefficients specific to Ka-band is discussed and

finally, the first elements for the validation of the “mixed” approach WTC are given.

For the first time, the corresponding performances of various retrieval configurations,

varying the number and the nature of the inputs, are evaluated in Section 4 against

improvement of the SSH variance at crossovers (w.r.t. ECMWF (European Centre for

Medium range Weather Forecasting) WTC) and compared to Jason-2 AMR.

Finally, Section 5 is dedicated to the conclusions.

2. SARAL/AltiKa Radiometer In-flight Calibration

The on-ground calibration of the receiver consists on the calibration and characterization

of each element of the radiometric model. Usually the reflector cannot be included during

the system characterization and the antenna pattern is measured separately. Moreover, it

is very difficult to estimate the brightness temperature aiming the side lobe of the antenna

pattern or the albedo of the surface seen by spill-over effect. This means that the on-

ground characterization is not fully representative of the on-flight behavior and that the

calibration of the receiver has to be assessed after launch.

The in-flight calibration is made difficult in microwave radiometry by the lack of ref-

erence natural target well-known or homogeneous enough. It is also important to assess

the calibration in the whole range of brightness temperatures seen over ocean. Each in-

flight instrument has its own calibration strategy. For AltiKa microwave radiometer

(AL-MWR), the methodology is based on several analyses:

� Comparison over ocean using the vicarious cold calibration method
� Comparison to other instruments (AMR on Jason-2, AMSU-A on Metop02) over

continental areas such as Amazon
� Comparing measured brightness temperatures with simulated ones over ocean, using

collocated profiles from ECMWF model analyses.
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In the following for AMR Jason-2 radiometer, the brightness temperatures at

23.8 GHz and 34 GHz and the wet tropospheric correction (WTC) are extracted from

Jason-2 Level 2 GDR-D (Geophysical Data Records) product version, available via

AVISO FTP (Archivage, Validation et Interpr�etation des donn�ees des Satellites

Oc�eanographiques ftp://avisoftp.cnes.fr/AVISO/pub/jason-2/gdr_d/) or PODAAC FTP

(Physical Oceanography Distributed Active Archive Center, ftp://data.nodc.noaa.gov/

pub/data.nodc/jason2/gdr/gdr/). AMSU-A along track brightness temperatures are

extracted from L1B data available at ICARE archive center (Interactions Clouds Aerosols

Radiations Etc http://www.icare.univ-lille1.fr/). AMSU-A is an across-track scanning

radiometer and no nadir measurement is available. Nadir brightness temperatures at

23.8 GHz and 31.4 GHz are built from the linear interpolation of the two closest samples

on each side of the nadir.

2.1. Coldest Brightness Temperature over Ocean

Ruf (2000) demonstrates how a statistical selection of the coldest TB over ocean allows

detecting and monitoring any potential drifts on brightness temperatures (Ruf 2000). It is

also commonly used for long-term monitoring or cross-calibration (Ruf 2002; Scharroo

et al. 2004; Eymard et al. 2005; Kroodsma et al. 2012).

In the following, Eymard method derived from Ruf’s is used (Eymard et al. 2005).

Over each SARAL/AltiKa cycle, cold brightness temperatures are selected by keeping

data below Ruf’s threshold C10K: this criterion is applied to all channels simultaneously

when Ruf applied his selection separately. Then, the mean and standard deviation of the

selected TB are computed. Finally, the coldest TB value for a given cycle is computed by

averaging the cold TB falling below the mean minus 1.5 times the standard deviation.

The results obtained for AL-MWR, AMR on Jason 2 and AMSU-A on Metop02 over

the first 10 cycles of SARAL/AltiKa (March 2013 to March 2014) are shown in Figure 1

(top x-axis shows the Julian days since January 1st, 1950). For the 23.8 GHz channel, the

coldest brightness temperatures over ocean for AL-MWR and AMSU-A are very close to

each other with less than 1 K of difference where AMR stands with 5 K lower than

AMSU-A. This difference could be attributed to specific calibration strategy choices for

AMR. The long-term calibration of AMR is insured by a method detailed in Brown

(2013), based on ocean observations and observations over the Amazon forest, which

main goal is to mitigate the known instrumental drift, when the calibration of AL-MWR

TB is ensured by the on-ground calibration.

Figure 1. Times series of ocean coldest brightness temperatures at 23.8 GHz (left) and CLWC

channels (right) for AL-MWR (solid line), AMR (dashed line) and AMSU-A (dotted line).
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For the cloud liquid water content (CLWC) channel, at 37 GHz for AL-MWR,

34 GHz for AMR, and 31.4 GHz for AMSU-A, the analysis is less straightforward as the

three instruments have different frequencies. Moreover the brightness temperatures of

this channel for AL-MWR were impacted by a saturation of the hot calibration counts

until 22 October 2013 when an on-board database update fixed this issue (see Steunou

et al. 2015). Corrective solutions are currently under investigation, but it is difficult at the

moment to precisely give a starting date from which the saturation has a measurable

impact on the TB, even if the impact is obvious on the hottest TB monitoring (see dedi-

cated section below) from the beginning of August (AltiKa cycle 5). Then, the mean val-

ues of the coldest ocean brightness temperatures for the three instruments given by

Table 1 is computed for the whole first 10 cycles, even for the 37 GHz channel of

AL-MWR. Now, the difference between AL-MWR 37 GHz and AMR 34 GHz is around

6 K before and after the saturation issue period which is in line with the theoretical value

estimated by Brown between the channel 34 GHz of JMR and the channel 37 GHz of

TMR (¡5.61 K § 0.23 K) (Brown et al. 2004).

2.2. Hottest Brightness Temperatures over Amazon Forest

The Amazon forest was shown to be the closest of a natural blackbody for microwave

radiometry, and it is commonly used to assess the calibration of microwave radiometers

(Brown 2005; Eymard et al. 2005).

The same region as in Eymard et al. (2005) is selected (latitudes between ¡5.5� and

¡4.5� and longitudes between C64.5� West and C67.0� West) and, as recommended by

the author, nightime hours measurements only are considered, the variation over seasons

and the standard deviation being slightly lower than for daytime hours. For AltiKa, night

passes occur at the end of the night just before sunrise (06:00 AM). For Metop02 night

passes occur at the beginning of the night just after sunset (09:30 PM) so it is expected

that the brightness temperatures for AMSU-A will be a little larger, as shown by the diur-

nal cycle observed over this area (Eymard et al. 2005). Jason-2 has on a non-sun-synchro-

nous orbit but the brightness temperatures are quite stable during the night (see Eymard

et al. 2005) so this allows extending the time span for the comparison: measurements

between 00AM and 07AM are selected for AMR and the averaging is performed over 3

cycles (30 days) in order to achieve a consistent number of observations.

Figure 2 shows the results for AL-MWR, AMR, and AMSU-A for 23.8 GHz

channels on the left, and CLWC channels on the right (top x-axis shows the Julian

days since 1 January 1950). Table 2 gives the mean of the nighttime Amazon Forest

brightness temperatures over the first 10 cycles of AltiKa (March 2013 to March

Table 1

Mean values of ocean coldest brightness temperatures over the first 10 cycles of AltiKa

for AL-MWR, AMR and AMSU-A

Mean Ocean Coldest Brightness Temperature [K]

23.8GHz CLWC

AL-MWR 140.6 153.9

AMR 134.9 147.8

AMSU-A 139.9 145.6
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2014). For the 23.8 GHz channels, the results are very close for the three missions

with differences of C1.2 K between AL-MWR and AMR and C2 K between

AMSU-A and AMR. The seasonal cycle is potentially larger on AL-MWR than on

the other two missions, with a difference of 2 K between AL-MWR and AMSU-A

during spring and summer and less than 1 K during the end of autumn and winter,

but long term conclusions cannot be drawn before a few years. For the CLWC chan-

nels, the saturation of the hot calibration counts is clearly seen with an expected

greater impact for hot temperatures than for cold temperatures. For this channel, the

mean values of AL-MWR TB are consistent with the measurements provided by the

other two instruments.

2.3. Comparison to Simulated Brightness Temperature over Open Ocean

Profiles from the European Centre for Medium range Weather Forecasting (ECMWF)

model analyses and a radiative transfer model were used to simulate brightness tempera-

tures over ocean (see Section 3 for more details). Four global analyses per day (every

six hours) for each day of SARAL/AltiKa first four cycles were processed (with an

expected small impact of the saturation issue on the 37 GHZ channel over this period),

within a limited band of latitudes between §60� to avoid sea ice. A space-time thresh-

old of §50 km and §30 minutes was applied as a collocation criterion between meas-

urements and simulations. The comparison is performed over limited areas resulting

from the combination of SARAL/AltiKa sun-synchronous orbit and the time collocation

criterion, but the statistics are still representative of the global situation.

Figure 2. Times series of hottest brightness temperatures over Amazon forest at 23.8 GHz (left)

and CLWC channel (right) for AL-MWR (solid line), AMR (dashed line), and Metop-02 (dotted

line).

Table 2

Mean of Amazon Forest Brightness temperatures over the first 10 cycles of AL-MWR,

AMR and AMSU-A

Nighttime Amazon Forest Mean Brightness temperature [K]

23.8 GHz CLWC

AL-MWR 285.8 283.4

AMR 284.6 281.7

AMSU-A 286.6 283.6
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In order to improve the consistency of the comparison, outliers are filtered out by

applying two additional selection criteria on the differences between simulations and meas-

urements. Large differences may be explained by land contamination of the measured TB

in the last 15 km from the coast (Valladeau et al. 2015) or by the difficulty of handling

cloudy situations by numerical meteorological models, in terms of time, location, and

intensity. Then, for a given channel, the differences between simulated and measured TB

greater than 20 K are rejected, and differences between ECMWF integrated CLWC and

CLWC estimated from measured TB larger than 10 kg/m2 as well. An empirical log-linear

relation is used to compute CLWC from measured TB (see Eymard et al. 1996).

Figure 3 presents scatterplots diagram built from these collocated and filtered

data for both channels. Biases up to a few Kelvin (§5K) between measured and sim-

ulated TB have not impact on the actual performances of the radiometer and are

even expected due to the limitation in the radiative transfer model, in the meteoro-

logical analyses and to the choices made for the on-ground calibration of the radi-

ometer as well (Obligis et al. 2006). The standard deviation on the difference

between measurements and simulations is mainly the signature of the temporal and

spatial inconsistency between the analyses and the measured TB (the instrumental

sensitivity being close to C0.15 K; see Steunou et al. 2015). Finally, the slope of

the linear fit on the scatterplot should be close to C1.0. Note that a larger standard

deviation and a slope less closer the bisecting line is expected for the CLWC chan-

nel due to a remaining effect of clouds. The thresholds on acceptable biases, stan-

dard deviation and slopes are purely empirical and based on the experience

accumulated with other instruments.

For the 23.8 GHz channel, the mean bias between simulations and measurements is

around¡3 K with a standard deviation of 2.8 K, the slope of the linear fit is aboutC1.03 K/

K. For the 37 GHz channel, the mean bias is smaller around C0.3 K with a standard devia-

tion of 3 K and a slope of the linear fit ofC1.08 K/K. These results show the good agreement

between the simulations and the measurements for both channels, in accordance with similar

comparisons performed on ERS-2 and Envisat radiometers (see Obligis et al. 2006).

Figure 3. Scatterplots between simulated brightness temperatures and measurements at 23.8 GHz

(left) and 37 GHz (right). The thin line is the bisecting line; the bold and the dashed lines respec-

tively refer to a nonweighted linear regression and a weighted linear regression (taking into account

the density in each bin).
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2.4. Conclusion on SARAL/AltiKa Radiometer In-flight Calibration

AL-MWR TB for both channels has been validated through the comparison to Jason-2/

AMR and Metop02/AMSU-A over geophysical targets, coldest ocean TB and hottest TB

over the Amazon forest, and the comparison to simulated TB.

The observed biases are lower than 2 K for the 23.8 GHz whatever the reference and

the selection on the data, at the exception of a bias of 5 K compared to AMR 23.8 GHz

coldest TB over ocean. The same difference is nevertheless lower than 1 K comparing

coldest TB of AL-MWR to AMSU-A; the large bias between AL-MWR and AMR could

then be attributed to different calibration strategies.

The impact of the saturation of hot calibration counts on AL-MWR 37 GHz channel

is clearly seen on the vicarious calibration metrics with an expected larger impact on hot-

test TB than on coldest TB (see Steunou et al. 2015). The assessment of the 37 GHz

channel would not be straightforward even if the saturation was corrected, due to a com-

bination of the different central frequencies used by the different radiometers, their differ-

ent calibration strategies and the impact of clouds on comparison to simulated TB. But,

even taking into account these limitations, the calibration of this channel seems

acceptable.

In conclusion, and despite this notable event, the calibration of AL-MWR is

completely consistent with the considered references.

3. SARAL/AltiKa Radiometer Geophysical Parameters Retrieval
Algorithms

3.1. The “Mixed” Approach

3.1.1. Methodology. A “mixed” retrieval approach has been successfully applied on

ERS-1 MWR, ERS-2 MWR, and Envisat MWR radiometers, the adjective “mixed” refer-

ring to the compromise between statistical and physical methods. Indeed, the physical

part of this approach is included in a radiative transfer model used to simulate brightness

temperatures from a large number of meteorological situations provided by numerical

weather model analyses. The statistical part is included in the inversion process used to

establish the relation between the inputs, the two AL-MWR brightness temperatures and

the altimeter backscattering coefficient, and the expected outputs, the radiometer geo-

physical parameters: water vapor, atmospheric attenuation of s0, cloud liquid water con-

tent and the wet tropospheric correction (WTC). We will focus on this latter in the

following. As for Envisat MWR, a neural network (NN) is used for AL-MWR to perform

the regression.

Details of this method are described in Obligis et al. (2006): surface fields and pro-

files from the European Centre for Medium-Range Weather Forecasts (ECMWF) are

used as inputs to the Universit�e Catholique de Louvain (UCL) radiative transfer model

(Guissard et al. 1987; Boukabara et al. 2002) to simulate TB and s0. The analyses at

12:00 UTC from the first day of each month are extracted on a 0.5� £ 0.5� global grid

over the whole 2012 year. Only latitudes between §60� are selected to avoid sea ice. The

database consists of the simulated TB and s0 on one hand and the WTC computed

directly from ECMWF humidity, temperature, and pressure profiles on the other hand.

The learning database is built from a uniform random selection of 20% of the quadruplets,

the 80% remaining representing the test database.
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The neural network architecture consists of one hidden layer with 8 neurons, the

transfer function of which is hyperbolic tangent sigmoid. The output layer transfer

function is linear. More details on the retrieval method are provided in Obligis et al.

(2006).

The core of the “mixed” approach is threefold: the description of the surface (rough-

ness, emissivity) and of the atmospheric (emission/absorption processes) properties by

the radiative transfer model, the good representativity of all possible atmospheric situa-

tions by the meteorological model, and the consistency between the simulated brightness

temperatures and the meteorological conditions.

Now, since the neural network is learned on a simulated dataset, optimal performan-

ces for the retrieval will be reached using the actual measurements provided by the radi-

ometer and the altimeter only if a valid transfer function is found between the simulations

and the measurements. The in-flight calibration of SARAL/AltiKa radiometer being

assessed in the previous section, a linear relation should be sufficient to ensure the consis-

tency between measurements and simulations.

3.1.2. The measured-to-simulated-brightness-temperatures transfer function. To esti-

mate the linear relation between measured and simulated TB, a cumulative process has

been implemented. At each iteration of the scheme, a day of collocated data is added to

the dataset and a linear fit is performed. Then the fitting coefficients are monitored. When

the dataset is statistically representative of all the possible atmospheric conditions, the

values of the fitting coefficients should stabilize. We are therefore limited by the constant

local time of SARAL/AltiKa passes and then a partial spatial coverage of the ocean

around the four profiles of ECMWF analyses per day.

Figure 4 presents the monitoring of the fitting coefficients for both channels. It

starts with strong oscillations at the beginning of the time series. After a month, the

temporal evolution of the coefficients is stable for the channel 23.8 GHz. For the

37 GHz, more time is required to achieve a statistically representative database as

the fitting coefficients stabilized only after three months. At the end of the time

series, a trend can be observed for both channels. This trend is explained by a sea-

sonal evolution different for measurements and simulations, as seen on the temporal

evolution of each data set (not shown here).

As the 23.8 GHz channel has the most important weight in the retrieval of the wet

tropospheric correction, we will select the time range for determination of the adjustment

according to this channel. This period of time is highlighted by the grey patch on

Figure 4. Monitoring of fit slope and intercept of the measured-to-simulated-TB transfer function.
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Figure 4. An average of the slope and intercept values over this time span is performed to

compute the values given in Table 3. These values are currently used in input of the

inversion algorithm for the generation of O/IGDR and GDR data “patch 2” version for

SARAL/AltiKa.

3.1.3. Discussion on the comparison between measured and simulated altimeter back-

scattering coefficient in Ka-band. A part of the inversion process, from the

incoming signal at the satellite altitude to the column integrated atmospheric parameters,

consists in the deconvolution of the surface contribution from the atmospheric one. As

the brightness temperature emitted by a given target is defined by the product of its emis-

sivity and its temperature, information on both surface temperature and roughness is

needed. On three channels radiometer, as AMR on Jason-2, the surface characterization

is provided by the 18.7 GHz channel which is sensitive to surface temperature, surface

roughness and atmospheric water vapor, bringing valuable additional information to the

retrieval process. In case of a two channels radiometer, roughness information only is pro-

vided by the altimeter backscattering altimeter.

As for the brightness temperatures, the learning database is set with a simulated s0:

the ocean surface roughness for a non-fully developed sea state is simulated using the

ECMWF wind as an input to the sea surface spectrum developed by Elfouhaily et al.

(1987) and a two-scaled decomposition of the surface. A two-way atmospheric attenua-

tion at the altimeter central frequency is then computed and added to the simulated s0

using the same radiative transfer model used for the brightness temperatures: it is thus

directly comparable to s0 estimated by the retracking of the waveform.

Multiple comparisons performed between simulations and altimeter measurements at

Ku, C, and S bands (Lemaire 1998) proved the validity of this approach. This approach

has been developed under certain assumptions and limitations exist, mainly related to the

sea surface spectrum.

Comparing simulations to measurements, the first limitation is that the sea surface

characterized by Elfouhaily spectrum only depends on wind (an empirical relation is used

to compute wave height). The consequences are two-fold: errors on the input wind will

lead to errors on s0 and the results will not be optimal for nonwind-driven waves. The sea

surface description will also not be optimal for very low roughness (below 1 cm), leading

to larger errors for small wind speed/flat surface conditions (below 1 m/s) and for large

observation central frequency, more sensitive to small scales (larger than 30 GHz).

Indeed, the comparison between the simulations and TOPEX altimeter measurements

performed by Lemaire shows a larger dispersion for low wind conditions (below 3 m/s)

and a larger dispersion at Ku band than at C band as well.

Table 3

Coefficients of the measured-to-simulated-TB transfer function applied on AltiKa “patch

2” product version

Coefficients used for the adjustment of inversion algorithm (Patch 2)

23.8GHz 37GHz

Slope 1.0295 1.0789

Intercept ¡8.234 ¡12.953
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Then, the correlation between the simulated and the measured s0 is small compared

to the correlation obtained for TB (respectively about 0.80 and larger than 0.95, see

Figure 5) and, considering the usual small weight of Ku-band s0 on the retrieval process,

still compared to TB, only a bias is usually adjusted to ensure the consistency between

the simulation and the measurements within the “mixedl” approach.

Now the correlation between measurements and simulations is slightly larger at

Ka-band (0.83) than at Ku-band (0.77) using the same filtering than defined for the

brightness temperatures comparison. But comparing measurements and simulations

without filtering or collocation criteria, the limitation of the simulation of s0 at Ka-

band appears. Figure 6 shows the percentile computed for the simulations (solid lines)

and the measurements (dashed lines) at Ka-band (AL-MWR measurements, bold lines)

and Ku-band (Jason-2 measurements, thin lines). A bias is added to the measurements

in order to align the statistics. The difference between simulations and measurements is

larger at Ka-band for large values of s0 (the last 10% of the data). As seen on the focus

on the central part of the distribution (Figure 6, top right), measurements and simula-

tions are close for 70% of Ku-band data (difference lower than 0.2 dB) and when the

difference is lower than 0.1 dB for 55% of Ka-band data. The backscattering coefficient

being lower at Ka-band than at Ku-band, the impact is larger at Ka-band. Moreover, as

seen in the histograms (Figure 6, bottom), the differences are larger in the central part

of the distributions, both at Ku- and Ka-band.

Further investigations are needed to assess the source of these differences. As

said at the beginning of this section, limitations are known for the simulations but

the statistics of s0 estimated from the waveforms are impacted by the cloud liquid

water content and rain events, with a larger impact at Ka-band than at Ku-band but

potentially by surface effects as well (small scale roughness, Gaussianity assumption of

the waves).

Finally, with no a priori on the impact of the Ka-band s0 on the retrieval performan-

ces, a bias of C0.5 dB is added to the measurements in order to increase the consistency

between measurements and simulations.

Figure 5. Scatterplots between simulated s0 and measurements at 35.75 GHz (left) and

13.5 GHz (right). The thin line is the bisecting line; the bold and the dashed lines respectively

refer to a nonweighted linear regression and a weighted linear regression (taking into account the

density in each bin).
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3.1.4. First validation results on the wet tropospheric correction. Figure 7 shows the

histogram of the difference between the radiometer (“mixed” approach) and ECMWF

wet tropospheric correction, referred as D_TROPO (radiometer-ECMWF). The impact of

the transfer function between simulations and measurements is clearly seen with a reduc-

tion of the bias (from C0.92 cm to ¡0.60 cm) and a slight reduction of the standard devi-

ation (from 1.71 cm to 1.65 cm). This latter is still larger for “patch 2” version of the

WTC (including the transfer function) than for Jason-2 (1.29 cm). Analyzing the maps of

Figure 6. Percentiles (top) and histogram (bottom) of s0: Ka-band (bold lines) and Ku-band (thin

lines), simulated (solid lines) and measured (dashed lines).

Figure 7. Histogram of WTC differences between radiometer (AL-MWR “patch 2” product ver-

sion and Jason-2/AMR) and ECMWF.
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D_TROPO for the two radiometers (not shown here), the “patch 2” version of the WTC

for AL-MWR is indeed too dry on the Intertropical Convergence Zone (ITCZ) region and

too wet at high latitudes, compared to ECMWF WTC (and to Jason-2 WTC by double

difference).

The comparison to ECMWF WTC is only a first step in the validation of the “mixed”

approach WTC but the performance seems not optimal. In order to assess the source of

this degradation, an alternative retrieval approach is proposed, based on the measure-

ments rather than the simulations.

3.2. The Empirical Approach

With the empirical approach, the inversion process is directly established from the meas-

urements. The learning database is built from the two TB and the backscattering coeffi-

cient, respectively, measured by the radiometer and the altimeter on one hand and the

ECMWF WTC on the other hand, interpolated on AltiKa ground track both in time and

space, linearly from the two closest analyses (six hours apart) and bi-linearly from the

four closest profiles. The first 10 cycles of SARAL/AltiKa is used and 1 point over 7 is

selected for latitudes between §60�. The same method as with the “mixed” approach is

applied to build the learning database and the test database and the same neural network

architecture is used for the inversion process.

Compared with the “mixed” approach, the empirical approach is less efficient by

construction. First, no a priori knowledge on the physics of the surface and the atmo-

spheric properties is needed and this could be a limitation for potential improvements.

Then, the consistency between the measurements and the atmospheric and surface condi-

tions is clearly lower than with the “mixed” approach, due to the interpolation of the

model onto AltiKa ground track. The comparison between the two methods will provide

useful information on what are the unexpected issues with the “mixed” approach.

4. Evaluation of the Performances of SARAL/AltiKa Wet Tropospheric
Correction

4.1. Evaluation Criteria

Different diagnostics are usually combined to evaluate the performances of a new wet tro-

pospheric correction: comparison to the correction provided by other instruments (Thao

et al. 2015), comparison to a modeled correction (Obligis et al. 2009), and comparison to

radiosondes (Obligis et al. 2006). Then, a critical part of the discussion focuses on the

errors on the new correction and on the reference.

The performances of different wet tropospheric correction retrievals are here quanti-

fied against the variance of sea surface height (SSH) differences at crossovers. The main

advantage of the variance of SSH criteria is that this method does not require any external

reference. This metric is commonly used to estimate the overall altimeter system perfor-

mance and a detailed comparison between WTC estimated from atmospheric analyses

and radiometers can be found in Legeais et al. (2014).

Assuming the SSH variability is almost null within a period of 10 days, the best cor-

rection, included in the SSH computation (e.g., atmospheric, ionospheric, tide gauges),

will provide the smallest variance of the SSH differences at crossovers, computed

between ascending and descending passes.

12



In order to quantify the benefit from radiometer WTC, a SSH is computed using

the ECMWF WTC (SSH_ECMWF) and another one with the radiometer WTC

(SSH_RAD). The variance of SSH differences at crossovers is computed for both

SSH (VAR(SSH_ECMWF) and VAR(SSH_RAD)). Finally, the difference between

the two variances is computed, referred as DVAR D VAR(SSH_RAD) - VAR

(SSH_ECMWF).

Compared with the model, the radiometer better solves the small spatial and temporal

scales so SSH_RAD is expected to have a smaller variance than SSH_ECMWF (see

Legeais et al. 2014). Consequently, DVAR is negative at a global scale, which is the sig-

nature of an improvement of the altimetry system. Moreover, the radiometer WTC is par-

ticularly valuable where the quantity of water vapor is large and its temporal and

variability is high, so the improvements will be particularly significant in the ITCZ and

less significant at high latitudes. On the contrary, a degradation is observed whenever

DVAR is positive. So in the following, “improvement of the performances” (respectively

“degradation’”) will be used as shortcut for “improvements of the altimetry system per-

formances using the radiometer WTC instead of ECMWF WTC” (respectively

“degradation”).

For the first time in the context of the evaluation of different WTC retrieval algo-

rithms, we combine three diagnostics related to the variance of SSH differences at cross-

overs. The global performances are quantified by the average over the temporal evolution

of DVAR: Gridded maps (1� £ 1�) of the averaged DVAR over the whole period of study

give useful information on the spatial distribution of the performances. Finally, the zonal

variation of DVAR computed from the averaging of the gridded map along each band of

latitudes allows a finer analysis of the results.

4.2. Description of the Dataset and of the Retrieval Algorithms

The different algorithms evaluated hereafter are named after the method used to set the

NN coefficients (“mixed” or “empirical”) and after the inputs used for the retrieval as

summed up in Table 4.

The performances of AL-MWR are compared to AMR on Jason-2 over the first 10

cycles of AltiKa, from March 2013 to March 2014. A detailed description of the method

used for the official retrieval for AMR can be found in Brown et al. (2004): it takes bene-

fit from the three channels of the AMR, the 23.8 GHz channel, a CLWC channel at

34 GHz, and a 18.7 GHz channel well correlated to both water vapor and surface proper-

ties (mainly roughness and SST).

Table 4

Description of the inputs for the different retrievals short names

Name Input(s)

1E 23.8 GHz TB

2E 23.8 GHz TB C CLWC TB

3E 23.8 GHz TB C CLWC TB C s0

4E 23.8 GHz TB C CLWC TB C s0 C SST
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For the present comparison and in order to ensure its consistency, the same methods,

“mixed” (based on 2012 ECMWF analyses and simulation) and “empirical” (based on

2013/2014 measurements) with different inputs, have been applied to both instruments.

4.3. Results

Figure 8 shows the performance of the “patch 2” version of AltiKa product, the classical

“mixed” approach using the classical three inputs: 23.8 GHz and CLWC channel bright-

ness temperature plus the altimeter backscattering coefficient, referred here as “mixed-

3E” algorithm. On the left, an improvement of the altimetry system is observed on equa-

torial and tropical regions, but a degradation clearly occurs on regions of high latitudes

larger the 40�N and 40�S. This is also illustrated by the variation of DVAR with the lati-

tude (see Figure 8, right): the performances of AL-MWR are similar to AMR between

40�N and 40�S and clearly degraded outside this area.

In order to find an explanation for the degradation of the classical approach for AL-

MWR, we analyze the improvement of the performances when using more and more

inputs for the retrieval. Figure 9 shows the variation of DVAR against the latitudes of

four different algorithms applied on AL-MWR (top left) and AMR (top right).

As expected, the performances improve with the number of inputs for both instru-

ments. The best ones are obtained with four inputs, adding the SST to the three classical

inputs, confirming the results shown in Obligis et al. (2009) (see Table 5). In this latter

case, DVAR is close for AL-MWR and AMR at a global scale but a degradation is still

observed at high latitudes for AL-MWR (Figure 9, top left).

Another way to analyze the improvement of the performances with the number of

inputs is to compute the gain on DVAR when adding the inputs one by one. For instance,

DVAR is equal to C3.8 cm2 with the algorithm 1E (23.8 GHz TB only) and ¡0.5 cm2

with the algorithm 2E (TB from both channels) for AL-MWR. Then, the gain on DVAR

brought by the CLWC channel is equal to C4.3 cm2; similarly the gain on DVAR brought

by the CLWC channel for Jason-2 being equal to C4.6 cm2 and one can conclude that the

quantity of information brought by the CLWC channel is almost the same for both

instruments.

Adding the altimeter backscatter coefficient actually slightly improves the perform-

ances for AL-MWR and AMR, respectively, of C0.3 cm2 and C0.1 cm2. As expected at

a global scale, the amount of information given by s0 is small and with a larger impact at

high latitudes (Figure 9, top left and right) where the integrated water vapor is small and

Figure 8. Performances of the “mixed - 3E” algorithm for AL-MWR: a gridded 1� £ 1� map (left)

and the variation against latitudes for AL-MWR and AMR (right).
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the wind speed is large: s0 is valuable where the weight of the surface roughness on the

TB measured by the radiometer is larger.

Finally, the gain on DVAR brought by the SST is larger for AL-MWR (C0.5 cm2)

than for AMR (C0.2 cm2). The SST seems to compensate for the poor performances

using the classical inputs for AL-MWR. It clearly reduces the bump between the latitude

20� and 40� (north and south, see Figure 9, top left) but it is not sufficient to avoid the

increase of DVAR with the latitude increasing.

The analyses of the same metrics applied to the “empirical” approach will allow us to

confirm the issues on how the Ka backscattering coefficient is handled with the “mixed”

approach.

Figure 10 shows the performance of the “empirical” approach with four inputs, the

so-called “empirical–4E” algorithm, using 23.8 GHz and CLWC channel TB, the altime-

ter backscattering coefficient and the SST. On the top left is shown DVAR gridded on a

1� £ 1� map for AL-MWR. The improvement is now clearly global, with still an expected

Figure 9. Variation of DVAR against latitudes: results for AL-MWR (left) and AMR (right) for the

“mixed” approach (top) and the “empirical” approach (bottom) for 1E, 2E, 3E, and 4E algorithms.

Table 5

Global performances for AL-MWR and AMR using the “mixed” approach

Performances of the mixed approach [cm2]

Retrieval algorithm AL-MWR AMR

1E C3.8 C3.4

2E ¡0.5 ¡1.2

3E ¡0.8 ¡1.3

4E ¡1.3 ¡1.5
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zonal signature, the improvement being larger on equatorial and tropical regions than at

high latitudes (see Figure 10, bottom). The results for AltiKa and Jason-2 are similar at a

global scale, the improvement being equal to ¡1.8 cm2 for AL-MWR.

The performances of 1E algorithms (23.8 GHz TB only) with the “empirical”

approaches are similar for the two instruments and the variations against the latitude are

close to the “mixed” approach (Figure 9, bottom). The gain on DVAR brought by the

CLWC channel is larger for AMR than for AL-MWR (C4.2 cm2 against C3.6 cm2) and

the performance is slightly poorer at high south latitudes for AL-MWR with the

“empirical” method than with the “mixed” approach. Nevertheless, the difference

between AL-MWR and AMR for the 2E algorithm is the same for the “empirical”

approach and for the “mixed” approach (C0.7cm2). It’s also worth noting that, in this con-

figuration, the “mixed” approach offers better performances than the “empirical”

approach for both instruments: the impact on DVAR is equal to C0.4 cm2 and is

explained by the nonconsistency between the measurements and the model during the

learning of the empirical approach.

Much larger differences are observed for the gain on DVAR brought by s0. The

global performances for AL-MWR and AMR are close with the “empirical” approach

using the classical three inputs (3E algorithms), respectively ¡1.2 cm2 and ¡1.0 cm2

(Table 6), but this results from a different handling of s0 by the retrievals.

The difference between the two instruments on the gain on DVAR brought by s0 with

the “empirical” approach is equal to C1 cm2: the gain on DVAR is equal C1.3 cm2 for

AL-MWR and C0.3 cm2 for AMR. Part of this gain compensates for the poor performan-

ces of AL-MWR compared with AMR and the “empirical” approach at high latitudes

(Figure 9, bottom), but a positive effect is clearly seen on high latitudes for AL-MWR,

especially above 40�N where the performances are now better with the “empirical”

approach than with the “mixed” approach. This may also be the signature of a larger

quantity of surface information brought by the AltiKa Ka-band backscattering coefficient

than with the one of Jason-2 at Ku-band. Nevertheless, at this level of investigation,

Figure 10. Performances of the “empirical 4E” algorithm applied to AL-MWR and comparison to

AMR GDR-D: top, gridded 1� £ 1� maps, bottom, the variation against latitudes.
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nothing allows to separate between a property of the Ka-band itself, compared to the

Ku-band, or the intrinsic characteristics of the altimeters, their respective spatial resolu-

tions for instance.

Then the difference is also large between the gain on DVAR brought by s0 with the

“empirical” and with the “mixed” approach for AL-MWR. Indeed, the performances are

better with the “empirical” approach than with “mixed” approach in this configuration

(Tables 5 and 6) for AL-MWR (¡0.4 cm2) when, as expected, the performances are

degraded for AMR (C0.3 cm2) using the “empirical” approach instead of the “mixed”,

with the same impact than in 2E configuration.

Summarizing, with a Ku-band s0, the performances are better with the “mixed”

approach than with the “empirical” approach (respectively ¡1.3 cm2 and ¡1.0 cm2) and

the gain on DVAR brought by s0 (w.r.t. 2E algorithm) is close for both methods, respec-

tively, 0.1 cm2 and 0.3 cm2. With a Ka-band s0, the performances are better with the

“empirical” approach than with the “mixed” approach (respectively ¡1.2 cm2 and

¡0.8 cm2) and the gain on DVAR brought by s0 (w.r.t. 2E algorithm) is much larger

with the empirical “approach” (1 cm2) than with the “mixed” approach (0.3 cm2). That is

to say, there is a certain amount of surface information in the Ka-band s0 (maximum of

1 cm2) which is not fully exploited by the “mixed” approach: this is should be related to

the inconsistency between the measured s0 and the simulated ones, as seen in the previ-

ous section, and the difficulty to find a valid transfer function between simulations and

measurements. Finally, the gain on DVAR brought by the SST is similar for the two

instruments with the “empirical” approach, about C0.5 cm2.

As shown in Figure 10 (top left), the “empirical” approach with four inputs

(“empirical - 4E” algorithm) offers the best performances for AL-MWR. As a reference,

DVAR map for the official (GDR-D version) AMR WTC product (using the JPL retrieval

algorithm) is shown on Figure 10 as well (top right) and its zonal variation is plotted on

bottom. The global geographical pattern and the zonal variation are similar but AMR

GDR-D WTC offers clearly better performances on high oceanic variability regions, as

over Agulhas current or over the Gulf Stream, at high latitudes.

Figure 11 allows comparing AL-MWR “empirical - 4E” to Envisat RA2-MWR and

AMR. The performance of this latter is computed for two periods, one covering the first

ten cycles of AltiKa and the second covering ten cycles of Envisat between April 2011

and end of March 2012. In both cases, the performances of AMR are evaluated with the

official GDR-D WTC. The algorithm for RA2-MWR is a classical “mixed” approach

(set with ECMWF 2012 analyses and simulations) with the classical three inputs.

On the left panel of Figure 11, DVAR is evaluated at a global scale (at latitudes lower

than 60�). AMR offers the best performances: the differences compared with AL-MWR

Table 6

Global performances for AL-MWR and AMR using the “empirical” approach

Performances of the empirical approach [cm2]

Retrieval algorithm AL-MWR AMR

1E C3.7 C3.4

2E C0.1 ¡0.8

3E ¡1.2 ¡1.0

4E ¡1.8 ¡1.6
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and RA2-MWR are the same and equal to C0.1 cm2. The same metrics are computed on

the right panel of Figure 11 over ocean with low variability (and latitudes between 50�S

and 50�N): AMR offers the best performances as well and the differences are slightly

larger, C0.2 cm2 compared with AltiKa and C0.4 cm2 for Envisat.

Finally, Figure 12 shows some metrics for AL-MWR “empirical - 4E” WTC. On

top is illustrated the map of the difference between AL-MWR WTC and ECMWF

WTC, centered on its mean. As seen on the zonal variation as well (Figure 12, bot-

tom left), the difference between ECMWF WTC and AL-MWR “empirical - 4E”

WTC are smaller than between ECMWF WTC and AMR WTC. This is expected

since the neural network is trained to be as close as possible to the model: due to

the methodology, some dynamic is missing on AL-MWR “empirical - 4E” WTC. As

seen on the histogram for the same difference between radiometer and model (Fig-

ure 12, bottom right), AL-MWR is more wet compared to AMR WTC, the bias

Figure 11. Best performances for AL-MWR, AMR and Envisat at global scale (left) and for low

oceanic variability selection (right).

Figure 12. Maps of WTC differences between AL-MWR “empirical - 4E” and ECMWF (top),

zonal variation (bottom left) and histogram (bottom right) and comparison to AMR GDR-D.
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being close to 5 mm and the standard deviation of the difference with ECMWF

WTC are equal to 1.29 cm for both instruments.

As noted by Obligis (2009), the systematic overestimation in the eastern part of the

subtropical basins (California and Peru coasts in Pacific, Mauritania, and Namibia coasts

in Atlantic) is due to the specific atmospheric stratification in these regions and could be

corrected for by adding a new input parameter to the retrieval: the global mean tempera-

ture slope value of the profile. Further improvements for AL-MWR are then expected

using a five inputs “empirical” approach.

5. Conclusion

The in-flight calibration of AltiKa microwave radiometer (AL-MWR) is assessed

through the comparison to simulated brightness temperatures and to the comparison

to Jason-2 AMR and Metop02 AMSU-A radiometers over geophysical targets, cold-

est brightness temperatures (TB) over ocean, and hottest TB over the Amazon forest.

In each case, the biases between AL-MWR TB and the considered reference are

inside reasonable limits, except for a 5 K bias observed during the comparison

between AL-MWR and AMR of coldest TB at 23.8 GHz, the differences being

attributed to different calibration strategies.

The performances of different configurations for two retrieval strategies of the WTC

are systematically evaluated for the first time against the variance of SSH differences at

crossovers. The classical “mixed” approach successfully applied to Envisat MWR is com-

pared with a pure empirical method.

The poor performances of the “mixed” approach are attributed to the inconsistency

between the simulated and the measured s0 and the larger weight of s0 on the retrieval

performances at Ka-band than at Ku-band.

The performances of the empirical approach using both radiometers TB, the altimeter

s0 and the sea surface temperature as inputs to the retrieval are close to what was

expected with the “mixed” approach and close to the performances of AMR three chan-

nels radiometer. Further improvements are expected introducing an additional input

parameter related to the specific atmospheric stratification in the eastern part of subtropi-

cal basins.

Improvements in the simulation of the backscattering coefficient should be proposed

in order to decrease these differences. Updates of the Elfouhaily sea surface spectrum

should be studied, including wave heights and wind, as inputs and investigating the sig-

nal/surface interaction at scales shorter than 1 cm. Further investigations should be per-

formed on the impact of rain on the altimeter s0 as well, in order to determine if a part of

the observed differences between simulations and measurements could be attributed to

rain events. In this latter case, the implementation of Mie theory (scattering and extinction

parameters of a spherical particle) applied to raindrops in the radiative transfer model

should be considered (Smith et al. 2002).
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